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The ring of polyfunctions over Z=nZ

Ernst Speckera, Norbert Hungerb€uhlera , and Micha Wasemb,c

aDepartment of Mathematics, ETH Z€urich, Z€urich, Switzerland; bHTA Freiburg, HES-SO University of Applied
Sciences and Arts Western Switzerland, Freiburg, Switzerland; cUniDistance Suisse, Brig, Switzerland

ABSTRACT
We study the ring of polyfunctions over Z=nZ: The ring of polyfunctions
over a commutative ring R with unit element is the ring of functions f :
R ! R which admit a polynomial representative p 2 R½x� in the sense that
fðxÞ ¼ pðxÞ for all x 2 R: This allows to define a ring invariant s which asso-
ciates to a commutative ring R with unit element a value in N [ f1g: The
function s generalizes the number theoretic Smarandache function. For the
ring R ¼ Z=nZ we provide a unique representation of polynomials which
vanish as a function. This yields a new formula for the number WðnÞ of
polyfunctions over Z=nZ: We also investigate algebraic properties of the
ring of polyfunctions over Z=nZ: In particular, we identify the additive
subgroup of the ring and the ring structure itself. Moreover we derive for-
mulas for the size of the ring of polyfunctions in several variables over
Z=nZ, and we compute the number of polyfunctions which are units of
the ring.
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1. Introduction

In a finite field F, every function f : F ! F can be represented by a polynomial, i.e., there exists a
polynomial p2 F[x] such that f ðxÞ ¼ pðxÞ for all x 2 F: Such a polynomial is, e.g., given by the
Lagrange interpolation polynomial for f. Among the commutative rings with unit element, the
finite fields are actually characterized by this representation property (see [18]):

Theorem 1 (R�edei, Szele). If R is a commutative ring with unit element then R is a finite field if
and only if every function f : R ! R can be represented by a polynomial in R½x�:
If a commutative ring R with unit element is not a field, it is natural to ask what can be said
about the functions from R to R which can be represented by a polynomial in R½x�: These func-
tions are called polynomial functions or polyfunctions for short. The set of polyfunctions

ff : R ! R j 9p 2 R x½ � 8x 2 R : pðxÞ ¼ f ðxÞg,
equipped with pointwise addition and multiplication, is a subring of RR. This ring of polyfunc-
tions over R will be denoted by G(R). Of particular interest are the polynomials which correspond
to the zero element in G(R), they will be called null-polynomials (see, e.g., [19]). It is the objective
of this article to investigate the algebraic structure and combinatorial properties of the ring of
polyfunctions GðZ=nZÞ:
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More generally, one can study the ring of multivariate polyfunctions in d 2 N variables—this
ring is defined as the set

ff : Rd ! R j 9p 2 R x1, x2, :::, xd½ � 8x ¼ ðx1, :::, xdÞ 2 Rd : pðxÞ ¼ f ðxÞg,
equipped with pointwise addition and multiplication. We denote this ring by GdðRÞ and write
GðRÞ ¼ G1ðRÞ, in accordance with the notation introduced above.

Polyfunctions in one variable over Z=nZ were already discussed by Kempner [12, 13], who gave a
formula for the number WðnÞ of polyfunctions over Z=nZ, which was subsequently simplified by
Keller and Olson in [10] (see also the work of Carlitz [4] in the case where n is a power of a prime).
Regarding polyfunctions in d variables we refer to Mullen [16] and more recently to [9]: In [9,
Theorem 2, p. 5], a characterization theorem is proved which allows to tell whether a given function

f : ðZ=nZÞd ! Z=nZ is a polyfunction or not. Furthermore, a formula for the number of polyfunc-
tions WdðnÞ in d variables over Z=nZ is obtained. In the present work, we provide an alternative for-
mula for WðnÞ and a new proof of the formula for WdðnÞ given in [9].

Polyfunctions from Z=nZ to Z=mZ have been discussed by Chen [5, 6] and Bhargava [3]. The
focus there is to find conditions on the pair (m, n) such that all functions (or certain subclasses)
from Z=nZ to Z=mZ are polyfunctions. These results have been generalized to polynomial functions
in the residue class rings of Dedekind domains by Li and Sha in [14]. Dueball in [7] considered poly-
nomials mod pn with integer coefficients. He showed that the values of such a polynomial f(x) are
already determined when x runs through a certain subset of residues. He also provided a formula to
generate polynomials which vanish mod pn for all integral values of x.

To each commutative ring R with unit element, we can associate a number sðRÞ 2 N [ f1g
which is defined to be the minimal degree m such that the function x 7! xm can be represented
by a polynomial in R½x� of degree strictly smaller than m, i.e.

sðRÞ :¼ minfm 2 N j 9p 2 R x½ �, degðpÞ < m, 8x 2 R : pðxÞ ¼ xmg (1)

if such an m exists, and sðRÞ ¼ 1 otherwise.
If s(R) is finite, the monomial xsðRÞ can be represented by a polynomial p of degree less than

s(R). Therefore, the normed polynomial qðxÞ ¼ xsðRÞ � pðxÞ represents the zero-function. Vice
versa, if r(x) is a normed null-polynomial of minimal degree m, then m ¼ sðRÞ: Hence, s(R) can
be interpreted as the minimal degree of a normed null-polynomial over R.

An alternative and, for reasons that will become clear later, preferable way to view the function
defined by (1) is as follows: The building blocks of polynomials are the monomials x0, x1, x2, ::::
We say, a monomial xm is reducible, if the function x 7! xm can be represented by a polynomial
in R½x� of degree strictly smaller than m. Then, s(R) is the number of non-reducible monomials.

The function s is a ring invariant which generalizes the classical number theoretic
Smarandache function s : N ! N,

n 7! sðnÞ :¼ minfk 2 N : njk!g, (2)

which is named after the Romanian mathematician Florentin Smarandache, but which has been
originally introduced by Lucas in [15] (for prime powers) and Kempner in [11] (for general n).
The function s defined in (1) will be called Smarandache function because n 7! sðZ=nZÞ coincides
with the usual Smarandache function n 7! sðnÞ (see Theorem 2). In the context of general com-
mutative rings with unit element, this function will be studied in a forthcoming paper [20]. We
also refer to [17], where polyfunctions over general rings are discussed.

The article is organized as follows: Section 2 establishes a unique representation theorem for
null-polynomials (Theorem 8). This provides a new formula for the number WðnÞ of polyfunc-
tions over Z=nZ (Corollary 9 and Proposition 11). In Section 3, we investigate algebraic proper-
ties of the ring of polyfunctions over Z=nZ: In particular, we identify the additive subgroup of
the ring (Theorem 14) and the ring structure itself (Theorem 18). We also investigate the
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multiplicative subgroup Un of units in the ring (Propositions 22 and 27). Section 4 comprises a
description of the ring of polyfunctions in several variables over Z=nZ: In particular, we give a
new formula for the size of this ring (Proposition 26).

1.1. Notational conventions

Unless stated otherwise, n will denote a natural number P 2 and Zn ¼ Z=nZ is the ring of inte-
gers modulo n. We adopt the notation (a, b) for the greatest common divisor of the integer num-
bers a and b, and we write ajb if b is an integer multiple of a. Furthermore, for f , g 2 Zn½x� we
will write f � g mod n to mean the equality of polynomials and we will write
f ðxÞ � gðxÞ mod n if the functions defined by f and g agree.

2. Combinatorial aspects of polyfunctions over Zn

2.1. The Smarandache function

In this section, we want to determine the minimal degree of a normed null-polynomial in Zn½x�:
We call a polynomial normed, if its leading coefficient is 1. The answer is given in the follow-
ing theorem:

Theorem 2. sðZnÞ equals the Smarandache function s(n) defined in (2).

Remark 3. According to our conventions, nP 2 as the case n¼ 1 should formally be excluded
since Z1 is not a ring with unit element. However, if n¼ 1 we can still make sense of sðZ1Þ if we
view Z1 as {0} and it holds that sðZ1Þ ¼ 0 but sð1Þ ¼ 1: Kempner originally defined sð1Þ ¼ 1 in
[11] but changed it to sð1Þ ¼ 0 later on in [12, 13]. By defining

sðnÞ :¼ minfk 2 N0 : njk!g,
this ambiguity can be avoided (see also [9, p. 7]) and the theorem might be stated for every
1 6 n 2 N: Another proof of Theorem 2 also appears in [8, Theorem 7, p. 126].

In order to prove Theorem 2 for nP 2, we first show that sðZnÞ6 sðnÞ: This is established by
giving a normed null-polynomial of degree s(n). In fact, we have

pðxÞ :¼
YsðnÞ
i¼1

ðxþ iÞ ¼ xþ sðnÞ
sðnÞ

� �
sðnÞ! � 0 mod n

for all x 2 Zn:
The second step consists in proving the reverse inequality sðZnÞP sðnÞ: This follows easily

from the combinatorial identity which connects the binomial and the Stirling numbers of the
second kind (see, e.g., [1, 3.39, p. 97] or [8, Lemma 3]): For all r, j 2 N0 there holdsXr

i¼0

ð�1Þr�i r
i

� �
ij ¼ r!

n j
r

o
(with the convention 00 :¼ 1). In particular, it follows thatXr

i¼0

ð�1Þiþr r
i

� �
ik ¼ dkrr! (3)

for k 2 f0, 1, :::, rg: Now, we consider a null-polynomial p over Zn, i.e., we assume

pðiÞ ¼
Xr
k¼0

aki
k � 0 mod n
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for all i 2 Zn: Then, it follows from (3) that modulo n

0 �
Xr
i¼0

Xr
k¼0

ð�1Þiþr r

i

 !
aki

k

¼
Xr
k¼0

ak
Xr
i¼0

ð�1Þiþr r

i

 !
ik

¼
Xr
k¼0

akdkrr! ¼ arr!

This establishes the desired inequality sðZnÞP sðnÞ and the proof of Theorem 2 is complete. w

In order to gain more insight in the ideal of null-polynomials in Zn½x�, we need a stronger
version of Theorem 2. First we consider the following simple lemma:

Lemma 4. Let A and C denote matrices with integer coefficients, y a vector with integer components
and I the identity matrix. If AtC � mI mod n, then Ay � 0 mod n implies my � 0 mod n:

Proof. Modulo n we have

0 � CtAy ¼ ðytAtCÞt � ðytmIÞt ¼ my: w

Lemma 4 allows to prove the following stronger form of Theorem 2. This will be the tech-
nical key to the understanding of the null-polynomials in Section 2.2, the structure of the
additive group of the polyfunctions in Section 3.1, and of their ring structure in
Section 3.2.

Theorem 5. If pðxÞ ¼ a0 þ a1xþ � � � þ arxr vanishes in Zn on the set x 2 fa, aþ 1, :::, aþ rg (in
particular, if p is a null-polynomial over Zn), then akr! � 0mod n holds for all k 2 f0, 1, :::, rg:

Proof. For a 2 f0, 1, :::, n� 1g and j 2 fa, aþ 1, :::, aþ rg, we consider the polynomials

gj, aðxÞ :¼
Yaþr

k6¼j
k¼a

ðx� kÞ ¼
Xr
k¼0

gjakx
k:

Obviously, we have gj, aðiÞ ¼ 0 whenever i 2 fa, aþ 1, :::, aþ rg is different from j, and gj, aðjÞ ¼
ðj� aÞ!ð�1Þaþr�jðaþ r � jÞ!: Hence, we obtain for i, j 2 fa, aþ 1, :::, aþ rg

ð�1Þaþr�j r
j� a

� �
gj, aðiÞ ¼ dijr!

This identity can be read as AD ¼ r!I for the matrix ðAÞik ¼ ik, i 2 fa, aþ 1, :::, aþ rg, k 2
f0, 1, :::, rg, and the matrix

ðDÞkj ¼ ð�1Þaþr�j r
j� a

� �
gjak,

k 2 f0, 1, :::rg, j 2 fa, aþ 1, :::aþ rg: Finally, from it follows AtC ¼ r!I for C ¼ Dt: Thus, the
hypotheses of Lemma 4 are fulfilled with m¼ r!.

From the hypothesis of Theorem 5 it follows moreover, that Ay � 0 mod n for the vector
y ¼ ða0, a1, :::, arÞt and hence, the conclusion of Lemma 4 gives the desired result. w
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2.2. Decomposition of null-polynomials

In this section we analyze the null-polynomials in Zn½x�, i.e. the polynomials which vanish as a
function from Zn to Zn: In particular we will determine the number of null-polynomials which
then allows to compute the number of polyfunctions over Zn:

We introduce the following notation for 26 n 2 N : q(n) denotes the smallest prime divisor
of n, tðnÞ :¼ card sððn, a!ÞÞjsððn, a!ÞÞP qðnÞ, a 2 N

� �
and

sððn, a!ÞÞjsððn, a!ÞÞP qðnÞ, a 2 N
� � ¼: fb1,b2, :::, btðnÞg,

where the numbers bk are numbered in descending order, i.e.

sðnÞ ¼ b1 > b2 > � � � > btðnÞ ¼ qðnÞ: (4)

Here, s continues to denote the number-theoretic Smarandache function. We have
blþ1 ¼ sððn, ðbl � 1Þ!ÞÞ

for l ¼ 1, :::, tðnÞ � 1 : To see this, let a 2 fqðnÞ, qðnÞ þ 1, :::, sðnÞg be such that bl ¼ sððn, a!ÞÞ: If
k ¼ ðn, a!Þ, then s(k) is the smallest number such that kjsðkÞ!: If a > sðkÞ we might replace a by
s(k) and obtain ðn, a!Þ ¼ ðn, sðkÞ!Þ ¼ ðn, bl!Þ: Therefore bl ¼ sððn, bl!ÞÞ and blþ1 ¼ sððn, ðbl �
1Þ!ÞÞ < bl, as claimed.

Furthermore, we define

ak :¼ n
ðn, bk!Þ

(5)

and consider the basic null-polynomials in Zn½x� :

bkðxÞ :¼ ak
Ybk
i¼1

ðxþ iÞ (6)

Why the null-polynomials are important becomes clear in Theorem 8 below. But first we con-
sider an example and give some computational remarks.

Example 6. The smallest prime divisor of n¼ 90 is qð90Þ ¼ 2, and sð90Þ ¼ 6: In order to com-
pute the degrees bk according to (4), notice that we only need to consider values a 2
fqðnÞ, qðnÞ þ 1, :::, sðnÞg: For these values, we have

From this table, we read off tð90Þ ¼ 4 and
b1 ¼ 6, b2 ¼ 5, b3 ¼ 3, b4 ¼ 2:

The coefficients ak are now computed by (5):
a1 ¼ 1, a2 ¼ 3, a3 ¼ 15, a4 ¼ 45:

The basic null-polynomials for n¼ 90 are therefore
b1ðxÞ ¼ ð1þ xÞð2þ xÞð3þ xÞð4þ xÞð5þ xÞð6þ xÞ
b2ðxÞ ¼ 3ð1þ xÞð2þ xÞð3þ xÞð4þ xÞð5þ xÞ
b3ðxÞ ¼ 15ð1þ xÞð2þ xÞð3þ xÞ
b4ðxÞ ¼ 45ð1þ xÞð2þ xÞ

w

a ð90, a!Þ sðð90, a!ÞÞ
2 2 2
3 6 3
4 6 3
5 30 5
6 90 6
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Remark 7. It is useful to note, that by construction we have

ðn, ðkþ 1Þ!Þ ¼ ðn, bj!Þ
for all kþ 1 2 fbj,bj þ 1, :::,bj�1 � 1g:

Note that Kempner [12, 13] also introduces basic null-polynomials of the form

~bðxÞ ¼ n
d

YsðdÞ�1

i¼0

ðx� iÞ

where d> 1 is a divisor of n. If d> 1 runs through all divisors of n in decreasing order, we only
list polynomials which are not multiples of polynomials that already appeared. In the present
case, when n¼ 90, one obtains in this way the basic null-polynomials

~b1ðxÞ ¼ xðx� 1Þðx� 2Þðx� 3Þðx� 4Þðx� 5Þ
~b2ðxÞ ¼ 3xðx� 1Þðx� 2Þðx� 3Þðx� 4Þ
~b3ðxÞ ¼ 15xðx� 1Þðx� 2Þ
~b4ðxÞ ¼ 45xðx� 1Þ

The difference stems from the fact, that we introduced a normed null-polynomial of minimal
degree by defining

pðxÞ ¼
YsðnÞ
i¼1

ðxþ iÞ,

whereas Kempner uses

~pðxÞ ¼
YsðnÞ�1

i¼0

ðx� iÞ:

Notice that the basic null-polynomial btðnÞ is a non-zero polynomial of minimal degree q(n)
(see, e.g., [8, Theorem 8]). This fact is used in the following decomposition theorem. With the
notations above we have:

Theorem 8. Every null-polynomial p in Zn½x� has a unique decomposition of the form

pðxÞ ¼
XtðnÞ
k¼1

qkðxÞbkðxÞ,

where qk 2 Zn=ak ½x� has degree strictly less than bk�1 � bk if k> 1 and where degðq1Þ ¼ degðpÞ � b1:

Proof. We start by proving the existence of a decomposition of the desired type.
In a first step, we can write

pðxÞ ¼ q1ðxÞb1ðxÞ þ p1ðxÞ
with q1 2 Zn½x�, degðq1Þ ¼ degðpÞ � b1, and degðp1Þ < b1, by dividing the polynomials with
remainder (observe that b1 is normed).

Now, we assume by induction that the decomposition has the form

pðxÞ ¼
Xl
k¼1

qkðxÞbkðxÞ þ plðxÞ

with degðplÞ < bl: Then, the next step is carried out as follows: pl is a null-polynomial in Zn½x�
of the form
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plðxÞ ¼ a0 þ a1xþ � � � þ abl�1x
bl�1:

Hence, by Theorem 5, it follows that

aiðbl � 1Þ! � 0 mod n

for all i 2 f0, 1, :::,bl � 1g: Since blþ1 ¼ sððn, ðbl � 1Þ!ÞÞ < bl, this implies

alþ1 j ai
for all i 2 f0, 1, :::, bl � 1g: Hence, we can divide the polynomial pl by blþ1 with remainder and
obtain

plðxÞ ¼ qlþ1ðxÞblþ1ðxÞ þ plþ1ðxÞ
with degðplþ1Þ < blþ1, degðqlþ1Þ < bl � blþ1 and qlþ1 2 Zn=alþ1

½x�: This iterative process ends as
soon as degðplþ1Þ < qðnÞ, since then, it follows that plþ1 � 0 mod n by [8, Theorem 8].

Now, we assume by contradiction that there exist two different decompositions of p, say

0 �
XtðnÞ
k¼1

bkðqk � ~qkÞ mod n (7)

with a smallest index k0 with qk0 6¼ ~qk0 : Let i denote the highest power i in qk0 and ~qk0 with dif-
ferent coefficients ai 6¼ ~ai in Zn=ak0

: Then, according to the construction of the basic null-polyno-

mials bk, the coefficient of the highest power of x on the right-hand side of (7) is ak0ðai � ~aiÞ: By
(7), we have

ak0 ðai � ~aiÞ|fflfflfflfflffl{zfflfflfflfflffl}
2Zn=ak0

� 0 mod n

which implies that ai � ~ai mod ðn=ak0Þ, and this is a contradiction. w

2.3. The number of polyfunctions

The result of the previous section allows now to compute the cardinality of the ring GðZnÞ:
Corollary 9. The number WðnÞ of polyfunctions over Zn is given by

WðnÞ ¼
YtðnÞ
k¼1

ðn, bk!Þbk�bk�1

with the convention b0 :¼ 0:

Proof. We consider the additive group F(n) of polynomials in Zn½x� of degree strictly less than
s(n) and the normal subgroup N(n) of all null-polynomials in F(n). The additive group of poly-
functions over Zn is then isomorphic to the quotient FðnÞ=NðnÞ: All cosets have the cardinality
of the set of null-polynomials of degree strictly less than s(n), namely, according to Theorem 8,

jNðnÞj ¼
YtðnÞ
i¼2

n
ai

� �bi�1�bi
:

On the other hand, the number of polynomials of degree strictly less than s(n) is jFðnÞj ¼ nb1 :
Division jFðnÞj=jNðnÞj gives the claimed formula. w
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Example 10. Let us come back to Example 6 with n¼ 90: The formula in Corollary 9 gives
Wð90Þ ¼ ð90, 6!Þ6ð90, 5!Þ�1ð90, 3!Þ�2ð90, 2!Þ�1 ¼ 246037500 for the number of polyfunctions
over Z90: w

In the case when n equals the power of a prime number the formula for W takes a particularly
simple form. Since W will be shown to be multiplicative, it is actually enough to know the values
of WðpmÞ for p prime (see Section 2.3.1).

2.3.1. The case n ¼ pm, p prime
At this point it is useful to include a general remark on rings of polyfunctions: If R and S are
commutative rings with unit element, then GðR� SÞ and GðRÞ�GðSÞ are isomorphic as rings in
the obvious way. In particular, since Zn �Zm ffi Znm if m and n are relatively prime, we have
that

GðZnmÞ ffi GðZnÞ�GðZmÞ
if ðm, nÞ ¼ 1: Therefore, we may confine ourselves to the case n ¼ pm, p prime, without loss
of generality.

This observation gives rise to the following version of Corollary 9, see also [10].

Proposition 11. Let WðnÞ denote the number of polyfunctions over Zn and s the Smarandache
function. Then,

(i) the function W is multiplicative, i.e. if ðm, nÞ ¼ 1 then WðmnÞ ¼ WðmÞWðnÞ, and
(ii) for a prime number p and m 2 N there holds

WðpmÞ ¼ expp

Xm
k¼1

sðpkÞ
 !

,

where we write expp a :¼ pa for typographical reasons.

Example 12. Before we prove Proposition 11, we come back to Example 10, where n¼ 90. By (i)
in Proposition 11, we have

Wð90Þ ¼ Wð2ÞWð32ÞWð5Þ
and the factors are by (ii) Wð2Þ ¼ 22, Wð32Þ ¼ 33þ6 and Wð5Þ ¼ 55: The product of these num-
bers is Wð90Þ ¼ 4 � 19683 � 3125 ¼ 246037500 in accordance with the calculation in Example 10.

At this point, it is useful to introduce one more quantity which will play a role in the proof of
Proposition 11 and which is going to be used in the description of the algebraic structure of the
ring of polyfunctions over Zn (see Section 3.2). For prime numbers p and integers kP 0, we
define

epðkÞ :¼ maxfx 2 N0 : pxjk!g:
Notice that epðkÞ ¼ j for jp 6 k < ðjþ 1Þp if k < p2: But the next number is epðp2Þ ¼ pþ 1:

Proof of Proposition 11.
(i) The multiplicativity follows immediately from the remark preceding the proposition.
(ii) The basic null-polynomials of degree strictly less than sðpmÞ are in this case (see (6)) given by

bkðxÞ ¼ pm�epðkÞ
Yk
i¼1

ðx� iÞ
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for k ¼ p, 2p, 3p, :::, sðpmÞ � p: Thus the number of null-polynomials in Zpm ½x� of degree strictly
less than sðpmÞ is

YsðpmÞ
p �1

k¼1

ppepðpkÞ,

and the total number of polynomials in Zpm ½x� of degree strictly less than sðpmÞ is
pmsðpmÞ:

Division of both numbers yields the number of polyfunctions over Zpm , namely

WðpmÞ ¼ expp p
XsðpmÞ
p �1

k¼0

ðm� epðpkÞÞ

0
@

1
A
:

Hence, the claim is proved if we verify that for all m 2 N there holds

p
XsðpmÞ
p �1

k¼0

ðm� epðpkÞÞ ¼
Xm
k¼1

sðpkÞ: (8)

Obviously, (8) is true for m¼ 1. Moreover sðpmþ1Þ � sðpmÞ is either 0 or p. Using this, it is easy
to see, that (8) holds for mþ 1 if it is correct for m, and the claim follows by induction. w

Remark 13.
(i) The formula in (ii) above is particularly simple in the case m 6 p : We observe that

sðpkÞ ¼ kp for k 6 p: ThusXm
k¼1

sðpkÞ ¼ p
mþ 1

2

� �
and WðpmÞ ¼ expp p

mþ 1
2

� �� �

for m 6 p:
(ii) While the present approach for counting the number of polyfunctions in Zn consists in

finding a unique representative for each null-polynomial, in [9, Theorem 5, p. 8], each pol-
yfunction is shown to have a unique representative. An alternative proof of Theorem 11 is
then given in [9, Theorem 6, p. 9] by counting these representatives. Moreover, a very
short formula for WðnÞ is given in [9, Theorem 9, p. 10] in terms of the Smarandache
function, the Mangoldt function, and the Dirichlet convolution.

(iii) Not only the formula for WðnÞ looks particularly pleasant for n ¼ pm, also the decompos-
ition of the additive group F(n) takes its simplest form for powers of prime numbers. As
mentioned earlier in this section, it is sufficient to know the structure of F(n) for n ¼ pm:
In this case, the decomposition in Theorem 14 simplifies to

FðpmÞ ffi p a
sðpmÞ=p�1

k¼0

Zpm�epðpkÞ :

Here and throughout Section 3, we will use the notation

nG ¼ a
n

i¼1
G

for the n-fold direct product of a group G with itself, where n 2 N:
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3. Algebraic properties of the ring of polyfunctions

3.1. The additive group of polyfunctions

Let F(n) denote the additive group of polyfunctions over Zn and FkðnÞ the subgroup of polyfunc-
tions which have a representative of degree less than or equal to k. Using the notation of Section
2.2, we have the following result:

Theorem 14. The group F(n) is isomorphic to

a
tðnÞ

j¼1
ðbj � bjþ1ÞZajþ1

with the convention btðnÞþ1 :¼ 0 and atðnÞþ1 :¼ n:
We prepare the proof by the following lemma:

Lemma 15. Let bj 6 kþ 1 < bj�1, kP 0, 2 6 j 6 tðnÞ þ 1. Then there holds:

(i) Every element in the quotient FðnÞ=FkðnÞ has order less than or equal to aj.
(ii) The polyfunction represented by xkþ1 has the order aj in FðnÞ=FkðnÞ:

Proof of the Lemma.

(i) We have, that in FðnÞ=FkðnÞ
ajx

kþ1 ¼ ajx
bj xkþ1�bj ¼ bjðxÞ|ffl{zffl}

¼0 for all x2Zn

xkþ1�bj ¼ 0

since bj 6 kþ 1: Here, bj is a basic null-polynomial (see Section 2.2). Now, every f 2
FðnÞ=FkðnÞ contains xkþ1 as a factor and hence ordðf Þ 6 aj:

(ii) Suppose axkþ1 ¼ 0 in FðnÞ=FkðnÞ for some a in Zn: Then, by Theorem 5,
aðkþ 1Þ! � 0 mod n: Hence, a is a multiple of

n
ðn, ðkþ 1Þ!Þ >

n
ðn, bj�1!Þ

¼ aj�1

since kþ 1 < bj�1: Thus we have
n

ðn, ðkþ 1Þ!Þ P aj

(see Remark 7) and hence a 62 f1, 2, :::, aj � 1g: w

Now, Theorem 14 follows from Lemma 15 by iteration: First, we observe that 1 2 FðnÞ has
the (maximal) order n ¼ atðnÞþ1: Thus

FðnÞ ffi Zn � FðnÞ=F0ðnÞ
since finite Abelian groups split off a maximal cyclic subgroup. Now, we proceed iteratively
and split in each step

FðnÞ=FkðnÞ ffi Zaj � FðnÞ=Fkþ1ðnÞ
by using Lemma 15. The process stops as soon as kþ 1 ¼ sðnÞ, and by collecting the quo-
tients we obtain the claimed decomposition. w
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Example 16. We revisit Examples 6, 10, and 12 respectively in order to compute the decompos-
ition of F(90). With the notational conventions of Theorem 14 we have:

In a first step, we decompose

Fð90Þ ffi Z90 � Fð90Þ=F0ð90Þ:
If k¼ 0, we have b5 < kþ 1 < b4 and hence Fð90Þ=F0ð90Þ splits off a cyclic subgroup of order

a5 ¼ 90 and hence Fð90Þ=F0ð90Þ ffi Z90 � Fð90Þ=F1ð90Þ:
If k¼ 1, we have b4 6 kþ 1 < b3 and hence Fð90Þ=F1ð90Þ splits off a cyclic subgroup of order

a4 and hence Fð90Þ=F1ð90Þ ffi Z45 � Fð90Þ=F2ð90Þ:
If k¼ 2, 3, we have b3 6 kþ 1 < b2 so we might split off twice the subgroup Z15 and

hence Fð90Þ=F2ð90Þ ffi Z15 �Z15� Fð90Þ=F4ð90Þ:
Finally, if k¼ 4, it holds that b2 6 kþ 1 < b1 and we find Fð90Þ=F4ð90Þ ffi Z3 and the process

ends. This leads to the desired decomposition

Fð90Þ ffi Z3 � 2Z15 �Z45 � 2Z90

and we find again jFð90Þj ¼ 3 � 152 � 45 � 902 ¼ 246037500 in accordance with Examples 10
and 12.

Remark 17. Since it turns out that it is sufficient to know the structure of FðpmÞ for prime num-
bers p (see Section 2.3.1), observe that in this case, the decomposition described in Theorem 14
takes a particularly simple form (see Remark 13, item (iii)).

3.2. The ring of polyfunctions

In this section, we use the shorthand notation G(n) for GðZnÞ, i.e. the ring of polyfunctions over
Zn: We recall that GðmnÞ ffi GðmÞ�GðnÞ if ðm, nÞ ¼ 1, and hence we may restrict ourselves to
investigate the structure of G(n) in the case n ¼ pm for p prime. Let Ip,m be the ideal of polyno-
mials in Zpm ½x� defined by

Ip,m ¼ ff 2 Zpm x½ � : f ðkpÞ ¼ 0 for all kg:
Then, we have the following decomposition:

Theorem 18.
(i) GðpmÞ ffi p Zpm ½x�=Ip,m:
(ii) Zpm ½x�=Ip,m is not decomposable.

Proof. We proceed in several steps:
Step 1: For j 2 f0, 1, :::, p� 1g let

RjðpmÞ :¼ ff 2 GðpmÞ : f ðkÞ ¼ 0 if k 6� j mod pg:
It is clear that RjðpmÞ is an ideal of GðpmÞ and that RiðpmÞ \ RjðpmÞ ¼ f0g if i 6¼ j:

Step 2: We show that GðpmÞ ffi a
p�1

j¼0
RjðpmÞ:

To see this, we define

e0ðxÞ :¼ 1� xmuðpmÞ,

j 1 2 3 4 5

aj 1 3 15 45 90

bj 6 5 3 2 0
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where u denotes Euler’s u-function. Then we have

e0ðkÞ � 0 if k 6� 0 mod p
1 if k � 0 mod p

mod pm:

�
Moreover, for ejðxÞ :¼ e0ðx� jÞ, we have similarly

ejðkÞ � 0 if k 6� j mod p
1 if k � j mod p

mod pm:

�
Hence, for f 2 GðpmÞ, we have f ej 2 RjðpmÞ and

f ¼
Xp�1

j¼0

f ej:

Then,

U0 : GðpmÞ ! a
p�1

j¼0
RjðpmÞ, f 7! ðf e0, f e1, :::, f ep�1Þ

is a ring isomorphism (the ring operationsþ and � are, as usual, defined componentwise).
Step 3: We show that RjðpmÞ ffi R0ðpmÞ for j 2 f0, 1, :::, p� 1g:

The map

U1 : R0ðpmÞ ! RjðpmÞ, f 7! g,

where gðxÞ :¼ f ðx� jÞ, x 2 Zpm is a ring isomorphism. Hence, according to the second step, we
have that

GðpmÞ ffi pR0ðpmÞ:
Step 4: We show that R0ðpmÞ ffi Zpm ½x�=Ip,m:
To see this, we consider the map

U2 : Zpm x½ � ! R0ðpmÞ, f 7! f e0:

U2 is a surjective ring homomorphism. If f 2 kerðU2Þ, then U2ðf ÞðkÞ ¼ 0 for all k 2 Zpm and
hence f ðjpÞe0ðjpÞ ¼ f ðjpÞ ¼ 0 for all j. This implies that f 2 Ip,m: Arguing in the opposite direc-
tion, we conclude that f 2 Ip,m implies that f 2 kerðU2Þ:

Now, (i) follows from the third and the fourth step and it remains to prove (ii). This is done
in the last step:
Step 5: We show, that R0ðpmÞ is not decomposable:

Let f 2 R0ðpmÞ be such that f 2 ¼ f : In particular, this means f 2ðjpÞ ¼ f ðjpÞ for all j. Hence,
f ðjpÞ 2 f0, 1g for all j. Observe, that

f ðjpÞ � f ð0Þ mod p

and hence

f ðkÞ ¼ 0 for all k 2 Zpm

or

f ðkÞ ¼ 0 if k 6� 0 mod p,
1 if k � 0 mod p:

�
It follows that only two elements f 2 R0ðpmÞ with the property f 2 ¼ f exist. In a decomposable
ring there are at least four elements with f 2 ¼ f : This completes the proof. w
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We now want to investigate the structure of the ideal Ip,m in more detail. First, for m 2 N
and a prime number p, we define

s�ðpmÞ :¼ minfx 2 N : pmjpxx!g:
Then, for r 2 f1, 2, :::, s�ðpmÞ � 1g let

e�ðrÞ :¼ maxfx 2 N : pxjprr!g
and

e�ðs�ðpmÞÞ :¼ m:

Remark 19. s� is connected with the Smarandache function by

p s�ðpmÞ ¼ sðpmÞ:
Let us assume, that f 2 Ip,m :

f ðxÞ ¼ a1xþ a2x
2 þ � � � þ arx

r:

Then, f ðjpÞ � 0 mod pm for all j and hence, the polynomial

gðxÞ :¼ a1pxþ a2p
2x2 þ � � � þ arp

rxr

is a null-polynomial over Zpm : Hence, it follows from Theorem 5 that

akp
kr! � 0 mod pm

for all k 2 f1, 2, :::, rg: From, this congruence, we immediately obtain the following conclusion.

Proposition 20.
(i) If f 2 Ip,m is normed, then degðf ÞP s�ðpmÞ:
(ii) If f 2 Ip,m, f ðxÞ ¼ a1xþ a2x2 þ � � � þ arxr, with r 6 s�ðpmÞ, then

pm�e�ðrÞþr�kjak
holds for all k 2 f1, 2, :::, rg:

Now, the polynomials in Ip,m can be decomposed similarly as the null-polynomials (see
Section 2.2 and (6)). The basic polynomials are in this case

b�kðxÞ :¼ pm�e�ðkÞYk
j¼1

ðxþ jpÞ

for k 2 f1, 2, :::, s�ðpmÞg: In fact, we have:

Lemma 21. b�k 2 Ip,m for all k 2 f1, 2, :::, s�ðpmÞg:

Proof. We have

b�kðipÞ ¼ pm�e�ðkÞYk
j¼1

ðipþ jpÞ

¼ pm�e�ðkÞpk
iþ k

k

 !
k!

(9)

The right-hand side of (9) is congruent 0 modulo pm for all j as is easily seen by treating separ-
ately the cases k < s�ðpmÞ and k ¼ s�ðpmÞ: w
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3.3. The units in GðZnÞ
The previous results on the algebraic structure of the ring of polyfunctions over Zn allow now to
answer more specific questions. As an example, we consider the multiplicative subgroup Un of
units in GðZnÞ and ask for the size of U3k :

For this, we consider the set Q of polynomials in Z3k ½x� with degree strictly less than sð3kÞ ¼:

r þ 1: A polynomial q 2 Q, qðxÞ ¼ a0 þ a1xþ a2x2 þ � � � þ arxr with ai 2 Z3k , represents accord-
ing to [9, Proposition 3, p. 5] an invertible polyfunction (i.e. a unit in GðZ3kÞ) if and only if its
image is contained in the multiplicative subgroup of units in Z3k , that is

qðiÞ 6� 0 mod 3 for i ¼ 0, 1, 2: (10)

(Observe that qðxþ 3jÞ � qðxÞ mod 3 for all integers x and j.) Let

R1 :¼
Xr
i odd
i¼1

ai

and

R2 :¼
Xr
i even
i¼2

ai:

Then, we can rewrite (10) in the form

a0 6� 0 mod 3
a0 þ R1 þ R2 6� 0 mod 3
a0 þ R1 þ 2R2 6� 0 mod 3

9=
; (11)

It is then easy to determine the total number X of solutions ða0, a1, :::, arÞ 2 Zrþ1
3k of (11):

X ¼ 8 � 3kðrþ1Þ�3:

Now, two polynomials in Q represent the same unit in GðZ3kÞ if and only if their difference is a
null-polynomial of degree strictly less than sð3kÞ: The number Y of such null-polynomials is
according to Proposition 11 given by

Y ¼ 3ksð3
kÞ

Wð3kÞ :

Division of X by Y yields the following result:

Proposition 22.

jU3k j ¼
�
2
3

�3

Wð3kÞ ¼
�
2
3

�3

exp3

�Xk
i¼1

sð3iÞ
	
:

In other words, the fraction of units among all polyfunctions in GðZ3kÞ is 8
27, independently of k.

Proposition 22 gives a flavor of a more general result: In Section 4.2, we will determine the
number of units in the ring GdðZpmÞ of multivariate polyfunctions.

4. Polyfunctions in several variables

In order to keep the formulas short, we use the following multi-index notation: For k ¼
ðk1, k2, :::, kdÞ 2 Nd

0 and x :¼ ðx1, x2, :::, xdÞ 2 Nd
0 let
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xk :¼
Yd
i¼1

xkii , k! :¼
Yd
i¼1

ki!, jkj :¼
Xd
i¼1

ki, and
x
k

� �
:¼
Yd
i¼1

xi
ki

� �
:

Recall that

GdðRÞ ¼ ff : Rd ! R j 9p 2 R x1, x2, :::, xd½ � 8x 2 Rj ) pðxÞ ¼ f ðxÞg,
equipped with pointwise addition and multiplication denotes the ring of polyfunctions in d varia-
bles, whenever R is a commutative ring with unit element.

An alternative (but equivalent) construction is to define GdðRÞ recursively as the ring of poly-
functions in one variable from R to Gd�1ðRÞ by

GdðRÞ ¼ ff : R ! Gd�1ðRÞ j 9p 2 Gd�1ðRÞ x½ � 8x 2 R ) pðxÞ ¼ f ðxÞg:

4.1. The number of multivariate polyfunctions on Zn

We recall a few facts and definitions from [9] in order to count the number of polyfunctions on
Zn in d variables, and again it is enough to find a formula for n ¼ pm since we have the natural
decomposition GdðZabÞ ffi GdðZaÞ�GdðZbÞ if ða, bÞ ¼ 1: We define the set

SdðnÞ :¼ fk 2 Nd
0 : n-k!g (12)

and let sdðnÞ :¼ jSdðnÞj be the generalization of the Smarandache function introduced in [9]. As
for the case of one variable we define

epðkÞ :¼ maxfx 2 N0 : pxjk!g:

Definition 23. Let a be an element of Zn: We say, the polynomial axk 2 Zn½x� is reducible
(modulo n) if a polynomial pðxÞ 2 Zn½x� exists with degðpÞ < jkj such that axk � pðxÞ mod n for

all x 2 Zd
n: Moreover, we say that axk is weakly reducible if axk � pðxÞ mod n for all x 2 Zd

n,
where p 2 Zn½x� is such that degðpÞ6 jkj (instead of degðpÞ < jkj) and such that xk (or a multiple
of it) does not appear as a monomial in p.

We will need the following lemma (see also [9, Lemma 4, p. 6]) which characterizes tuples k
for which axk is (weakly) reducible in Zn½x�:
Lemma 24.
(i) If axk is weakly reducible modulo n, then njak!:
(ii) If njak!, then axk is reducible modulo n.

Proof.
(i) We assume, that pðxÞ reduces axk weakly. Hence, qðxÞ :¼ axk � pðxÞ is a null-polynomial in
d variables over Zn: Let us define the following “integral” for functions f : Zn ! Zn :ðm

0
f ðxÞdlðxÞ :¼

Xm
j¼0

ð�1Þm�j m
j

� �
f ðjÞ:

Now, we write q in the form

qðxÞ ¼
X
jlj6 jkj
l2Nd

0

qlx
l

for suitable coefficients ql 2 Zn, with qk ¼ a: Then, modulo n, we have
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0 ¼
ðkd
0

ðkd�1

0
:::

ðk1
0
qðxÞdlðx1Þ:::dlðxd�1ÞdlðxdÞ ¼

¼
X
jlj6 jkj
l2Nd

0

ql

ðkd
0

ðkd�1

0
:::

ðk1
0
xldlðx1Þ:::dlðxd�1ÞdlðxdÞ:

Observe that the only term which does not vanish in the above sum is

qk

ðkd
0

ðkd�1

0
:::

ðk1
0
xkdlðx1Þ:::dlðxd�1ÞdlðxdÞ ¼ ak!:

In fact all other terms vanish by (3), since jlj6 jkj and l 6¼ k implies that for some i 2 f0, 1, :::, dg we
have li < ki and therefore the integral with respect to xi gives zero. This completes the proof of (i).

(ii) We assume, that njak!: Then, the polynomial

qðxÞ :¼ a
Yd
i¼1

Yki
l¼1

ðxi þ lÞ ¼ ak!
Yd
i¼1

xi þ ki
ki

� �
¼ ak!

xþ k
k

� �

is a null-polynomial over Zn and the term of maximal degree is axk: Hence, qðxÞ � axk reduces
axk: w

As an immediate consequence, we have:

Corollary 25. A monomial xk is reducible modulo n if and only if it is weakly reducible.

Furthermore it is proved in [9, Proposition 5, p. 8] that every polyfunction f 2 GdðZpmÞ has a
unique representative of the form

f ðxÞ ¼
X

k 2 Nd
0

epðkÞ < m

akx
k,

where ak 2 f0, 1, :::, pm�epðkÞ � 1g: Notice, that epðkÞ < m if and only if k 2 SdðpmÞ and hence this
representative can be written as

f ðxÞ ¼
X

k2SdðpmÞ
akx

k: (13)

In the case of one variable, what the Smarandache function really does is counting the number
of monomials xk, k 2 N0, which are not reducible. Using the unique representative of a poly-

function above we can count the number of monomials xk, k 2 Nd
0, which are not reducible

and hence to find a formula for WdðnÞ which counts the number of polyfunctions in GdðZnÞ:
In view of (13), we have for every coefficient ak exactly pm�epðkÞ choices and therefore
we obtain:

Proposition 26. The number of polyfunctions in GdðZpmÞ is given by

WdðpmÞ ¼
Y

epðkÞ<m
k2Nd

0

pm�epðkÞ: (14)
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On the other hand it is shown in [9, Theorem 6, p. 9] that

WdðpmÞ ¼ exp p

Xm
k¼1

sdðpkÞ
 !

: (15)

The equivalence of the two formulas (14) and (15) can be established by a similar induction
argument as in the proof of Proposition 11. However, it is much more instructive, to give a direct
algebraic argument: We consider the surjective homomorphism H of rings defined by

H : GdðZpmþ1Þ ! GdðZpmÞ, f 7!Hðf Þ :¼ h � f � h�: (16)

Here,

h : Zpmþ1 ! Zpm , x½ �pmþ1 7! x½ �pm ,
where ½x�n denotes the coset of x 2 Z modulo n. Similarly,

h� : Zd
pm ! Zd

pmþ1 , x½ �pm 7! x½ �pmþ1

where ½x�pm ¼ ½ðx1, :::xdÞ�pm :¼ ð½x1�pm , :::, ½xd�pmÞ for 06 xi < pm: Then,

Wdðpmþ1Þ ¼ jGdðZpmþ1Þj ¼ jGdðZpmÞjjkerHj
and the equivalence of (14) and (15) is proved if we can show that

jkerHj ¼ psdðp
mþ1Þ: (17)

In view of (13), every polyfunction f 2 GdðZpmþ1Þ has a unique representation

f ðxÞ ¼
X

k2Sdðpmþ1Þ
akx

k,

where ak 2 f0, 1, :::, pmþ1�epðkÞ � 1g: Since every number in this set can be written in a unique
way as

ak ¼
X

fi6mþ1:k2SdðpiÞg
pmþ1�iaki,

where aki 2 Zp, all coefficients can be described as ipmþ1�epðkÞ, k 2 Sdðpmþ1Þ and i ¼ 0, 1, :::, p� 1
(see also [9, Proposition 5, p. 8]).

Observe, that f 2 kerH if and only if f ðxÞ � 0 mod pm, i.e. exactly if pf vanishes as a func-

tion Zd
pmþ1 ! Zpmþ1 :

Now, for each k 2 Sdðpmþ1Þ and every ai :¼ ipm�epðkÞ, i ¼ 0, 1, :::, p� 1, the monomial aipxk is
reducible modulo pmþ1 by Lemma 24 since pmþ1jaipk!: This implies that pmjaik! and hence the
monomial aixk is reducible modulo pm, i.e. there exists a polynomial qi, kðxÞ of degree strictly less
than jkj which agrees modulo pm with aixk: Thus, aixk � qi, kðxÞ represent polyfunctions in kerH:
By the considerations above, every f 2 kerH has therefore a unique representation of the form

f ðxÞ ¼
X

k2Sdðpmþ1Þ
aix

k � qi, kðxÞ, i 2 f0, 1, :::, p� 1g

and hence jkerHj ¼ pjSdðp
mþ1Þj ¼ psdðp

mþ1Þ, as claimed. w

4.2. The number of units in GdðZpmÞ
We end this discussion by coming back to the question of units in the ring of polyfunctions (see
Proposition 22). We denote by Ud

pm the multiplicative subgroup of units in GdðZpmÞ and continue
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to use the notation WdðpmÞ ¼ jGdðZpmÞj: We refer here to the formula WdðpmÞ ¼
exp pð

Pm
k¼1 sdðpkÞÞ from Proposition 26, where sdðpkÞ is defined in (12). Then the following prop-

osition holds

Proposition 27.

jUd
pm j ¼

p� 1
p

� �dp

WdðpmÞ:

Proof. Using [9, Proposition 3, p. 5], we know that the elements in Ud
pm are precisely the unit-val-

ued polyfunctions in GdðZpmÞ: Note that every function Zd
p ! Z is a polyfunction hence

jGdðZpÞj ¼ pdp and since there are p – 1 units in Zp, we have

jUd
p j ¼ ðp� 1Þdp:

We use again the map

H : GdðZpmþ1Þ ! GdðZpmÞ, f 7!Hðf Þ ¼ h � f � h�

as defined after (16). Now

f 2 Ud
pmþ1 () Hðf Þ 2 Ud

pm :

Indeed, f 2 Upmþ1 if and only if f � h� is unit valued with values in Zpmþ1 if and only if ððf �
h�ÞðxÞ, pmþ1Þ ¼ 1 if and only if ðHðf ÞðxÞ, pmþ1Þ ¼ 1 if and only if ðHðf ÞðxÞ, pmÞ ¼ 1 (see also [2,
Remark 12.1, Lemmas 7 and 8]). We conclude that

jUd
pmþ1 j ¼ jkerHjjUd

pm j

and it follows from the proof of Proposition 26 that jkerHj ¼ psdðp
mþ1Þ: So, inductively

jUd
pm j ¼

Ym
i¼2

psdðp
iÞ Ud

p j





and since jUd
p j ¼ ðp� 1Þdp we find using the formula for WdðpmÞ of Proposition 26

jUd
pm j ¼ ðp� 1Þdp expp

Xm
i¼2

sdðpiÞ
 !

¼ p� 1
p

� �dp

WdðpmÞ:
w
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