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Abstract: Let M and N be compact smooth Riemannian manifolds without
boundaries. Then, for a map u : M → N , we consider a class of energies
which includes the popular Dirichlet energy and the more general p-energy.
Geometric or physical questions motivate to investigate the critical points of
such an energy or the corresponding heat flow problem. In the case of the
Dirichlet energy, the heat flow problem has been intensively studied and is well
understood by now. However, it has turned out that the case of the p-energy
(p 6= 2) is much more difficult in many respects. We give a survey of the known
results for the p-harmonic flow and indicate how these results can be extended
to a larger class of energy types by using Young measure techniques which have
recently been developed for quasilinear problems.

1 Introduction

1.1 The p-energy

Let M and N be smooth Riemannian manifolds without boundary of dimension m and n
respectively. M and N are equipped with Riemannian metrics γ and g. The p-energy of
a differentiable map u : M → N is defined to be

Ep(u) :=
1

p

∫

M
|Du|pdµ.

Here, Du : TxM → Tu(x)N is the differential of u to which we associate the p-energy
density

ep(u) :=
1

p
|Du|p =

1

p
(trace((Du)∗Du))p/2,

where ‘∗’ denotes the adjoint with respect to the underlying inner product on the respective
tangent spaces TxM and Tu(x)N . And, of course, dµ is the measure on M associated with
the metric on M . In local coordinates, the p-energy can be expressed by the following
formula:

Ep(u) :=
1

p

∫

M
(γαβ(gij ◦ u)∂αu

i∂βu
j)p/2√γ dx

Here,
√
γ =

√

|det(γαβ)|, and we adopt the usual summation convention, i.e. we auto-
matically sum over Latin indices from 1 to n and over Greek indices from 1 to m. By
Nash’s embedding theorem, we always may assume that N is isometrically embedded in
some Euclidean space IRk. In that case, the p-energy density is given by

1

p
(γαβ∂αu · ∂βu)

p/2

where u : M → N ⊂ IRk is viewed as a map into IRk and ‘·’ is the Euclidean inner product
in IRk.

We remark, that for p = 2 the p-energy coincides with the well known Dirichlet energy.
Moreover, as it is easy to see, the p-energy is conformally invariant iff m = p. This fact
allows to switch between conformal charts.

1



1.2 The first variation of the p-energy

Given a class F of mappings from M to N defined by boundary conditions on ∂M (if
there is a boundary) and possibly additional topological conditions, e.g. a homotopy class,
one may try to minimize the p-energy within the class F . One may hope that the solution
of this minimization problem is a map u in F with particular analytic and geometric
properties. In physics, the p-energy for maps into the sphere or into a Grassmannian
manifold may serve as a model for liquid crystals. Stationary points of the energy then
correspond to physical equilibria of the liquid.

Necessarily, in a minimum u, the first variation of the p-energy must vanish at u for all
variations of u with compact support in the interior of M . Let us consider variations
ut : M → N of u = u0 for |t| small such that ut(x) is of class C1 in the variables (x, t) and
ut(x) = u(x) for all t and all x outside some compact subset K ⊂M which is contained in
the domain U of a coordinate system x1, . . . , xm on M with range Ω and is mapped into
the domain of a fixed coordinate system y1, . . . , ym on N by all ut. Now, the support of
the initial vector field of the variation

V (x) :=
d

dt
ut(x)

∣

∣

∣

∣

t=0

∈ Tu(x)N

is contained in K. We also assume that V is of the class C 1. It is no restriction to
assume ui

t(x) = ui(x) + tV i(x). If u is C2, the usual computation yields that vanishing
first variation is equivalent to

1√
γ

∂

∂xβ

(

√
γ

(

γαβgij
∂ui

∂xα

∂uj

∂xβ

)

p

2
−1

γαβ ∂u
l

∂xα

)

= (1)

= −
(

γαβgij
∂ui

∂xα

∂uj

∂xβ

)

p

2
−1

γαβΓl
ij

∂ui

∂xα

∂uj

∂xβ

in U for l = 1, . . . , n. Here, we used the Christoffel symbols

Γl
ij =

1

2
glk(gik,j − gij,k + gjk,i)

of the metric g with respect to the coordinates chosen on N . Thus, the right hand side
can be interpreted as

A(u)(Du,Du)(pep(u))
1−2/p

where A(u)(·, ·) denotes the second fundamental form of N . The operator on the left hand
side of (1) is called p-Laplace operator related to the manifolds M and N and is denoted
by ∆p, i.e. ∆2 is simply the Laplace-Beltrami operator of the manifold M and does not
depend on N . ∆2 is a linear elliptic diagonal operator in divergence form. For p > 2
(0 < p < 2) the operator is degenerate (singular) at points Du = 0.

The right hand side of (1) is for p = 2 a quadratic form in the first derivatives of u with
coefficients depending on u. These strong nonlinearities are caused by the non-Euclidean
structure of the target manifold N and cannot be removed by special choices of coordinates
on N unless N is locally isometric to Euclidean space IRn. But even in this case the space
of mappings from M to N does not possess a natural linear structure unless N itself is a
linear space. In general, the right hand side of (1) is of the order of the p-th power of the
gradient of u.
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A C2-solution u : M → N of (1) is called p-harmonic map.

Using variations in the domain, i.e. variations of the form

ut(x) = u(x+ tζ(x))

where ζ = (ζ1, . . . , ζm) with each ζj ∈ C∞
0 (Bρ(y)), we obtain from d

dtut(x)
∣

∣

t=0
= 0 an

equation whose classical solutions contain the set of the p-harmonic maps. However its
weak solutions, which are called “stationary p-harmonic maps”, need not contain the set
of weak solutions of (1). In particular, p-energy minimizing maps are both, weakly and
stationary p-harmonic. Weakly p-harmonic maps admit in general far worse singularities
than the energy minimizing maps. Many results are known about stationary p-harmonic
maps. See e.g. Duzaar and Fuchs [9], Fuchs [18] and [19], as well as Strzelecki [41] and [40].

If we think of N as being isometrically embedded in some IRk, we consider the following
variations: Let S ⊂ IRk be a tubular neighborhood of N and πN : S → N the (smooth)
nearest-neighbor projection. Denote TpN ⊂ TpIR

k the tangent space to N at a point
p ∈ N . Let ϕ ∈ C1

0 (M, IRk) satisfy

ϕ(x) ∈ Tu(x)N

for all x ∈ M and ϕ having compact support in a single coordinate chart of M . Then ϕ
induces a C1-variation at u : M → N ⊂ IRk:

ut = πN ◦ (u+ tϕ) .

Now, the first variation of the p-energy is given by

d

dt
Ep(ut)

∣

∣

∣

∣

t=0

=

∫

M

(

γαβ ∂u

∂xα
· ∂u
∂xβ

)
p

2
−1

γαβ ∂u

∂xα
· ∂ϕ
∂xβ

√
γ dx =

= −
∫

M
∆pu · ϕ√

γ dx

where ∆p is the p-Laplace operator related to M and IRk, i.e.

∆pu =
1√
γ

∂

∂xβ

(

√
γ

(

γαβ ∂u
j

∂xα

∂uj

∂xβ

)

p

2
−1

γαβ ∂u

∂xα

)

.

Thus, the first variation vanishes at a C2 map u if and only if

∆pu⊥TuN . (2)

We can make (2) more explicit by introducing a local orthonormal frame νn+1, . . . , νk

for (TpN)⊥, the orthogonal complement of TpN in IRk. Then, by (2) there exist scalar
functions λn+1, . . . , λk such that

−∆pu =
k
∑

l=n+1

λl(νl ◦ u) . (3)

Multiplying (3) by νi ◦ u (i fixed) and using the fact that
∂u

∂xα
· νl(u) = 0 for all α, we

obtain

λi =

(

γαβ ∂u
j

∂xα

∂uj

∂xβ

)

p
2
−1

γαβ ∂u
j

∂xα

∂νj
i (u)

∂xβ
. (4)
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The Euler-Lagrange equations of the p-energy can also be formulated in the following
coordinate free form:

e(u)τ(u) + (1 − 2

p
)Du gradγ e(u) = 0 . (5)

Here, τ(u) denotes the tension field of u: τ(u) = traceγ ∇Du, and ∇ denotes the pull-back
covariant derivative in the bundle T ∗M ⊗ u−1TN . For p = 2 the equation reduces simply
to

τ(u) = 0.

As an application, we see, that the identity mapping idM : M →M of a Riemannian man-
ifold is p-harmonic: Since D(idM ) has constant coefficients with respect to all coordinate
systems on M , ∇D(idM ) = 0 and the first term in (5) vanishes. On the other hand, the
p-energy density e(idM ) is constant and hence the gradient in the second term disappears,
too. We remark that in general idM is not p-energy minimizing within its homotopy class
(see Eells-Lemaire [11]).

The natural space to work in when considering questions concerning the p-energy is the
nonlinear Sobolev space

W 1,p(M,N) := {f ∈W 1,p(M, IRk); f(x) ∈ N for µ-almost all x ∈M}.

Notice, that if both M and N are compact, then different embeddings of N in IRk give rise
to homeomorphic spaces W 1,p(M,N). For an intrinsic definition of the space W 1,p(M,N)
see Federer [17]. If N is isometrically embedded in IRk, then the formulas defining the
p-energy for C1 functions make sense also for functions in W 1,p(M,N). If a function u ∈
W 1,p(M,N) is a weak solution of the Euler-Lagrange equations we discussed previously,
then it is called a weakly p-harmonic map.

The space H1,p(M,N) defined as the closure of the class of smooth functions from M to N
in the W 1,p-norm is contained in W 1,p(M,N) but does not coincide with the latter space
in general (this fact gives rise to the so called “gap phenomenon” of Hardt-Lin [21]). This
important observation was first made by Schoen and Uhlenbeck: see Eells and Lemaire [11]
as a main reference. However, we have H1,p(M,N) = W 1,p(M,N) if dim(M) = p (see
Schoen and Uhlenbeck [39], Bethuel [2] or Bethuel and Zheng [3]). The gap phenomenon
limits the possibilities to approximate the p-harmonic flow, which we will discuss next, by
solutions with smooth initial data.

1.3 The p-harmonic flow

A basic existence problem for p-harmonic maps is the homotopy problem:

Given a map u0 : M → N is there a p-harmonic map u homotopic to u0?

This question was first answered in the case p = 2 of harmonic maps. The answer is
affirmative if the sectional curvature KN of N is non-positive (see Eells-Sampson [12]),
or—in case of a two-dimensional surface M—if the second fundamental group of N is
trivial: π2(N) = 0 (see Lemaire [30] and Sacks-Uhlenbeck [38]). Eells and Wood destroyed
the hope for a more general theorem by the following counterexample in [13] by showing
that, if u : T 2 → S2 is 2-harmonic, then deg u 6= ±1. Another counterexample has been
given by Lemaire in [30]. Thus, in general the attempt to solve the homotopy problem by
minimizing E within a given homotopy class will fail: Homotopy classes are not weakly
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closed in W 1,p(M,N) generally. Thus, it may be difficult or impossible to solve the
homotopy problem for p-harmonic maps by direct variational methods. As the key idea
to get around this difficulty, Eells and Sampson proposed in [12] to study the heat flow
related to the 2-energy:

ut − ∆2u = A(u)(∇u,∇u)M on M × [0,∞[ (6)

with initial and boundary data

u = u0 at t = 0 and on ∂M × [0,∞[

for maps u : M × [0,∞[→ N ⊂ IRk. Here, A(u) : TuN × TuN → (TuN)⊥ is the second
fundamental form of N . The idea behind this strategy is of course that a continuous
deformation u(·, t) of u0 will remain within the given homotopy class. Since (6) may be
interpreted as the L2-gradient flow for the 2-energy, one may hope that the solution u(·, t)
for t → ∞ will come to a rest at some critical point of E2 that is a harmonic map. For
target manifold N , satisfying the geometric restrictions mentioned above, this program
has been applied with success for p = 2.

Another approach to the homotopy problem for p-harmonic maps has been given by Duzaar
and Fuchs in [10]: they extended the Eells-Sampson result to the case p ∈ [2,∞) by using
an asymptotic analysis of the not degenerate energy

∫

M (ε+ |Du|2)p/2dµ, ε > 0.

Corresponding to the harmonic flow, the p-harmonic flow is described by

ut − ∆pu = (pe(u))
1− 2

pA(u)(Du,Du) on M × [0,∞[ (7)

with initial data
u = u0 at t = 0

for maps u : M × [0,∞[→ N ⊂ IRk.

We now want to briefly describe the known results concerning the p-harmonic flow. We
restrict this presentation to the case p 6= 2.

The p-harmonic flow was first considered in [6] and [22]. There, the following result has
been proved for the p-harmonic flow into spheres, i.e. for

∂tu− ∆pu = pep(u)u on M × [0,∞[ (8)

u( · , 0) = u0 on M (9)

|u| = 1 µ-a.e. on M × [0,∞[. (10)

Theorem 1 For initial data u0 ∈W 1,p(M,Sn), p ≥ 2, there exists a global weak solution
u to the equation (8)–(10). This solution is weakly continuous in t > 0 with values
in W 1,p(M), i.e. for any test function g ∈ C∞(M), h1(t) =

∫

M u · g dµ and h2(t) =
∫

M Du ·Dg dµ are in C0, 1
2 (IR+). Furthermore for almost every t ≥ 0 this solution satisfies

the energy inequality
∫ t

0
‖∂tu‖2

L2(M)dt+Ep(u(t)) ≤ Ep(u0) . (11)

The technique was the same as in the corresponding case of the harmonic flow which was
solved by Chen in [5]: The idea is a penalization technique to approximate the p-harmonic
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flow, which will be explained and used in Section 2 for a more general class of energies.
The monotonicity of the p-Laplace operator allows to solve the approximating equations
by Minty’s trick alone. Nonetheless, to pass to the limit in the penalized equations some
stronger compactness results on the p-Laplacien are needed. In the original work, this is
based on the uniform monotonicity of the p-Laplace operator:

Theorem 2 For k = 1, 2, . . . , let fk : M × [0, T ] → IRl satisfy the equation

∂tfk − ∆pfk = gk, on M × [0, T ]

in the sense of distributions. Assume that

1. {fk}k∈IIN is bounded in L∞(0, T ;W 1,p(M, IRl)),

2. {∂tfk}k∈IIN is bounded in L2(0, T ;L2(M, IRl)), and that

3. {gk}k∈IIN is bounded in L1(0, T ;L1(M, IRl)).

Then, {fk}k∈IIN is precompact in Lq(0, T ;W 1,q(M, IRl)) for each 1 ≤ q < p.

In Section 2 we offer a new approach to this compactness problem which involves some
Young measure techniques, and which does not use strict or even uniform monotonicity
properties of the operator. This allows in particular to obtain results for the flow of
energies which are merely convex.

Theorem 1 was later proved for 1 < p < 2 by Liu in [32], [33] and by Misawa in [37]. The
p-harmonic flow from a unit ball in IRm into S1 ⊂ IR2 was also considered by Courilleau
and Demengel in [7]. There, also non-uniqueness of the p-harmonic flow with weakly p-
harmonic, but not stationary harmonic initial data was proven, a result, however, which
is already contained in [44] and even before that in [25].

The p-harmonic flow equation has two nonlinear terms: The p-Laplace term, and the right
hand side involving the second fundamental form. The previously described compactness
techniques allow to pass to the limit in the p-Laplace term only. The big problem, which is
unsolved to the present day, is to pass to the limit in the nonlinear term on the right hand
side of the equation. The sphere as target manifold has enough symmetries to rewrite the
equations in such a way, that the right hand side simply vanishes (compare Section 2). A
similar trick can be played to prove existence of the p-harmonic flow if the target manifold
N is a homogeneous space with a left invariant metric.

Theorem 3 ([23]) For 2 < p there exists a global weak solution of the p-harmonic flow
between Riemannian manifolds M and N for arbitrary initial data having finite p-energy
in the case when the target N is a homogeneous space with a left invariant metric. The
solution u : M × [0,∞[→ N satisfies the energy inequality

1

2

∫ T

0

∫

M
|∂tu|2dt dµ+

1

p

∫

M
|Du(T )|pdµ ≤ 1

p

∫

M
|Du(0)|pdµ (12)

for almost all T > 0.
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In this case of a homogeneous space as target, the equation of the p-harmonic flow can be
reformulated such that the right hand side has a divergence structure (see [24] and [23]).
In [23], a technique different from the penalization technique was used to approximate
the equation, namely a time discretization. The reason is, that the penalization does not
preserve the special structure of N .

The analogous result for 1 < p < 2 was proven in [31]. There, the case of a modified p-
energy is treated, namely that of the p-energy ‘with potential’, i.e. E(u) = Ep−

∫

M H(u)dµ
for a Lipshitz function H.

Another particular case which has been solved is the conformal case p = m = dimM :

Theorem 4 ([26]) For given initial value u0 ∈W 1,m(M,N) there exists a weak solution
u : M × [0,∞[→ N of the m-harmonic flow

ut − ∆mu ⊥ TuN

u( · , 0) = u0 .

u satisfies the energy inequality (12) and is in W 1,m(M) weakly continuous in time. There
exists a set Σ = ∪K

k=1Σk × {Tk}, Σk ⊂ M , 0 < Tk ≤ ∞, such that on every open set
Ω ⊂ M × [0,∞[ with dist(Ω, (M × {0}) ∪ Σ) = µ > 0 there holds ‖∇u‖C0,β(Ω) ≤ C for
some constants C (depending on m, Em(u0), M , N and µ) and β ∈]0, 1[ (depending on
m, M and N). There exists ε1 > 0 such that the number K of singular times is a priori
bounded in terms of the initial energy, K ≤ ε−1

1 Em(u0), and the singular points (x, Tk)
are characterized by the condition lim supt↗Tk

Em(u(t), BR(x)) ≥ ε1 for any R > 0. At
every singular time Tk the decrease of the m-energy is at least ε1:

Em(u(Tk)) ≤ lim inf
t↗Tk

Em(u(t)) − ε1.

In order to get rid of the nonlinear side condition, that the solution has to take values in the
sphere, Hamilton’s geometric technique from [20] was used, namely that of a total geodesic
embedding of the target N in some IRk. I.e. the euclidean metric in IRk is deformed to a
new metric h such that

1. N is still embedded isometrically,

2. the metric h equals the Euclidean metric outside a large ball,

3. there exists an involutive isometry ι : T → T on a tubular neighborhood T of N
corresponding to multiplication by −1 in the orthonormal fibers of N and having
precisely N for its fixed point set.

A h-geodesic curve γ connecting x, y ∈ N (x, y close enough) will always be contained
in N . This follows from the (local) uniqueness of geodesics and the fact that with γ the
curve ι ◦ γ is another geodesic joining x and y.

The idea is that, if the initial data are smooth, then a short time solution u of the p-
harmonic flow is unique which forces it to stay in N (since otherwise, u and ι ◦u were two
different solutions).

The crucial point in the conformal case is an energy concentration lemma:
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Theorem 5 ([26]) If dim(M) = p and u ∈ C2(M × [0, T [;N) is a solution of the m-
harmonic flow then there exist constants c, ε0 > 0 which only depend on the geometry of
the manifolds M and N , and there exists a time T0 ∈]0, T [ which depends in addition on
u0, with the following properties: If the initial local energy satisfies

sup
x∈M

Em(u(0), B2R(x)) < ε0

then it follows

Em(u(t), BR(x)) ≤ Em(u(0), B2R(x)) + cE
1− 1

p

0

t

Rm
(13)

for all (x, t) ∈ M × [0, T0]. Here E0 denotes the initial energy, and Em(u(t), B) is the
m-energy of u(t) in a region B ⊂M .

This lemma allows to control energy concentration of the flow for short time which leads
to short time existence and (local) smoothness. At times, where the energy concentrates,
the flow develops a singularity and can be restarted. It is not known whether for m 6= 2
the m-harmonic flow develops singularities in finite time, in contrast to the harmonic flow,
where this is confirmed by the example of Chang, Ding and Ye in[4].

Technically, the proof of Theorem 4 is carried out by two approximation steps: In a first
step, only smooth initial data are considered. At the same time, the p-energy is regularized
by Ep,ε =

∫

M (ε+ |Du|2)p/2dµ. In a second step, arbitrary initial data are approximated by
smooth functions (observe, that by Bethuel-Zheng [3] C∞(M,N) is dense in W 1,p(M,N)).
Misawa improved Theorem 4 in [34] by showing, that, as it is the case for the harmonic
flow, the energy concentration set Σ is discrete not only in time, but also in space.

The p-harmonic flow in the case of non-positive sectional curvature of the target manifold
was treated by Fardoun and Regbaoui in [14] and [16]:

Theorem 6 If RiemN ≤ 0 and u0 ∈ C2,α(M,N), then for p > 1:

1. There exists a unique global weak solution u of the p-harmonic flow from M to
N such that ∂tu ∈ L2([0,∞[×M) and u,Du ∈ Cβ([0,∞[×M) for some β ∈]0, 1[.
Moreover, the solution satisfies the energy inequality (12) for all t > 0.

2. There exists a sequence tk → ∞ such that u(tk, ·) converges in C1,β′

(M,N), for all
β′ < β, to a weakly p-harmonic map u∞ ∈ C1,β(M,N).

In particular, this results settles the homotopy question in this case. The line of proof
goes along regularization of the p-energy, and a Bochner formula for the energy density
(see [14] for details).

The same result for p > 2 was shown earlier by Misawa in [35] under the assumption that
the image of u0 is contained in a geodesic ball, and in [36] without that latter assumption.

The p-harmonic flow for the case of small initial data has been treated by Fardoun and
Regbaoui in [15]:

Theorem 7 For any p > 1 and K > 0 there exists an ε0 > 0 depending on K,M,N and
p such that if u0 ∈ C2,α(M,N), 0 < α < 1, with Ep(u0) ≤ ε0 and ‖Du0‖L∞(M) ≤ K, the
following is true:
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1. There exists a unique global weak solution u of the p-harmonic flow from M to
N such that ∂tu ∈ L2([0,∞[×M) and u,Du ∈ Cβ([0,∞[×M) for some β ∈]0, 1[.
Moreover, the solution satisfies the energy inequality (12) for all t > 0.

2. There exists a sequence tk → ∞ such that u(tk, ·) converges in C1,β′

(M,N), for
all β′ < β, to a weakly p-harmonic map u∞ ∈ C1,β(M,N). Moreover there exists
ε̄0 > 0 depending on K,M,N and p such that if in addition Ep(u0) ≤ ε̄0, then u∞
is a constant map.

This result of Fardoun and Regbaoui concludes our survey on the p-harmonic flow.

2 Heat flow into spheres for a class of energies

In this section, our target manifold N is the unit sphere Sn ⊂ IRn+1. In order to keep
the formulas short, we restrict this presentation to the case M = T = IRm/Zm of a flat
torus as domain manifold. The modifications necessary for a general compact smooth
Riemannian manifold without boundary are purely technical and straightforward.

The class of energy functionals we want to investigate here is of the form

E(u) =

∫

T
ρ(|Du|)dx

for functions u : T → Sn ⊂ IRn+1. Here ρ : IR≥0 → IR is supposed to be continuously
differentiable, convex, and satisfies the coercivity and growth conditions

C1ξ
p ≤ ρ(ξ) for all ξ ≥ 0 (14)

0 ≤ ρ′(ξ) ≤ C2ξ
p−1 for all ξ ≥ 0 (15)

for two positive constants C1 and C2, and for a given p ≥ 2. The energy flow related to
this energy is described by the following equation

∂tu− div
(

ρ′(|Du|) Du|Du|
)

⊥ TuS.

We use the shorthand notation

σ(Du) := ρ′(|Du|) Du|Du|
and hence the previous equation can be rewritten in the form

∂tu− div σ(Du) = λu

for a function λ(x, t). Observe, that by multiplying this equation by u, we find

λ = σ(Du) : Du.

Here, A : B := trace(ABT) denotes the usual inner product of two matrices of the same
type. So, the final form of the heat equation we want to solve, is

∂tu− div σ(Du) = uσ(Du) : Du on T × IR>0 (16)

u(·, 0) = u0 on T . (17)

We suppose, that the initial data u0 have finite energy, i.e. u0 ∈W 1,p(T, Sn).
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2.1 Approximation by penalization

We construct a family of approximating problems by the classical penalization method.
To this end, we consider the energies

Ek(u) := E(u) + k

∫

T
χ(|u|)dx

for functions u : T → IRn+1, and for k ∈ IIN. The smooth function χ : IR≥0 → IR is chosen
in such a way, that 0 ≤ χ ≤ 1, χ = 1 outside the interval [ 1

2 ,
3
2 ], χ(x) = 0 if and only if

x = 1, and that χ′ changes sign only once (see Figure 1). The idea is, that we abandon

PSfrag replacements

χ

0

1

1 2 3

Figure 1: The function χ

the restriction that u takes values in the target Sn, but that (in terms of energy) with
increasing k, it becomes more and more favorable for the function u to take values close
to the sphere Sn.

The heat flow equation for the penalized energy is

∂tu− div σ(Du) + kχ′(|u|) u|u| = 0. (18)

The goal is now to prove existence of a global weak solution for this penalized energy flow
with the given initial data (17).

Lemma 8 Let k ∈ IIN and u0 ∈ W 1,p(T, Sn). Then, (17)–(18) possesses a weak solution
uk ∈ L∞(0,∞;W 1,p(T, IRn+1)) which is subject to the energy inequality

∫ τ

0
‖∂tuk‖2

L2(T )dt+Ek(uk(τ)) ≤ E(u0) (19)

for almost all τ ≥ 0.

Proof: W 1,p(T, IRn+1) is separable and possesses therefore a Galerkin base {wi}i∈IIN,
wi ∈W 1,p(T, IRn+1) in the sense, that for every w ∈W 1,p(T, IRn+1) there exist coefficients

c
(j)
i such that

w(j) :=

j
∑

i=1

c
(j)
i wi → w in W 1,p(T ) as j → ∞.

10



It is convenient to choose the wi smooth and L2-orthonormal. For fixed j ∈ IIN, we make
the ansatz

u(j)(t) :=

j
∑

i=1

c
(j)
i (t)wi

for a solution of the approximating system

∫

T

(

∂tu
(j)wl + σ(Du(j)) : Dwl + kχ′(|u(j)|) u

(j)

|u(j)| wl

)

dx = 0 for l = 1, . . . , j (20)

with initial values
u(j)(0) = u

(j)
0 → u0 in W 1,p(T ) for j → ∞. (21)

This is a system of j ordinary differential equations for the coefficients c
(j)
l (t), l = 1, . . . , j.

It is easy to verify that this system satisfies the hypotheses of the existence theorem of
Picard-Lindelöf and that therefore a solution exists on a time interval ]0, τ(j)[. Since, by
construction, u(j) is an element of span(w1, . . . , wj), equation (20) holds with u(j) in place
of wl, and hence, after integration over a time interval ]0, τ [, τ ≤ τ(j), one gets

1

2
‖u(j)(τ)‖2

L2(T ) +

∫ τ

0

∫

T
σ(Du(j)) : Du(j)dxdt+

+

∫ τ

0

∫

T
kχ′(|u(j)|) u

(j)

|u(j)|u
(j)dxdt =

1

2
‖u(j)(0)‖2

L2(T ) (22)

The first term in (22) is equal to 1
2 |c(j)(τ)|2IRj . By (15), the second term is non-negative.

Since |χ′(t)|t ≤ 3
2 max |χ′| for t ≥ 0, the third term, in absolute value, is bounded by Cτ for

a constant C. This shows, that the functions c
(j)
j (t) are bounded on [0, τ(j)[, and hence,

by (20), the same is true for d
dtc

(j)
j (t). Therefore, the existence interval is both open and

closed and hence we obtain a global solution u(j) of (20).

Similarly, with ∂tu
(j) in place of wl in (20), we obtain

∫ τ

0
‖∂tu

(j)‖2
L2(T )dt+Ek(u

(j)(τ)) = Ek(u
(j)
0 ) ≤ C for all j and τ ≥ 0. (23)

Observe, that

Ek(u) ≥ E(u) =

∫

T
ρ(|Du|)dx ≥ C1

∫

T
|Du|pdx

by the coercivity assumption (14) on ρ. Therefore, by (23), the sequence {u(j)}j is bounded
in L∞(0,∞;W 1,p(T )) On the other hand, still by (23), the sequence {∂tu

(j)}j is bounded
in L2(T×]0,∞[). Aubin’s lemma therefore implies that there exists a subsequence {u(j′)}j′

and a function u such that

u(j′) → u in Lr(T×]0, τ [) for all τ ∈]0,∞[ and all r ∈ [p,
mp

m− p
[. (24)

Notice that to have one subsequence which works for all such τ and r, one can apply the
usual diagonal sequence technique. By passing to a further subsequence if necessary, we
can also assume that

u(j′) → u point-wise almost everywhere on T×]0,∞[ (25)
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and
u(j′) ⇀ u weakly* in L∞(0,∞;W 1,p(T, IRn+1)) (26)

and finally, that
∂tu

(j) ⇀ ∂tu weakly in L2(T×]0,∞[). (27)

Notice also, that by the growth condition (15) we imposed on ρ, the sequence {σ(Du(j))}j

is bounded in L∞(0,∞;Lp′(T )). Therefore,

σ(Du(j′)) ⇀ w weakly* in L∞(0,∞;Lp′(T )) (28)

for a further subsequence.

For a test function φ(x, t) = ξ(t)η(x), with ξ ∈ C∞
0 (]0,∞[) and η ∈ span(w1, . . . , wl), we

infer from (20) that (as soon as j ′ > l)

∫ ∞

0

∫

T
∂tu

(j′)φ +

∫ ∞

0

∫

T
σ(Du(j′)) : Dφ +

∫ ∞

0

∫

T
kχ′(|u(j′)|) u

(j′)

|u(j′)|φ = 0

↓ ↓ ↓ as j′ → ∞
∫ ∞

0

∫

T
∂tuφ +

∫ ∞

0

∫

T
w : Dφ +

∫ ∞

0

∫

T
kχ′(|u|) u|u|φ = 0

(29)

To pass to the limit in the first and the second term of (29), we used (27) and (28). For
the third term, we used (25) and Lebesgue’s dominated convergence theorem. By density
of the linear span of testfunctions we used, the resulting equation in (29) follows also for
arbitrary φ ∈ C∞

0 (T×]0,∞[).

In order to identify w we now want to apply Minty’s lemma for monotone operators. (see,
e.g. [42, “decisive monotonicity trick”]). To do this, we first observe, that by (22), for
j′ → ∞, and by using (24), (25) and (27)

∫ τ

0

∫

T
−σ(Du(j′)) : Du(j′) =

∫ τ

0

∫

T
∂tu

(j′)u(j′) +

∫ τ

0

∫

T
kχ′(|u(j′)|) u

(j′)

|u(j′)|u
(j′) →

→
∫ τ

0

∫

T
∂tuu+

∫ τ

0

∫

T
kχ′(|u|) u|u|u. (30)

On the other hand, by (29), we have
∫ τ

0

∫

T
−w : Du =

∫ τ

0

∫

T
u∂tu+

∫ τ

0

∫

T
kχ′(|u|) u|u|u (31)

We now apply Minty’s lemma for the monotone operator

A : Lp(0, τ ;W 1,p(T )) → Lp′(0, τ ;W−1,p′(T ))

u 7→
(

φ 7→
∫ τ

0

∫

T
σ(Du) : Dφ

)

.

Now, as desired, from (26), (28), and the fact that the right hand sides of (30) and (31)
agree, it follows from Minty’s lemma that w = σ(Du). Hence, u is a weak solution of (18).

The energy inequality (19) for u follows from (23) as j → ∞: We have

lim inf
j→∞

∫ τ

0
‖∂tu

(j)‖2
L2(T ) ≥

∫ τ

0
‖∂tu‖2

L2(T )

12



by (27),
lim inf
j→∞

Ek(u
(j)(τ)) ≥ Ek(u(τ)) for almost all τ

by (26), the convexity of ρ, and by (25). And finally, observe that

lim
j→∞

Ek(u
(j)
0 ) = Ek(u0)

by (21), the Vitali convergence theorem and by (25). �

2.2 Passage to the limit I

We now want to pass to the limit in (18). Observe first, that by the energy inequality (19),
the sequence {uk} we constructed is bounded in L∞(0,∞;W 1,p(T )) and {∂tuk} is bounded
in L2(0,∞;L2(T )). By passing to a subsequence which we still denote by uk, we may
assume that

uk ⇀ u weakly* in L∞(0,∞;W 1,p(T )) (32)

and
∂tuk ⇀ ∂tu weakly in L2(T×]0,∞[). (33)

Moreover, by Aubin’s Lemma, we can extract a further subsequence such that

uk → u in Lr(T×]0, τ [) for all τ ∈]0,∞[ and all r ∈ [p,
mp

m− p
[, (34)

and hence, for yet a further subsequence

uk → u point-wise almost everywhere on T×]0,∞[ (35)

Notice, that from the energy inequality (19) it follows, that |uk| → 1 almost everywhere.
Combining this with (35), we conclude, that |u| = 1 almost everywhere on T × [0,∞[, i.e.
u takes values in the sphere, as desired. This is, nonetheless, not sufficient to already pass
to the limit in (18).

The following lemma is a maximum principle for the weak solutions uk of (18).

Lemma 9 Let uk be a weak solution of (18) on [0, τ [. Then, |uk(t)| ≤ 1 for all t ∈ [0, τ [,
if |uk(0)| ≤ 1.

Proof: To ease notation, we write u in place of uk. We use

R(u) := u− u

|u| min{1, |u|}

as a test function in (18) and find for the three single terms:

∫

T
R(u)∂tu = ∂t

∫

T
ξ(|u|)

for

ξ(x) =

{

0 if 0 ≤ x < 1
1
2(x− 1)2 if x ≥ 1

13



Therefore
∫

T
R(u)∂tu = ∂t

∫

{|u|≥1}
(|u| − 1)2

In the second term, we get
∫

T
kχ′(|u|) u|u|R(u) ≥ 0

since χ′(|u|) ≥ 0 for |u| ≥ 1 and R(u) = 0 for |u| ≤ 1. For the third term, we have

∫

T
σ(Du) : DR(u) =

∫

{|u|≥1}
σ(Du) : Du(1 − 1

|u|) +

∫

{|u|≥1}
ρ′(|Du|) |uDu|

2

|Du||u|3

Observe, that the last term in the previous expression is non-negative. Hence, summariz-
ing, we obtain

1

2

∂

∂t

∫

{|u|≥1}
(|u| − 1)2 +

∫

{|u|≥1}
σ(Du) : Du(1 − 1

|u| ) ≤ 0.

Since the second term is non-negative, the derivative in the first term is non-positive, and
therefore the lemma follows. �

By (31), we have for arbitrary τ > 0

∫ τ

0

∫

T
∂tukuk +

∫ τ

0

∫

T
σ(Duk) : Duk + k

∫ τ

0

∫

T
χ′(|uk|)

uk

|uk|
uk = 0.

The energy inequality (23) and the growth condition (15) imply, that the first two terms
are, for fixed τ , uniformly bounded in k. In view of Lemma 9, and the fact, that χ ′

vanishes on [0, 1
2 ] we obtain

∫ τ

0

∫

T

∣

∣

∣

∣

kχ′(|uk|)
uk

|uk|

∣

∣

∣

∣

≤ −2

∫ ∞

0

∫

T
kχ′(|uk|)

uk

|uk|
uk ≤ C

for a constants C which does not depend on k.

We conclude, that the right hand side in

∂tuk − div σ(Duk) = −kχ′(|uk|)
uk

|uk|
(36)

is a bounded sequence in L1(T × [0, τ ]). This fact suggests now to consider the Young
measure generated by the sequence uk ⊗Duk. Observe, that uk converges almost every-
where, an therefore, if Duk generates the Young measure ν on the space IM(n+1)×m of
(n+ 1) ×m matrices, then uk ⊗Duk generates the Young measure δu ⊗ ν (see, e.g., [27]).
We use the next section to collect some relevant facts about the Young measure ν.

2.3 The Young measure generated by Duk

Lemma 10 Let ν be the Young measure generated by the the gradients Duk of the solu-
tions of (18) constructed in Lemma 8. Then

(i) ν(x,t) is a probability Young measure for almost every (x, t) ∈ T × [0, τ ].
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(ii) ν(x,t) satisfies Du(x, t) = 〈ν(x,t), id〉 for almost every (x, t) ∈ T × [0, τ ].

Proof: (i) follows directly from the fact, that Duk is bounded in L1(T × [0, τ ]) (see, e.g.,
[1] or [27]).

(ii): Duk converges weakly to Du in Lp(T × [0, τ ]). On the other hand, since Duk is an
equiintegrable sequence, we have that Duk converges weakly to 〈ν(x,t), id〉 in L1(T × [0, τ ]).
Therefore, Du(x, t) = 〈ν(x,t), id〉. �

The final ingredient we need is a “div-curl inequality”:
∫ τ

0

∫

T

∫

IM(n+1)×m

(σ(λ) − σ(Du)) : (λ−Du)dν(x,t)(λ) dx dt ≤ 0 (37)

This inequality appears first in [8] for the Young measure ν generated by sequence of the
gradients of solutions of a stationary non-linear elliptic system of p-Laplace type with right
hand side bounded in L1. The class of operators considered there includes in particular
our case σ(Du). Due to the fact that, as we have seen, the right hand side in (36) is
bounded in L1, the proof in [8] carries over to the parabolic case.

2.4 Passage to the limit II

The aim is now, to pass to the limit in the penalized equation (18). The problem in
the operator term is, that ρ need not be strictly convex, and hence σ is not necessarily
strictly monotone, or even uniformly monotone like in the case of the p-Laplace operator.
Nonetheless, if ρ is not strictly convex in a region, it must be affine there, and it should
therefore nevertheless be possible to pass to the limit there. It turns out that Young
measures provide the adequate tool to go through with this program.

We start with some notation.

We consider the limit u of uk as in (32)–(35). Let (x, t) be a fixed point in T × [0, τ ].
Then, let

L := {(λ, ρ(|Du(x, t)|) + σ(Du(x, t)) : (λ−Du(x, t))) | λ ∈ IM(n+1)×m} ⊂M (n+1)×m × IR

denote the supporting hyperplane to the graph of ρ(|λ|) in (Du(x, t), ρ(|Du(x, t)|)) (see
Figure 2). Moreover, let

K(x,t) = {λ ∈ IM(n+1)×m | ρ(|λ|) = ρ(|Du(x, t)|) + σ(Du(x, t)) : (λ−Du(x, t))}

denote the set, where ρ agrees with the supporting hyperplane L (see Figure 2).

Lemma 11 For almost all (x, t) ∈ T × [0, τ ], the Young measure ν(x,t) is supported in the
set K(x,t), i.e. spt(ν(x,t)) ⊂ K(x,t).

Proof: By (37) the integrand (σ(λ)−σ(Du(x, t))) : (λ−Du(x, t)) (which is non-negative
everywhere because of the monotonicity of σ) must vanish as a function of λ on the support
of the measure ν(x,t). This is true with the possible exception of a set N of (x, t) ∈ T×[0, τ ]
of measure zero. Let us fix λ ∈ spt(ν(x,t)) for (x, t) /∈ N , then

(1 − α)(σ(Du(x, t)) − σ(λ)) : (Du(x, t) − λ) = 0 for all α ∈ [0, 1]. (38)
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On the other hand, again by the monotonicity of σ, we have

0 ≤ (1−α)(σ(Du(x, t)+α(λ−Du(x, t)))−σ(λ)) : (Du(x, t)−λ) for all α ∈ [0, 1]. (39)

Subtracting (38) from (39) we obtain

0 ≤ (1−α)(σ(Du(x, t)+α(λ−Du(x, t)))−σ(Du(x, t))) : (Du(x, t)−λ) for all α ∈ [0, 1].
(40)

But by monotonicity, also the opposite inequality holds true:

0 ≥ (1−α)(σ(Du(x, t)+α(λ−Du(x, t)))−σ(Du(x, t))) : (Du(x, t)−λ) for all α ∈ [0, 1].
(41)

Therefore, still for the same λ ∈ spt(ν(x,t)), by (40) and (41), we have

0 = (1−α)(σ(Du(x, t)+α(λ−Du(x, t)))−σ(Du(x, t))) : (Du(x, t)−λ) for all α ∈ [0, 1].
(42)

Using (42), we conclude

ρ(|λ|) = ρ(|Du(x, t)|) +

∫ 1

0
σ(Du(x, t) + α(λ−Du(x, t)) : (λ−Du(x, t))dα =

= ρ(|Du(x, t)|) + σ(Du(x, t)) : (λ−Du(x, t))

and hence, λ ∈ K(x,t), as claimed. �

Lemma 12 (i) For each λ ∈ K(x,t) there holds σ(λ) = σ(Du(x, t)).

(ii) For almost all (x, t) ∈ T × [0, τ ] the following is true:

∫

M(n+1)×m

σ(λ)dν(x,t)(λ) = σ(Du(x, t)). (43)

Proof: (i) follows the fact that ρ is continuously differentiable.

(ii): As we have seen in Lemma 11, the support of the measure ν(x,t) is contained in the

set K(x,t). Therefore, in (43), we only need to integrate over K(x,t) ⊂ M (n+1)×m. But
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there, as stated in (i), σ(λ) = σ(Du(x, t)). Hence, the claim follows from the fact that, by
Lemma 10(i), ν(x,t) has mass 1. �

Actually, from (ii) in the previous lemma and the fundamental theorem on Young measures
(see, e.g., [1]) it now already follows, that σ(Duk) ⇀ σ(Du) in L1(T × [0, τ ]. However, as
we will see in the next lemma, this convergence is even strong.

Lemma 13 Let uk be the sequence solutions of (18) constructed in Lemma 8, u the limit
of this sequence in (32), and

gk(x, t) := |σ(Duk(x, t)) − σ(Du(x, t))|

Then, gk → 0 in L1(T × [0, τ ]) for all τ > 0.

Proof: Observe, that, since {Duk} is bounded in L∞(0,∞;Lp(T )), by (15) σ(Duk) is
bounded in L∞(0, τ ;Lp′(T )). Therefore, gk is an equiintegrable sequence on T × [0, τ ].
Hence, by the fundamental theorem of Young measures (see, e.g., [1]), for a suitable (not
relabeled) subsequence, gk ⇀ ḡ in L1(T × [0, τ ]) where

ḡ(x, t) =

∫

IM(n+1)×m

|σ(λ) − σ(Du(x, t))|dν(x,t) = 0

Here, we have used that by Lemma 11, we only have to integrate over K(x,t) and that
there, by Lemma 12(i), σ(λ) = σ(Du(x, t)). Since gk ≥ 0, the convergence is strong. By
the usual diagonal sequence argument, we can find a subsequence which converges strongly
in L1

loc(T × [0,∞]). �

This allows us now to finally prove the existence theorem for the heat flow of the energy
E:

Theorem 14 If the convex C1-function ρ satisfies the coercivity and growth conditions (14)
and (15), then there exists a global weak solution of (16) for arbitrary initial data u0 ∈
W 1,p(T, Sn).

Proof: It follows from Lemma 13, that

σ(Duk) → σ(Du) in L1
loc(T × [0,∞]) (44)

By taking the wedge product of (18) with uk, we find that

0 = ∂tuk ∧ uk − div(ρ′(|Duk|)
Duk

|Duk|
∧ uk). (45)

Passing to the limit in the weak form of (45), and using (33), (34) and (44) yields

0 = ∂tu ∧ u− div(ρ′(|Du|) Du|Du| ∧ u). (46)

As stated at the beginning of Section 2.2, |u| = 1 almost everywhere on T × [0,∞[.
Therefore,

(∂tu− div(σ(Du)) − uσ(Du) : Du)uψ = 0 (47)

is an identity for arbitrary ψ ∈ C∞
0 (T × [0,∞]).
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Let φ ∈ C∞
0 (T × [0,∞], IRn+1). We test (46) by u ∧ φ and use ψ = u · φ in (47) (observe,

that these are admissible test-functions) and subtract the resulting equations from each
another. Using the identity

φ = u(u · φ) − u ∧ (u ∧ φ)

this yields the weak form of (16). �.
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