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MEAN CURVATURE FLOW SOLITONS

by

Norbert Ernst Hungerbühler & Béatrice Roost

Abstract. — We consider the mean curvature flow Ft : M → N of hypersurfaces

in a Riemannian manifold N . The stationary solutions of this flow are the minimal

surfaces in N . Other interesting solutions are those, which move along the integral

curves of a smooth vector field X of N . In this way conformal vector fields X give raise

to self-similarly shrinking solutions of the mean curvature flow. If X is even parallel

then the corresponding solutions of the mean curvature flow are called isometric

solitons or just solitons. Soliton solutions have attracted increasing attention in the

past years since they are interesting objects for a number of reasons: solitons appear

as blow ups of singularities and exhibit interesting geometric and analytic properties.

They serve as tailor-made comparison solutions and allow a certain insight into the

behaviour of the mean curvature flow viewed as a dynamical system.

Résumé (Solitons issus du flot par la courbure moyenne). — Nous considérons le flot de la

courbure moyenne Ft : M → N d’hypersurfaces dans une variété riemannienne N . Les

solutions stationnaires de ce flot sont les surfaces minimales dans N . D’autres solu-

tions intéressantes sont celles qui se déplacent le long de courbes intégrales d’un champ

de vecteur lisse X dans N . De cette manière les champs de vecteurs conformes X en-

gendrent des solutions autosimilaires contractantes du flot de la courbure moyenne.

Si X est parallèle alors les solutions correspondantes au flot de la courbure moyenne

sont appelées solitons isométriques ou juste solitons. Il y a un intérêt croissant ces

dernières années pour les solutions solitons car ce sont des objets intéressants pour

diverses raisons: les solitons apparaissent comme des éclatements de singularités et

font apparâıtre des propriétés géométriques et analytiques intéressantes. Elles servent

comme des solutions de comparaison sur mesure et donnent une certaine idée du com-

portement du flot de la courbure moyenne vu comme un système dynamique.

1. Introduction

Physicists investigated in the fifties of the twentieth century the annealing process

of aluminum. They observed, that in melted aluminum, at random points the material
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130 N. HUNGERBÜHLER & B. ROOST

starts to crystallize spontaneously, as the temperature reaches a critical level. In these

points, homogeneous crystals with face centered cubic lattice start to grow. These

grains finally touch each other and fill the space (see Figure 1). However, this is not the

end of the process: atoms sitting at the edge of a grain are integrated in their atomic

Figure 1. Grains in aluminum: a typical grain size is around 10 micro-

meter, the lattice parameter of aluminum amounts to 4.05 10−7m.

crystal lattice only to one side and are therefore in a slightly elevated energy state.

On account of this, such an atom can spontaneously jump to the neighboring lattice.

This change is the more likely, the more convex the boundary at this point is: if, e.g.,

the atom is sitting at a cusp, it is surrounded almost entirely by a “foreign” crystal

grid and will therefore easily change its affiliation. By the described mechanism,

the grain boundaries keep moving even after the metal has solidified. It has been

observed, that the velocity of a grain boundary is proportional to its mean curvature.

This is plausible, if we assume that the elevated energy state of the boundary atoms

amounts to a surface energy which is isotropic and proportional to the surface area.

The system, trying to minimize its energy, will therefore reduce this surface, and the

first variation of the area functional corresponds just to the mean curvature vector

field. This means, the system reduces its energy by moving the grain boundaries with

a velocity which is (proportional to) the mean curvature in each point. This is the

mean curvature flow.

Mathematically, the mean curvature flow has first been investigated 1978 by Brakke

(see [4]), later by Huisken (see [12]). Brakke used geometric measure theory, Huisken

a more classical, differential geometric approach. In order to describe singularities

of the flow, Osher-Sethian introduced a level-set formulation for the mean curvature

flow (see [18]), which was investigated later by Evans-Spruck (see [6], [7], [8], [9])
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MEAN CURVATURE FLOW SOLITONS 131

and Chen-Giga-Goto (see [5]) in detail. Ilmanen revealed in [14] the relation between

the level-set formulation and the geometric measure theory approach.

In this article, we use the following model of the mean curvature flow: let N be a n-

dimensional Riemannian manifold with a metric ḡ and M a differentiable, connected

m-dimensional manifold with m = n − 1. Let Ft : M → N, t ∈ [0, T [, T > 0, be a

smooth family of immersions from M to N . Then we say:

Definition 1.1. — The family Ft is a solution of the mean curvature flow on [0, T [, T >

0, if

d

dt
Ft = −Hν on M×]0, T [(1)

F0 = f on M,

where f : M → N describes a given initial hypersurface M0. H denotes the mean

curvature of Ft(M) with respect to the unit normal vector field ν on Ft(M). ♦

The minus sign in (1) causes the flow to decrease area (or arc length in the case of

curves). We also remark that the product Hν is independent of the chosen orientation

of ν (see (6)–(7) below). H can be interpreted as the trace of the second fundamental

form of the immersion, and Hν as the first variation of the area functional. The term

Hν can also be written as ∆Ft(M)Ft, which is the Laplace-Beltrami operator on M

with respect to the pull back by Ft of the metric on N . In this form, the parabolic

nature of the equation becomes apparent. However, the operator evolves in time

together with the solution. Nonetheless, classical solutions of the mean curvature

flow, inherit a parabolic comparison principle:

Comparison principle. — If the initial surfaces F0(M) and G0(M ′) are disjoint, so

are the solutions Ft(M) and Gt(M
′) as long as they exist classically.

This comparison principle allows already to make some qualitative statements re-

garding the behaviour of solutions of the mean curvature flow. The following example

in N = R3 is due to Angenent: the two spheres S in Figure 2 have the same radius

D

S S

Figure 2. Four initial surfaces
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132 N. HUNGERBÜHLER & B. ROOST

R. Subject to the mean curvature flow, they shrink in time TS = R2

2 dimS to a point.

Between the two spheres, there is a special torus D which has the property, that it

shrinks self similarly to a point. Such a torus has been found in 1992 by Angenent

(Angenent’s doughnut, see [3]). Choosing the torus small enough to be enclosed by

a sphere of radius r < R, its vanishing time TD is strictly less than TS . Finally, we

thread a dumbbell surface around the two spheres S through the torus D. The com-

parison principle guarantees that the configuration stays disjoint during its evolution

under the mean curvature flow. Therefore, after a certain time, the solution looks as

indicated in Figure 3. At the latest at time TD the torus strangles the neck of the

Figure 3. Solution at time t < TD

dumbbell (see Figure 4) and a singularity must occur for this surface. (To continue

Figure 4. A singularity occurs

the flow past such a singularity see [4] and [5], or [6]–[9].)

If the initial surface is convex, the situation is better: Huisken proved 1984, that

the solution stays convex and shrinks in finite time to a round point. This means, that

if one rescales the solution suitably (e.g., by keeping the area constant), it converges

in finite time uniformly to a round sphere.

In R2, the situation is even better: if one starts the (mean) curvature flow (also

called curve shortening flow in this case) with an embedded closed curve, the solution

stays embedded and converges in finite time to a round point. This is a result of

Grayson (see [11]).

Nonetheless, the curve shortening flow can develop singularities also in the plane,

if one starts with a curve that is not initially embedded. The example in Figure 5 is

due to Angenent (see [2]): here, the inner loop suffers from its higher curvature and

therefore shrinks faster than the outer loop. A singularity forms in finite time. By

rescaling the solution suitably, e.g., by keeping the maximal curvature constant, the

rescaled solution converges to a very particular limit, namely the curve x = − log cos y

(see Figure 6): Angenent has shown, that the blow-up of every so called type II
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−→ −→

Figure 5. Singularity formation
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Figure 1: Grim Reaper
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Figure 6. Grim Reaper

singularity of convex (1) plane curves generates exactly this limit. This limit curve

now turns out to have a very special property: if we let it evolve under the curvature

flow, it keeps its shape and evolves by translating with constant speed to the right.

Since the form and motion of the curve reminds of a scythe, Hamilton called it the

“Grim Reaper”. Generalizing this example, we will call every solution that evolves

under the mean curvature flow by the motion of a one parameter group of isometries

of the ambient manifold, a soliton. Note, that it is equally interesting to consider

the motion of solutions along integral curves of vector fields other than Killing fields,

e.g., conformal vector fields, which give raise to self similarly shrinking solutions of the

(1) Convex means here, that the curvature does not change its sign along the curve.
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134 N. HUNGERBÜHLER & B. ROOST

mean curvature flow (see, e.g., [16], Angenent’s doughnut in [3], or the self-similarly

moving curves of Abresch-Langer in [1]). In [13] it has been shown, that other

soliton solutions occur as parabolic blow-up of type II singularities. However, the

Grim Reaper and its higher dimensional relatives have long been the only examples

of solitons. A more general study of solitons of the mean curvature flow finally started

in [17].

2. Soliton solutions

The word soliton was coined by Kruskal and Zabusky in their fundamental

work [21] on the Korteweg-de Vries equation. There, they observed, that this

non-linear equation possesses so called traveling wave solutions which superimpose

almost like solutions of linear wave equations. Such solutions were also called

“solitary waves”. Since the interaction of these solutions reminds of the behaviour

of elementary particles (like a “proton”), Kruskal and Zabusky created the made-up

word “soli-ton”. This denomination has been transfered to geometry for solutions

that move under the action of isometry groups, even though there is usually no

interaction property.

Soliton solutions of the mean curvature flow are interesting objects for several

reasons:

– they appear, as we mentioned in Section 1, as blow ups of singularities of the

mean curvature flow

– they have interesting geometric properties (as we will see in Section 3.2)

– they have interesting analytic properties (e.g., certain stability properties:

see [17], [20] and [15])

– they serve as tailor-made comparison solutions (see, e.g., [17, Section 5])

– they allow a certain insight in the behaviour of the mean curvature flow viewed

as a dynamical system.

To formulate the definition of a soliton, letN be a n-dimensional Riemannian manifold

with metric ḡ, equipped with a Killing vector field X related to an isometry group

ϕ : N × R→ N by

dϕ(x, t)

dt
= X(ϕ(x, t)) on N × R(2)

ϕ(x, 0) = x on N.(3)

Furthermore, M is a differentiable, connected m-dimensional manifold, m = n − 1.

Let Ft : M → N, t ≥ 0 be a solution of the mean curvature flow on [0, T [, T > 0.

Then, we say:
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MEAN CURVATURE FLOW SOLITONS 135

Definition 2.1. — Ft is a soliton solution of the mean curvature flow with respect

to the Killing field X, if ‹Ft := ϕ−1(Ft, t) is stationary in normal direction, i.e., if‹Ft(M) = F0(M) for all t ∈ [0, T [. In this case, the initial state F̃0 = F0 = f will also

be called a soliton. ♦

To better understand this definition, let us consider Figure 7: we fix a point x ∈M

Ft(x)

Ft(M)

ν

f(M) = F0(M)

F̃t(x)

Dϕ−1(Ft(x), t)ν) =: ν̃

f(x) = F0(x)

d

dt
F̃t(x)

ϕ−1(Ft(x), t) ϕ−1(·, t)

Figure 7. The definition of soliton solutions

and consider its image f(x) ∈ f(M) = F0(M). At time t > 0 this point has moved

by the mean curvature flow to the place Ft(x) ∈ Ft(M). Then, we move it back by

ϕ−1(·, t) to obtain the point F̃t(x) := ϕ−1(Ft(x), t). The definition now requires, that

F̃t(x) ∈ F0(M). Geometrically, this means, that Ft(M) = ϕ(F0(M), t), i.e., the initial

surface F0(M) moves under the mean curvature flow exactly like under the action of

the isometry group ϕ(·, t). Stated otherwise: F̃t(x) moves points only within the

surface F0(M) (it is stationary in normal direction). In order to investigate solitons,

we now need the describing equation. We compute, by using (1) and (2),

d

dt
‹Ft(x) =

∂ϕ−1(Ft(x), t)

∂t
+Dϕ−1(Ft(x), t)

∂Ft(x)

∂t

= −X(‹Ft(x))−Dϕ−1(Ft(x), t)Hν,(4)

where D denotes the spacial derivative. Since X is a Killing field, ν̃(x, t) =

Dϕ−1(Ft(x), t)ν is a unit normal vector field to ‹Ft(M) (see Figure 7). Definition 2.1

now requires, that 〈 ddt‹Ft(x), ν̃(x, t)〉 = 0. Hence, by (4), we get

−〈X(‹Ft), ν̃〉 = H〈Dϕ−1ν, ν̃〉 = H〈ν̃, ν̃〉 = H.

This holds in particular for t = 0, i.e., for F̃0 = F0 = f . Therefore, a soliton solution

f : M → N of the mean curvature flow satisfies

− 〈X(f), ν(f)〉 = H(f).(5)

Vice versa, it is easy to see, that every solution f of (5) induces a soliton solution

with respect to X.
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136 N. HUNGERBÜHLER & B. ROOST

By multiplication by ν one can reformulate (5) equivalently:

X⊥ + ~H = 0,

i.e., soliton surfaces are characterized by the property, that in every point the mean

curvature vector ~H = Hν annihilates the normal component of the Killing field.

For concrete calculations, we need to express (5) in local coordinates. Let ḡαβ
denote the metric, and Γ̄γαβ = 1

2 ḡ
γε(ḡαε,β+ ḡβε,α− ḡαβ,ε) the corresponding Christoffel

symbols on N , with Greek indices between 1 and n. The induced metric and the

Christoffel symbols on the immersed manifold M
f
↪→ N is denoted by gij and Γkij ,

with Latin indices running from 1 to m = n− 1. To compute the mean curvature, we

use the Gauss equation

(6)
∂2fα

∂xi∂xj
− Γkij

∂fα

∂xk
+ Γ̄αβγ

∂fβ

∂xi
∂fγ

∂xj
= −hijνα.

Here, hij is the second fundamental form which can be determined by multiplying (6)

by να = ḡαβν
β . Then, the mean curvature is given by

(7) H = gijhij .

Observe, that the middle term in (6) vanishes under this operation, since 〈 ∂f
∂xk

, ν〉ḡ = 0.

3. Geometric aspects of soliton curves

3.1. Soliton curves on geodesically complete Riemannian surfaces. — In this section, let

N be a two-dimensional smooth Riemannian manifold with metric ḡ. We assume, that

there exists a smooth Killing vector field X : N → TN . Since we are dealing with

curves in this section, M is just an open interval of R. For concrete calculations, we

introduce local coordinates on N : let φ : U ⊂ N → V ⊂ R2 be a coordinate chart. By

γ : M → N we denote the soliton solution of the curve shortening flow we are looking

for. In local coordinates we consider f := φ ◦ γ : γ−1(U)→ V, s 7→
(
x(s), y(s)

)
. Vice

versa γ is locally given by γ = φ−1 ◦ f in the considered chart.

The curve γ : M → N is a soliton solution, if its local representation f satisfies the

soliton equation

− 〈X(f), ν(f)〉ḡ = H(f).(8)

Now, we need an explicit form of this equation, i.e., expressions for X(f), ν(f),

and H(f) in local coordinates: to ease notation, we write ḡαβ = ḡαβ
(
x(s), y(s)

)
,

α, β ∈ {1, 2}, and f ′ = d
dsf(s) =

(
x′(s), y′(s)

)
= (x′, y′). It turns out to be convenient

to parametrize the curve γ by arc length, i.e.,

〈f ′, f ′〉ḡ = (x′)2ḡ11 + 2x′y′ḡ12 + (y′)2ḡ22 = 1.(9)
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Let (η, ξ) denote the coordinates of the Killing vector field X. For the regularity of X

it suffices in the sequel that X be at least locally Lipschitz continuous. A unit normal

vector ν to the curve γ is given by

ν =
√

det ḡαβ ḡ−1

(
y′

−x′

)
.(10)

Thus, we obtain

〈X , ν〉ḡ =
√

det ḡαβ(ηy′ − ξx′).

By formula (7) the (mean) curvature H with respect to ν is given by H = g11h11.

In view of (9), the induced metric g on M by f is just the Euclidean metric. Hence,

H = h11, where h11 is given by the Gauss equation (6) which here takes the form

(11)
∂2fα

∂s2
− Γ1

11

∂fα

∂s
+ Γ̄αβγ

dfβ

ds

dfγ

ds
= −h11ν

α .

A simple, but lengthy calculation yields then

−H = (x′′y′ + y′′x′)
√

det ḡαβ

+
1

2

1√
det ḡαβ

(
(x′)3

(
ḡ12ḡ11,1 + ḡ11(−2ḡ12,1 + ḡ11,2)

)
+(x′)2y′

(
ḡ22ḡ11,1 + ḡ12(−2ḡ12,1 + 3ḡ11,2)− 2ḡ11ḡ22,1

)
+x′(y′)2

(
2ḡ22ḡ11,2 + ḡ12(2ḡ12,2 − 3ḡ22,1)− ḡ11ḡ22,2

)
+(y′)3

(
ḡ22(2ḡ12,2 − ḡ22,1)− ḡ12ḡ22,2

))
.

Thus, in local coordinates, equation (5) reads as follows:

√
det ḡαβ(ηy′ − ξx′) = (x′′y′ + y′′x′)

√
det ḡαβ

+ 1
2

1√
det ḡαβ

(
(x′)3

(
ḡ12ḡ11,1 + ḡ11(−2ḡ12,1 + ḡ11,2)

)
+(x′)2y′

(
ḡ22ḡ11,1 + ḡ12(−2ḡ12,1 + 3ḡ11,2)− 2ḡ11ḡ22,1

)
+x′(y′)2

(
2ḡ22ḡ11,2 + ḡ12(2ḡ12,2 − 3ḡ22,1)− ḡ11ḡ22,2

)
+(y′)3

(
ḡ22(2ḡ12,2 − ḡ22,1)− ḡ12ḡ22,2

))
.

(12)

We remark, that (12) simplifies if one chooses special coordinates. However, for

concrete (numerical) computations, the general form (12) is quite practical, since one

is not forced to first look for, e.g., isothermal coordinates.
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Together with condition (9) and equation (12) we get the following system describ-

ing local soliton curves:

ḡ11(x′)2 + 2ḡ12x
′y′ + ḡ22(y′)2 = 1

(13)

x′′y′ − x′y′′ = −1

2

1

det ḡαβ

(
(x′)3

(
ḡ12ḡ11,1 + ḡ11(ḡ11,2 − 2ḡ12,1)

)
+ (x′)2y′

(
ḡ22ḡ11,1 + ḡ12(3ḡ11,2 − 2ḡ12,1)− 2ḡ11ḡ22,1

)
+ x′(y′)2

(
2ḡ22ḡ11,2 + ḡ12(2ḡ12,2 − 3ḡ22,1)− ḡ11ḡ22,2

)
+ (y′)3

(
ḡ22(2ḡ12,2 − ḡ22,1)− ḡ12ḡ22,2

))
− x′ξ + y′η .(14)

In the chosen chart we give ourselves the initial conditions(
x, y
)
(s0) =

(
x0, y0

)(
x′, y′

)
(s0) =

(
u0, v0

)(15)

where we impose

‖(u0, v0)‖ḡ = 1.(16)

In order to rewrite (13)–(14) as a first order system, we differentiate (13). This yields,

together with (14), two linear equations for x′′ and y′′. By (9), the determinant of

the corresponding 2 × 2 system turns out to equal −2 6= 0, and it can therefore be

solved for x′′ and y′′. By setting u := x′ and v := y′ we obtain in this way the system

(17)

x′ = u

y′ = v

u′ = −1

2

1

det ḡαβ

(
u2(ḡ22ḡ11,1 + ḡ12(ḡ11,2 − 2ḡ12,1))

+ uv(2ḡ22ḡ11,2 − 2ḡ12ḡ22,1)

+ v2(ḡ22(2ḡ12,2 − ḡ22,1)− ḡ12ḡ22,2)
)

− u2ḡ12ξ − uv(ḡ22ξ − ḡ12η) + v2ḡ22η

v′ = −1

2

1

det ḡαβ

(
u2(ḡ12ḡ11,1 + ḡ11(ḡ11,2 − 2ḡ12,1))

+ uv(2ḡ12ḡ11,2 − 2ḡ11ḡ22,1)

+ v2(ḡ12(2ḡ12,2 − ḡ22,1)− ḡ11ḡ22,2)
)

+ u2ḡ11ξ − uv(ḡ12ξ − ḡ11η)− v2ḡ12η
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with initial condition

(18)
(
x, y, u, v

)
(s0) =

(
x0, y0, u0, v0

)
and (16).

We write the system (17) in compact form as (x, y, u, v)′ =: Θ(x, y, u, v).

Therefore, every solution (x, y) of (13)–(14) with initial conditions (15)–(16) cor-

responds to a solution (x, y, x′, y′) of (17) with initial conditions (18) and (16). Vice

versa, it is easy to check that every solution (x, y, u, v) of (17) with (18) and (16)

corresponds to a solution (x, y) of (13)–(14) with (15)–(16).

Now, we show that in the chosen chart the system (17) has a maximal solution

(x, y, u, v) and that this solution can be continued by adding other charts. Actually,

we will see, that the solution can be continued arbitrarily far if N is geodesically

complete.

Definition 3.1. — A C1 curve γ : ]a, b[→ N is called a solution of

〈X , ν〉ḡ = −H(19)

if it satisfies the following condition:

For all s0 ∈]a, b[ there exists a chart φ : U ⊂ N → V ⊂ R2 with γ(s0) ∈ U such

that for an ε > 0

(i) γ|Uε(s0) = φ−1 ◦ f for a C1 curve

f : Uε(s0) ⊂]a, b[ → V

s 7→

(
x(s)

y(s)

)
(ii)

(
x(s), y(s), x′(s), y′(s)

)
is a solution of (17). ♦

For fixed p ∈ N, v ∈ TpN with ‖v‖ḡ = 1, we say, [a, b] ⊂ R is an existence interval,

if there is γ ∈ C1([a, b], N) such that γ is a solution in the sense of Definition 3.1 on

]a, b[ and γ(0) = p, γ′(0) = v. Then

I :=
⋃
{ [a, b] ⊂ R | [a, b] is an existence interval }

is the maximum interval of existence.

Lemma 3.2. — I is open and not empty.

Proof. — The function Θ(x, y, u, v) in (17) is locally Lipschitz continuous with respect

to x, y, u and v. Therefore, by the Theorem of Picard-Lindelöf, there exists a unique

local C1-solution
(
x(s), y(s), u(s), v(s)

)
of (17) on an interval ]− ε, ε[. Hence, I is not

empty.

Now, we show, that for all s ∈ I there exists a neighbourhood of s contained in

I. By the definition of I there exists an existence interval [a, b] such that s ∈ [a, b].

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008



140 N. HUNGERBÜHLER & B. ROOST

If s ∈ ]a, b[, we have nothing to show. So let us assume s = b (the case s = a is

similar). We choose a chart φ : U ⊂ N → V ⊂ R2 with γ(b) ∈ U . Thus, there exists

an ε > 0 such that γ(]b − ε, b]) ⊂ U and φ ◦ γ(]b − ε, b]) ⊂ V . By the Definition 3.1

the map f : ]b − ε, b[→ V, s 7→ φ ◦ γ(s) is a solution of (17). Since γ ∈ C1([a, b], N),

γ(b) and γ′(b) are well defined. By the Theorem of Picard-Lindelöf there exists for a

δ ∈ ]0, ε[ a unique map f̃ : ]b− δ, b+ δ[→ V such that f̃ is a solution of (17) and such

that f̃(b) = φ ◦ γ(b) and f̃ ′(b) = d
dsφ ◦ γ(b). Due to the uniqueness it follows that

f̃ |]b−δ,b[ = f |]b−δ,b[.
Therefore, all s ∈ R with b− δ < s < b+ δ belong to I, hence, I is open.

The previous consideration basically shows, that a soliton curve can always be

continued in an inner point of N . It is therefore natural to expect that

Lemma 3.3. — If N is geodesically complete, then I is closed.

Proof. — Let (sn)n∈N be a sequence in I. We show: if limn→∞ sn = s, then s ∈ I.

It suffices to show this for 0 < sn ↗ s. We have

(20) 0 ≤ d(γ(sm), γ(sn)) ≤ length of the curve γ([sn, sm]) = |sm − sn|

where d is the geodesic distance on N . Hence,
(
γ(sn)

)
n∈N is a Cauchy sequence on N .

By the Theorem of Hopf-Rinow γ(sn) converges in N , hence, limn→∞ γ(sn) =: A ∈ N .

If s ∈ I, there is nothing to show. So suppose otherwise s /∈ I. Then we extend γ

by setting γ(s) := A.

This extension is continuous in s, i.e., γ(τi)→ A (i→∞) for all sequences τi ↗ s.

Indeed (s1, τ1, s2, τ2, . . . ) is evidently a Cauchy sequence in R. By (20) it follows that(
γ(s1), γ(τ1), γ(s2), γ(τ2), . . .

)
is a Cauchy sequence in N . Since γ(sn) converge to A,

the whole sequence converge to A, in particular limi→∞ γ(τi) = A.

Next, we show that γ ∈ C1([0, s], N). First of all, γ ∈ C1([0, sn], N) for all n and

thus γ ∈ C1([0, s[, N). Further, we consider a chart φ : U ⊂ N → V ⊂ R2 where

γ(s) ∈ U and with V bounded. Then f := φ ◦ γ is on ]s− ε, s] well defined for some

ε > 0 and on ]s−ε, s[ it is a solution of (17) in the sense of Definition 3.1. In particular

this means, that f ∈ C1(]s−ε, s[, V ). So we have to show that f ∈ C1([s−ε, s], V ). On

]s− ε, s[ the functions x, y, u, and v are continuous and bounded. (The boundedness

of u and v follows from (13).)

Thus, Θ
(
x(·), y(·), u(·), v(·)

)
is also continuous on the interval ]s− ε, s[. Since Θ is

Lipschitz continuous, Θ
(
x(·), y(·), u(·), v(·)

)
is moreover bounded on ]s− ε, s[. Then,

by (17), the functions x′, y′, u′ and v′ are on ]s − ε, s[ continuous and bounded. In

particular u and v are Lipschitz continuous on ]s − ε, s[. Therefore, the functions

u = x′ and v = y′ (and consequently f ′ and finally γ′) can be continuously extended

to the point s. Therefore, s ∈ I.
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The last two lemmas yield the following Theorem.

Theorem 3.4. — Let N be a two-dimensional smooth, geodesically complete Rieman-

nian manifold, which carries a smooth Killing vector field X : N → TN . Then, for

each point p ∈ N and every direction v ∈ TpN with v 6= 0 there exists a unique soliton

curve through p which is tangent to v and which can be extended arbitrarily far to both

sides.

From the proof of Lemma 3.2, it follows in particular, that through every fixed

point in N in every direction a unique local solution of the soliton equation exists.

We now want to have a closer look at the local behaviour and start by introducing

some notation.

Let v ∈ TpN . The curve γv denotes the unique solution of the soliton equation

with γv(0) = p and γ̇v(0) = v. Further, we consider the set Ω := { v ∈ TN |
γv is defined on [0, 1] }. We notice that Ω ∩ TpN is star-shaped. Now, we define the

analogue of the exponential map for geodesics.

Definition 3.5. — The soliton exponential mapping is defined by

solexp : Ω → N

v 7→ γv(1).

To ease notation we write solexpp := solexp|TpN . ♦

Proposition 3.6. — 1. solexp : Ω→ N is differentiable.

2. The map

Φ : Ω → N ×N
v 7→ (π(v) , solexpπ(v) v)

is a local diffeomorphism from a neighbourhood of (p0, 0) ∈ Ω to a neighbourhood

of Φ(p0, 0) = (p0, p0) ∈ N ×N .

Proof. — 1. This follows from the theory of ordinary differential equations (differ-

entiable dependence of the solution from the initial conditions).

2. Locally, TN |U ∼= U ×Rn, where U is a sufficiently small neighbourhood of p0 in

N. In the sequel we consider the restriction of Φ to
(
U×Rn

)
∩Ω and denote this

map still by Φ. Now, we consider a local chart from a subset of
(
U × Rn

)
∩ Ω

to V × V , V ⊂ Rn. Further we consider a chart from a neighbourhood of

Φ(p0, 0) = (p0, p0) ∈ N ×N to V ′ × V ′, V ′ ⊂ Rn. Then Φ can be viewed as a

map V × V → V ′ × V ′, and we have to show that DΦ(p0, 0) is invertible. For

this, we calculate the matrix representing DΦ(p0, 0) in the local coordinates.
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For this purpose, let α be a differentiable curve in N with α(0) = p0. Then we

get
d

dt

∣∣∣∣
t=0

Φ
(
α(t), 0

)
=

d

dt

∣∣∣∣
t=0

(
α(t), α(t)

)
=
(
α̇(0), α̇(0)

)
.

Otherwise, for an arbitrary v ∈ Tp0N we get

d

dt

∣∣∣∣
t=0

Φ
(
p0, tv

)
=

d

dt

∣∣∣∣
t=0

(
p0, γtv(1)

)
=

d

dt

∣∣∣∣
t=0

(
p0, γv(t)

)
=

(
0, γ̇v(0)

)
= (0, v).

Thus, we obtain

DΦ(p0, 0) =

(
Id 0

Id Id

)
and therefore the desired result follows by the inverse function theorem.

Corollary 3.7. — 1. For all p0 ∈ N there exists a neighbourhood U and ε > 0, such

that every pair of points p, q ∈ U can be joined by a unique soliton curve with

length smaller then ε.

2. For ε > 0 small enough, solexpp0
is a diffeomorphism from Bε(0) ⊂ Tp0

N to its

image.

Proof. — 1. Let Φ : U ′ → V ′ ⊂ N×N be the diffeomorphism from Proposition 3.6

with (p0, 0) ∈ U ′. We choose an open set V ⊂ N with p0 ∈ V and ε > 0 such

that

U ′′ :=
⋃
p∈V

Bε(p) ⊂ U ′.

Here Bε(p) is the ε-ball in TN . Now, we consider the restriction Φ|U ′′ : U ′′ →
V ′′ := Φ(U ′′). In particular Φ(p0, 0) = (p0, p0) ∈ V ′′. We choose an open

neighbourhood U of p0 in N such that U × U ⊂ V ′′. Let p, q ∈ U and

Φ−1(p, q) =: (p, v) ∈ U ′′, i.e., Φ(p, v) = (p, q) ∈ U × U . This means, that p and

q are connected by a soliton curve of length ‖v‖ < ε. If there would be an other

soliton curve connecting p and q with length smaller than ε, then there would

exist a v′ ∈ TpN , v′ 6= v, with ‖v′‖ < ε such that Φ(p, v′) = (p, q) = Φ(p, v).

But this contradicts the injectivity of Φ.

2. This follows directly from Proposition 3.6.

Remark 3.8. — 1. Theorem 3.4 generalizes the results in [17, Section 2.1–2.4].

2. Corollary 3.7 shows that, locally, two points can always be joined by a unique

short soliton curve. On the other hand, Theorem 3.4 shows that, on a geodesi-

cally complete Riemannian surface, every soliton curve can be extended arbi-

trarily far. However, as the example of the Grim Reaper shows, two arbitrary

points need not be joinable in general. It remains the question, whether for two
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arbitrary points, the joining soliton curve is unique, if it exists. We will give an

answer to this question in Corollary 3.17.

3.2. Geometry of soliton curves. — In this section, we detect some interesting geo-

metric properties of soliton curves on Riemannian surfaces. At first sight, this may

come as a surprise, since soliton curves are solutions of a highly non-linear differential

equation. On the other hand, soliton curves are geometrically motivated such that

geometrical properties can be expected (see [17, Proposition 1, Corollary 1]). It is,

however, not so obvious how to work out these properties because of the non-linear

nature of the equation. Theorem 3.9 will be a crucial observation which will enable us

to find the generalization of the invariant in [17, Lemma 1] to arbitrary Riemannian

surfaces. Then, by applying the Theorem of Gauss-Bonnet, it will be possible to work

with soliton curves almost as with geodesics.

At first, we recall some basic facts.

Let x : U ⊂ N → Rn be a chart and let (ξ1, . . . , ξn) ∈ Rn denote the local

coordinates. For a differentiable function F : N → R, the gradient ∇gF of F with

respect to the basis ∂i := ∂
∂ξi of TpN is given by

∇gF = g−1∂F,

where ∂F := (∂F◦x
−1

∂ξ1 , . . . , ∂F◦x
−1

∂ξn )T , and g−1 is the inverse of the matrix describing

the metric g.

Now, let X be a smooth vector field on N . We say, X has locally a conjugate

potential if on every simply connected chart U ⊂ N there exists a function χ : U → R
such that X = J ∇gχ on U . Here, J is a complex structure on U compatible with g,

i.e., J ∈ Γ(T 1
1U) is such that

J2
p = − IdTpU for all p ∈ U and

g(X,Y ) = g(JX, JY ) for all X,Y ∈ Γ(TU),

where Jp : TpU → TpU is the induced endomorphism on TpU .

Recall that the vector field X : N → TN is a gradient field on a simply connected

set U ⊂ N , iff X satisfies in local coordinates

Xi,j = Xj,i ∀ i, j

where commas indicate partial derivatives.

Using this, it is easy to check, that the vector field X has a conjugate potential on

a simply connected set V , iff in local coordinates one of the two equivalent conditions

is satisfied

(Xi√g),i = 0(21)

Xi
;i = 0 .(22)
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Here, we denote the covariant derivative by a semicolon, i.e., X`
;i = X`

,i +XkΓ`ki .

Recall furthermore, that X is a Killing field on N , iff in local coordinates

(23) (LX g)ij = Xk
,i gkj +Xk

,j gik + gij,kX
k = 0 ,

where LX g is the Lie derivative of g along X.

Using again the covariant derivative, we can rewrite (23) as

(24) 0 = Xi;j +Xj;i .

Now, we come to the theorem which we mentioned in the introduction above.

Theorem 3.9. — Each Killing vector field on a two dimensional Riemannian manifold

possesses locally a conjugate potential.

Proof. — Let X be the Killing vector field and Kij := Xi;j +Xj;i. Since X satisfies

the Killing equation (24), we have

(25) 0 = Kijg
ij = Xi;j g

ij +Xj;i gij︸︷︷︸
=gji

= 2Xi;j g
ij = 2Xj

;j .

Hence, by (22), X has locally a conjugate potential.

In the last equality of (25), we used the product rule for the covariant derivative

and the Lemma of Ricci (gij;k = 0):

Xj
;k = (Xi g

ij);k = Xi;k g
ij +Xi g

ij
;k = Xi;k g

ij .

Alternatively, we can compute the trace of LXg which is , according to (23), equal to

zero. A short calculation yields

0 = (LXg)i i =
2
√
g

(Xi√g),i .

Therefore, by (21), X has locally a conjugate potential.

Remark 3.10. — In general, the converse of Theorem 3.9 is wrong: not every conju-

gate potential field is a Killing field.

To fix notation, we recall the Theorem of Gauss-Bonnet in the following form: let N

be an oriented surface and Ω be a polygon in N . Further, let γ denote the piecewise

smooth boundary curve ∂Ω of Ω, parametrized by arc length. The curve γ(s) is

assumed to be positively oriented. The exterior angles are denoted by α1, . . . , αq.

Then

(26)

∫∫
Ω

K dµ+

∫
γ

kg ds+

q∑
i=1

αi = 2π .
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In this formula, K denotes the Gaussian curvature of N and kg the geodesic curva-

ture of γ with respect to the given orientation of N and γ. The situation, in particular

the measuring of the exterior angles, is illustrated in Figure 8.

Ω
γ

N

αi

n

Figure 8. Polygon Ω with boundary curve γ and exterior angles on an

oriented surface N

Now, using Theorem 3.9, we will be able to find an invariant quantity for soliton

curves: let γ : [s0, s] → N be a smooth soliton curve parametrized by arc length.

Using the properties of J and Theorem 3.9, we can rewrite the soliton equation (1)

locally as follows:

kg
(
γ(t)

)
= −〈X

(
γ(t)

)
, ν
(
γ(t)

)
〉 = −〈JX

(
γ(t)

)
, Jν

(
γ(t)

)
〉

= 〈∇gχ
(
γ(t)

)
, γ̇(t)〉 =

d

dt
χ
(
γ(t)

)
.

Now, we integrate both sides along the interval [s0, s] and obtain the difference of the

potential in the starting and the end point

(27)

∫ s

s0

kg dt = χ
(
γ(s)

)
− χ

(
γ(s0)

)
.

Thus, the quantity

(28) χ
(
γ(s)

)
−
∫ s

s0

kg dt

is constant along a soliton curve. Now, using the invariant (28) together with (26),

we can prove the following theorem about polygons whose sides are soliton curves.

Theorem 3.11. — Let U ⊂ N be simply connected and Ω be a polygon in U . Further-

more, let γ denote the piecewise smooth boundary curve ∂Ω of Ω, parametrized by
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arc length. The curve γ is assumed to be positively oriented and to consist of soliton

curves. The exterior angles of the polygon are denoted by α1, . . . , αq. Then

(29)

∫∫
Ω

K dµ+

q∑
i=1

αi = 2π .

Proof. — By the Gauss-Bonnet formula (26), we have only to show, that the integral

of the geodesic curvature along the curve γ vanishes, i.e.,
∫
γ
kg dt =

∑q
i=1

∫ si
si−1

kg dt =

0. From (27) it follows, that each term in this sum is the difference of the conjugate

potential in both endpoints. Therefore, since the boundary curve γ is closed, the sum

must vanish indeed.

Notice, that an alternative proof of Theorem 3.11 is possible by applying the di-

vergence theorem. However, we preferred here to present a version which illustrates

the use of the invariant quantity (28). This quantity can be used not only for closed

curves and allows therefore to obtain quantitative information about soliton curves

(see, e.g., Figure 4 in [17]).

Furthermore, notice, that the formula (29) also holds, if the boundary of Ω consists

of geodesic curves: in this case the integrals
∫ si
si−1

kg ds vanish, since kg ≡ 0.

Now, we apply Theorem 3.11 to obtain information about soliton n-gons. We start

by closed soliton curves:

Corollary 3.12 (zero-gon). — If the boundary of a bounded, simply connected domain

Ω ⊂ N consists of a closed smooth soliton curve, then

(30)

∫∫
Ω

K dµ = 2π .

In particular, there do not exist any closed soliton curves which are boundary of a

simply connected domain if one of the following three conditions is satisfied:

(i)
∫∫
N

K+ dµ < 2π (where K+ := max{K, 0})

(ii) K ≥ 0 on N and
∫∫
N

K dµ < 2π

(iii) K ≤ 0 on N .

Proof. — Formula (30) follows from Theorem 3.11, since there are no exterior angles.

If we suppose that the boundary of a simply connected domain Ω is a closed soliton

curve, then by (i) we have∫∫
Ω

K dµ ≤
∫∫
Ω

K+ dµ ≤
∫∫
N

K+ dµ < 2π

which contradicts (30). Of course, (ii) and (iii) imply (i).
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Remark 3.13. — 1. In particular, from Corollary 3.12 it follows that in the Eu-

clidean plane R2 there exist no closed soliton curves regardless of the Killing

field.

2. Consider the unit sphere in R3 equipped with the symmetry group of rotations

around the north-south axis. In this case, the equator is a closed soliton curve.

Indeed, the area enclosed by this soliton curve is 2π, in accordance with (30).

3. On a one-sheet hyperboloid of revolution equipped with the natural isometry

group, there exists a closed soliton curve, namely the gorge circle, although

condition (iii) is fulfilled. This, of course, does not contradict the statement

of Corollary 3.12, since the gorge circle does not enclose a simply connected

domain.

A closed soliton curve can be seen as a zero-gon. Now, for a one-gon we have:

Corollary 3.14 (one-gon). — If the boundary of a bounded, simply connected domain

Ω ⊂ N consists of a soliton curve which is smooth except for at most one point, then

(31)

∫∫
Ω

K dµ ∈ ]π, 3π[ .

In particular, every soliton curve on a simply connected N is embedded if one of the

following three conditions is satisfied:

(i)
∫∫
N

K+ dµ ≤ π

(ii) K ≥ 0 on N and
∫∫
N

K dµ ≤ π

(iii) K ≤ 0 on N .

Proof. — Since q = 1, formula (31) follows from Theorem 3.11: indeed, the only ex-

terior angle belongs to ]−π, π[ . Notice, that the values π and −π can be excluded due

to the uniqueness of solutions through a point in a given direction (see Corollary 3.7).

Now, let N be simply connected and suppose that there is a soliton curve on

N which is not embedded. Then, a suitable restriction of this soliton curve is the

boundary of a simply connected domain Ω (for more details see [19, section 4.1]).

Then, by (i) we have ∫∫
Ω

K dµ ≤
∫∫
Ω

K+ dµ ≤
∫∫
N

K+ dµ ≤ π

which contradicts (31). Of course, (ii) and (iii) imply (i).

Remark 3.15. — From this corollary it follows, that all soliton curves in the Euclidean

plane R2 are embedded no matter what the Killing field is. In particular we recover

the result [17, Proposition 1 (a)], namely that Yin-Yang curves are embedded. ♦
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Example 3.16. — We consider a regular cone with half opening angle β ∈]0, π2 [. For

the symmetry group we take the rotation group around the cone axis. We are inter-

ested in the question, whether a global soliton curve on this cone is embedded or not.

Such a soliton does not pass through the apex. To apply Corollary 3.14 we smooth

the apex by attaching a spherical cap which is so small, that the soliton avoids it.

Now, we suppose that the soliton curve is not embedded. Then, a suitable restric-

tion of this soliton curve is the boundary of a simply connected domain Ω. If Ω does

not contain the spherical cap, then a contradiction follows from formula (31), since in

this case K = 0 on Ω. If, on the other hand, Ω contains the spherical cap, then∫∫
Ω

K dµ = 2π(1− sinβ).

The term on the right hand side is less than or equal to π iff β ≥ π
6 . In other words, if

the half opening angle of the cone is greater than or equal to π
6 then every soliton curve

on the cone is embedded. Figure 9 shows projections of solitons on cones with three

different half opening angles. In Figure 10 a soliton curve on a cone with half opening

Figure 9. These three curves are projections of soliton curves

in the direction of the cone axis. On the left, the half opening

angle is π
6

+ 0.05, in the middle, we have the critical value π
6

and on the right π
6
− 0.05. Corresponding to Example 3.16 the

first two solitons are embedded. On the right, the soliton curve

shows, at least numerically, a self-intersection.

angle π
6 + 0.05 (which is therefore embedded) is displayed. For concrete formulas and

calculations see [19, Section 4.3 and Section 4.3.1]. ♦

After considering one-gons we investigate soliton curves composing a two-gon. If

we can exclude the existence of two-gons then in particular the soliton curves are

globally unique. This means, that there is at most one soliton curve through two

different points on a surface.
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Figure 10. An embedded soliton curve on a cone with half

opening angle π
6

+ 0.05

Corollary 3.17 (two-gons). — Let Ω ⊂ N be a simply connected soliton two-gon. This

means, its boundary consists of two different curves which are restrictions of two

soliton curves to intervals. Then

(32)

∫∫
Ω

K dµ ∈ ]0, 4π[ .

In particular, if N is simply connected and K ≤ 0 on N , then two points on N can

be connected by at most one soliton curve.

Proof. — Since q = 2, formula (32) follows from Theorem 3.11: indeed, the two

exterior angles α1 and α2 belong to ] − π, π[ . Notice, that the values π and −π can

be excluded due to the uniqueness of solutions through a point in a given direction

(see Corollary 3.7).

Now, let N be simply connected with K ≤ 0. Furthermore, we suppose that there

are two different soliton curves joining two points on N . From Corollary 3.14 it follows

that both solitons are embedded. Then suitable restrictions of these two soliton curves

are the boundary of a soliton two-gon (see [19, section 4.2]). A contradiction follows

by applying formula (32) to this two-gon.

Remark 3.18. — 1. In particular, by this corollary, we recover the result in [17,

Proposition 1 (b)]: two different Yin-Yang curves (with respect to the same

Killing field) intersect in at most one point.

2. Corollary 3.17 answers the previous question in Remark 3.8 about the uniqueness

of solitons joining two points. ♦

Example 3.19. — Now, we consider the one-sheet hyperboloid of revolution N :=

{ (x, y, z) ∈ R3 | x2 + y2 − z2 = 1 } equipped with the isometry group of rotations

with respect to the z-axis. We claim that every soliton on N cuts the gorge circle at

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008



150 N. HUNGERBÜHLER & B. ROOST

most once. To see this, we cannot directly use Corollary 3.17 since N is not simply

connected. However, we can pass to the universal cover:

(R2, g(t, ϕ))→M, (t, ϕ) 7→ (cosh t cosϕ, cosh t sinϕ, sinh t)

with

g(t, ϕ) =

(
cosh2 t+ sinh2 t 0

0 cosh2 t

)
.

The Killing field X = (1, 0) generates the rotation group. Now, consider two distinct

points on the ϕ-axis (i.e., the images are situated on the gorge circle). The ϕ-axis is

a soliton curve joining these two points. Since K < 0 and R2 is simply connected, it

follows by Corollary 3.17, that there is no other soliton curve joining the two points.

This implies the desired result on N . On the right hand side of Figure 11 there is an

embedded soliton curve cutting the gorge circle once. On the left there is a soliton

which avoids the gorge circle. Notice, that this soliton has a self intersection on the

hyperboloid but, by Corollary 3.14, not on its universal cover. ♦

Figure 11. Two soliton curves on a one-sheet hyperboloid of revolution

Example 3.20. — We can now design situations where every soliton is embedded,

but where two-gons may occur: consider a sheet N of a two-sheet hyperboloid of
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revolution. We choose for the half opening angle of the asymptotic cone a value in

]π6 ,
π
2 [. Then the curvature is

0 <

∫∫
N

K dµ < π.

Therefore, by Corollary 3.14, it follows that the solitons with respect to the rotation

group are embedded. Nonetheless, as we can see in Figure 12, two-gons occur. ♦

Figure 12. Embedded solitons on a sheet of a two-sheet hy-

perboloid of revolution which form a two-gon (on the right in

a projection)

Example 3.21. — As in Example 3.19 we can identify two types of soliton curves on a

standard helicoid: solitons that cut the axis exactly once (Figure 13, left) and solitons

that avoid the axis (Figure 13, right). ♦

Remark 3.22. — 1. The isometry groups of the surfaces in the examples above

were induced by isometry groups of the ambient Euclidean space (translation,

rotation, screw motion). Of course there are examples, where the isometry group

of the surface is intrinsic. For example the Enneper-minimal-surface features an

isometry group generated by rotations in the standard parameter plane.

2. It is easy to see, that the geodesics with respect to the metric gij(x, y) = e−2xδij
on R2 are the Grim Reaper curves. It is therefore natural to ask, whether one

can find always (at least locally) a modified metric on N that has as geodesics

precisely the solitons with respect to the original metric on N and the given

Killing field. However, as new results by Thomas Mettler indicate, the answer

to this question is, in general, negative. ♦
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Figure 13. Two soliton curves on a standard helicoid

4. Local existence for higher dimensional solitons

4.1. Problem setting. — In this section we ask for local solutions of the soliton equa-

tion (5). More precisely, we will treat the boundary value problem. This corresponds

to the following problem, e.g., for a 3-dimensional ambient manifold N : suppose, a

closed curve γ is moving in N under the action of a one parameter group of isometries

of N . Does there exist a surface whose boundary is, at some fixed time, the curve

γ, and that satisfies (5)? This surface would then move under the mean curvature

flow together with γ just as by the isometry group. Observe, that for the Killing field

X = 0 this is the Plateau problem for minimal surfaces.

The general framework we want to work with is as follows: N continues to de-

note the ambient manifold of dimension n and we suppose n ≥ 3, since the cor-

responding problem in two dimensions is treated in Corollary 3.7.1 (local existence

and uniqueness) and in Corollary 3.17 (global uniqueness). We consider a chart

ψ : V ⊂ N → U ⊂ Rn, such that for a non-empty open set Ω ⊂ Rn−1 we have

Ω̄ × {0} ⊂ U . We take Ω as our reference manifold M and look for a soliton of the

form

(33) φ : Ω→ (U, ḡ), x 7→ (x, u(x)).

For the Plateau problem (i.e., X = 0) it is well known, that, in general, we cannot

expect a solution to exists for arbitrary boundary data. We will see in the sequel,

what kind of conditions we have to impose in order to ensure existence.

We denote indices ranging in the set {1, . . . , n− 1} by Latin, indices from the set

{1, . . . , n} by Greek letters, and we adopt the Einstein summation convention. Let

ei end eα be the standard basis in Rn−1 and in Rn respectively. We write ui for the
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partial derivative ∂u
∂xi

. Then, the soliton equation (5) transforms into an equation for

the unknown function u:

(34) 〈X(x, u(x)), ν(x, u(x)) 〉 = −H(x, u(x)).

First, we need to make this equation explicit. Let us start with the left hand side.

To determine ν we consider the map F : Ω × R ⊂ Rn → R, (x1, . . . , xn) 7→
u(x1, . . . , xn−1) − xn, having the graph of u (i.e., the soliton) as a level set. Then,

since the gradient

∇ḡF = ḡαβ
∂F

∂xα
eβ

is perpendicular to the level set, we get the (downward-pointing) normal

ν =
∇ḡF
‖∇ḡF‖ḡ

.

The components are actually

(∇ḡF )
α

= uiḡ
iα − ḡnα.

The norm of the gradient will not be needed explicitly, since it drops out anyway.

Therefore, we can write the left hand side of (34) as follows:

(35) Xανβ ḡαβ =
1

‖∇ḡF‖ḡ
(
Xkuk −Xn

)
.

For the right hand side, we use the Gauss formula (6) and (7). Recall, that g is the

metric induced on M = Ω, i.e.,

gij =
∂φα

∂xi
∂φβ

∂xj
ḡαβ = ḡij + uj ḡin + ui ḡjn + uiuj ḡnn.

Then, multiplying (6) by ḡαδν
δ, we obtain

(36)
∂2φ

∂xi∂xj
ḡαδν

δ + Γ̄αβγ
∂φβ

∂xi
∂φγ

∂xj
ḡαδν

δ = −hij .

Expansion of the terms on the left of (36) yields

−hij =
1

‖∇ḡF‖ḡ
(
−uij + Γ̄kijuk − Γ̄nij + Γ̄kinujuk − Γ̄ninuj+

+Γ̄knjuiuk − Γ̄nnjui + Γ̄knnuiujuk − Γ̄nnnuiuj
)
.

(37)

Finally, using H = gijhij , equation (34) can be written in the form

Xkuk −Xn = − gijuij + gij
(
Γ̄kijuk − Γ̄nij

)
+ 2gij

(
Γ̄kinujuk − Γ̄ninuj

)
+ gij

(
Γ̄knnuiujuk − Γ̄nnnuiuj

)
.(38)

In this formula, the functions are to be evaluated in the following way: Xi =

Xi(x, u(x)), uj = uj(x), Γ̄kij = Γ̄kij(x, u(x)), and the metric gij depends on x, u(x)

and of ∇u(x), where x ranges in Ω ⊂ Rn−1.
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At this point we impose boundary data

(39) u = ϕ on ∂Ω.

However, for simplicity, we will only treat the case ϕ ≡ 0 below. Notice, that even

for homogeneous boundary conditions, problem (38)–(39) does not need to have a

solution, as the example of the Grim Reaper curve shows (which, in general, cannot

be represented as a graph over a segment joining two of its points). It will therefore

be necessary to implement other hypotheses.

4.2. Solution by the implicit function theorem. — There are various possibilities to solve

the Dirichlet problem (38)–(39). In [17] the Banach contraction theorem is used to

construct a solution in case N = Rn for isometry groups of rotations. The advantage

is, that the method yields a numerical algorithm at the same time. Alternatively, the

Schauder fixed point Theorem can be used as well. In our quite general setting, it

turns out, that the implicit function theorem still provides a rather economic proof.

We are going to use the theorem with the following notation: let X,Y and Z be

Banach spaces, and W ⊂ X × Y open and non-empty. Suppose f ∈ C1(W,Z) and

(x0, y0) ∈W is such that

(i) f(x0, y0) = 0 and

(ii) Dyf(x0, y0) ∈ L(Y,Z) is an isomorphism.

Then, there exist open neighborhoods U(x0), V (y0) with U(x0) × V (y0) ⊂ W such

that for all x ∈ U(x0) there exists a unique y ∈ V (y0) such that f(x, y) = 0. In

particular, the mapping

g : U(x0)→ V (y0), x 7→ y

is well defined by f(x, g(x)) = 0, and g ∈ C1(U(x0), V (y0)).

The aim is now to solve

−gijuij + gij
(
Γ̄kijuk − Γ̄nij

)
+2gij

(
Γ̄kinujuk − Γ̄ninuj

)
+gij

(
Γ̄knnuiujuk − Γ̄nnnuiuj

)
= λ

(
Xkuk −Xn

)
on Ω(40)

u = 0 on ∂Ω(41)

this way. Observe, that we have replaced the original Killing field in (38) by the

Killing field λX, of course with the idea to consider sufficiently small values of λ.

Remark 4.1. — Notice, that for λ = 0, (40) is the equation of a minimal surface with

the given boundary ∂Ω. It is therefore natural to postulate, that the coordinates are

chosen in such a way, that the graph of u ≡ 0 is a minimal surface. (This corresponds

to the situation in [17] for the Euclidean case.) ♦
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MEAN CURVATURE FLOW SOLITONS 155

In order to make everything work, we choose the following spaces: X := R, Y :=

C2,α(Ω̄)∩C0(Ω̄), Z := C0,α(Ω̄) and W = X×Y . Here, C0(Ω̄) is the set of continuous

functions on Ω̄, which vanish on ∂Ω. The space Y is equipped with the norm of

C2,α(Ω̄). Concerning notation and definitions of Hölder spaces, we follow [10].

Let

f : W → Z

(λ, u) 7→ − gijuij + gij
(
Γ̄kijuk − Γ̄nij

)
+ 2gij

(
Γ̄kinujuk − Γ̄ninuj

)
+ gij

(
Γ̄knnuiujuk − Γ̄nnnuiuj

)
− λ

(
Xkuk −Xn

)
and (λ0, u0) = (0, 0).

It is standard to verify that f ∈ C1
(
R ×

(
C2,α(Ω̄) ∩ C0(Ω̄)

)
, C0,α(Ω̄)

)
(see, e.g.,

[19] for details).

In view of Remark 4.1, property (i) in the implicit function theorem, i.e., f(0, 0) =

0, is also satisfied.

To verify property (ii), we need to compute the derivative of f with respect to u

in the point (λ0, u0) = (0, 0): we find

Duf(0, 0) : C2,α(Ω̄) ∩ C0(Ω̄) → C0,α(Ω̄)

v 7→ − gij(x, 0, 0)vij

+ gij(x, 0, 0)Γ̄kij(x, 0)vk

−Du

(
gij(x, 0, 0)Γ̄nij(x, 0)

)
v

−Duk

(
gij(x, 0, 0)Γ̄nij(x, 0)

)
vk

− 2gij(x, 0, 0)Γ̄nin(x, 0)vj .

This is a strictly elliptic operator on Ω. Let us assume, that Ω has a C2,α boundary.

Then, the condition on the term which is linear in v

Du

(
gij(x, 0, 0)Γ̄nij(x, 0)

)
≤ 0(42)

implies, by [10, Theorem 6.14 ], that Duf(0, 0) is an isomorphism. Therefore, we may

conclude by the inverse function theorem, that (40), (41) possesses a unique solution

for all values of λ which are sufficiently small, and this solution depends continuously

differentiable on λ. In order to formulate a theorem, we introduce the following

manner of speaking: let N be an n-dimensional Riemannian manifold carrying a

Killing vector field X : N → TN . Moreover, let N ′ ⊂ N be an embedded orientable

minimal hypersurface, and ψ : V ⊂ N → U ⊂ Rn a chart having the property that

ψ−1
(
(Rn−1 × {0}) ∩ U

)
= N ′. Such a chart (or such coordinates) will be called

minimal. If condition (42) is satisfied on (Rn−1 × {0}) ∩ U we call the coordinates

admissible. If for N ′ admissible coordinates exist, we call N ′ admissible.
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Theorem 4.2. — Let N be an n-dimensional Riemannian manifold carrying a Killing

vector field X. Suppose N ′ ⊂ N is an admissible hypersurface. If γ is the boundary of

a C2,α domain Σ ⊂⊂ N ′, then, for λ suitably small, there exists a soliton hypersurface

with respect to the Killing field λX and having boundary γ.

Remark 4.3. — We close the discussion at this point with a few remarks concerning

the condition (42): according to (40), gij(x, u, 0)Γ̄nij(x, u) is just the mean curvature

of the level set surface of u ≡ constant. Therefore, if N ′ is a leave of a foliation

of N in a neighborhood of N ′ consisting of minimal surfaces, then we even have

Du

(
gij(x, 0, 0)Γ̄nij(x, 0)

)
= 0 if the coordinates are chosen such that the leaves corre-

spond to the graphs of constant functions. Such a foliation exists in particular if X

(or another Killing field on N) is transversal to N ′.

If condition (42) is violated, then Duf(0, 0)v = w does not need to have a solution

any more. However, it is still possible to formulate a Fredholm alternative and to

replace (42) by the condition that Duf(0, 0)v = 0 (with homogeneous boundary data)

has only the trivial solution. ♦

The particular case of Theorem 4.2 when X generates a rotation on N = Rn, and

if N ′ is a hypersurface, was already treated in [17, Theorem 1].

To illustrate Theorem 4.2, we consider the case of a screw motion in R3. The

Killing field

X(x) =

Ü
−x2ω

x1ω

λ

ê
generates a screw motion along the x3-axis. We want to solve the soliton equation

〈X, ν〉 = −H locally, and represent the solution as graph of a function u over the

unit disk in the (x1, x2)-plane. Theorem 4.2 guarantees the existence of a solution for

angular velocity ω and translation velocity in x3-direction λ both small enough. (A

more precise analysis actually shows, that in this case it suffices that the transversal

component, λ, be small.) For the metric, we get gij = δij + uiuj and gij = δij −
1
w2 δ

ikukδ
jlul respectively, where w2 = 1 + δijuiuj . The unit normal in a point of the

graph of u is

ν = − 1

w
(δklul

∂

∂xk
− ∂

∂u
).

For the Christoffel symbols, we compute

Γkij = uijg
krur .

Finally, using the Gauss equation (6), the mean curvature turns out to be

−H =
1

w
gijuij .
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MEAN CURVATURE FLOW SOLITONS 157

Therefore, the soliton equation reads as follows:

w2(ω(u1x2 − u2x1) + λ) = u11(1 + u2
2) + u22(1 + u2

1)− 2u1u2u12.

Using the idea in [17, Section 3], this equation can easily be written as a fixed point

problem for a contraction operator. This yields a numerical iteration scheme: in each

iteration step, a linear elliptic equation has to be solved, which is achieved, e.g., by

the Gauss-Seidel algorithm. The combination with a successive grid refinement yields

a reasonably fast converging algorithm. The solution, for a certain choice of boundary

data, is displayed below in Figure 14. Observe, that the “belly” in the central region

is responsible for the translation, and the four slightly asymmetric “noses” at the

boundary yield the rotation.

Figure 14. A screwing soliton
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