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Given two sets of configurations S and T (defined by some geometric or algebraic rules)
with weightfunctions ®wg: S —IN and w7: T — IN respectively. Suppose S and T are
equipotent, i.e. |w§](n)l = Iw}l(n)l for all n e IN, then we may ask for a weight-preserving
“canonical isomorphism” between S and T. We consider different Catalan families as a model
in order to study this question: we investigate how a concrete isomorphism at the com-
binatorial level may be constructed and how it generates an isomorphism at the level of
species.

1 Introduction

Many examples of Catalan families are known and one can find them in almost every
classical work on combinatorics (see e.g. [1], [4], [11] or [12]). But here we are interested
in a closed description of the relations between those families. It is the aim of this article
to clear up these relations in a systematic way and to interpret the result in the language
of species (see Theorem 2, Section 4 and Section 6). The reader who is familiar with the
examples of the Catalan families may skip the first one or two sections.

The sequence (Cp)nem of the Catalan numbers is defined by

1 2n
(1) C"::n+1<n>'

We will see later that the recursion formula

(2) Cas1 = CiCrny
k=0

holds and that the generating series f(z):= i Cpa™ formally satisfies the relation
n=0

3) 2 f(z)! = f(z)+1=0.
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130 THE ISOMORPHISM PROBLEM FOR CATALAN FAMILIES

Let M be a countable set of configurations with weightfunction w : M — IN and generating

series .
'l?) — Z Iw(d’) o Z |Mn]‘1.n

PEM n=0
(where M, is the set of all figures of M having weight n), then we call M a Catalan family
provided |M,| = C, holds.

Now we give some examples of Catalan families (of course, the list is far from being
complete).

1.1 Euler triangulation: The first example of a Catalan family was given by Leonhard
Euler. In 1751 he described the following problem in a letter to Goldbach:

A convex polygon of n + 2 edges may be triangulated by n — 1 nonintersecting diagonals.
Let M, be the set of those triangulations. Euler proved the formulas ( )—(3) and wrote
to Goldbach: “Die Induktion, so ich gebraucht, war ziemlich miithsam...

DO

Figure 1: Euler triangulation M,

1.2 Bracket figures: In 1838 Charles Catalan posed the following problem:

In bow many ways one can bracket a term of n + 1 variables? Let us denote those
bracketings by M,. Then M; looks like that:

My = {(z*(x*(l*m))), ((z+z)*(axz)), (((I*l)*l)*l‘), ((z*(a:*x))*a:), (E*((I*JI)*.I))}

13 Free bracket figures: A variation of the previous problem is the following: How
mahy syntactic bracketings one can build with n pairs of brackets? This is also a Catalan
family and M; is

My = {000, ()0, O, (OO}

1.4 Trivalent plane rooted trees: A trivalent plane rooted tree is a circlefree con-
nected graph which is embedded in the plane and whose vertices have degree 1 or 3. One
of the vertices of degree 1 is marked as root 7. Let M, be the set of trivalent plane rooted
trees with n 4 1 leaves. In Figure 2 the set M3 is shown.

VY

Figure 2: Trivalent plane rooted trees M,

1.5 Catalan trees: Let M, be the set of planted trees (i.e. trees with a root of degree
1) in the plane with n + 1 edges. This is a Catalan family. Figure 3 shows Mj:
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ViTyy

Figure 3: Plane planted trees M3

1.6 Lattice paths: Consider the set of all paths in a lattice connecting (0, 0) and (n,7)
such that the coordinate functions are nondecreasing and no point (z,y) with z < y is
visited. Let us denote this set by M, . See Figure 4.

S— —— SN ——

Figure 4: Lattice paths M;

2 Definitions

Before we show that the configurations presented in the previous section are Catalan
families and how they are related to each other, we give here the necessary definitions to
make a structural approach to the problem (as a general reference for this concept see
e.g. [3] and [2]).

Definition 1 Let (M, ),emw be a sequence of sets such that:

Cl) A/{O =]
b) For every n € IN there is a bijective map

ot s Mugr = | My X M,
1=0
where U denotes the disjoint union. Let M := UpewM,, and M* := M \ M,. We call the
decomposition [ : M* — M x M with f|M, = f, Catalan mapping and the pair (M, f)
special Catalan family.
A map h : M — N between two special Catalan families (M, f) and (N,g) is called
Catalan isomorphism if h(My) = Ny and if the following diagram commutes:

M* _h.) N*
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132 THE ISOMORPHISM PROBLEM FOR CATALAN FAMILIES

Remark 1: Of course, every special Catalan family in fact is a Catalan family: to verify
that |M,| = C, observe that a Catalan mapping induces a bijection: M — M; x M X
M U M. Since the weight n is additive we may apply Polya’s theorem (see [5]) to get
equation (3) in Section 1 for the generating function f(z). This is a quadratic equation in
the ring of formal power series IR[z] with solution

1 1/2
J@)= 5= (12 (1-42)) .
Expansion in a binomial series leads to
21‘ nelN 2 nelN n+ 1 nelN

Note that only the positive sign respects |My| = 1.

Obviously we have | M, 1] = > 1o [M;| | M, _;|, and hence also the recursion formula (2) is
established. d

Theorem 2 Let (M, f) and (N, g) be special Catalan families. Then there exists a unique
Catalan isomorphism h: M — N.

Proof: We define hy : My — Nj recursively.
ho : mg +— ng where My = {mqo} and Ny = {n,}
he :m +—n where fy(m)= (z,y) € M; X My_i_1, n = g5 *(hi(z), hr—i-1(y))-

Then h : M — N with h|M; = hy is a Catalan isomorphism. The proof of the uniqueness
is similar. O

Remark 2:

(i) Up to isomorphism there exists exactly one special Catalan family.

(ii) If we find on an arbitrarily defined family { K, },em of sets a Catalan mapping, then
it is a Catalan family by Remark 1.

(iii) If we find a Catalan mapping on a Catalan family, the proof of Theorem 2 gives us
an isomorphism to any other special Catalan family.

(iv) If we find a bijective mapping h : M — N of a special Catalan family (M, f) to an
arbitrary family N, then g := (h X h)o foh~! is a Catalan mapping on N which
makes NV to a special Catalan family and the diagram in Definition | commutes.

3 Examples of Catalan mappings

We apply Remark 2(ii) to show that Examples 1.1 to 1.6 are in fact Catalan families. In
each Example we have to show the existence of a Catalan mapping.

3.1 Euler triangulation: Let m € M, be a triangulated convex polygon of n + 2
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edges. We may think of one side to be marked. This side is the side of a triangle which
decomposes the polygon into two convex polygons m; on the left and m, on the right
(“left” and “right” with respect to a given orientation). We choose the two sides touching
the triangle as the marked sides of the two new polygons (see Figure 5). It is easy to verify
that this decomposition is a Catalan mapping.

Figure 5: Decomposition of an Euler triangulation

3.2 Bracket figures: Let m € M, be a bracket figure. Then there exist bracket figures
my and my with m = (my *x m;) and m — (m,, m;) defines a Catalan Mapping.

Example: m = (z* (m*(z*z))) — my =z, my = (z*(z+2)).

3.3 Free bracket figures: Let m € M, be a free bracket figure. Then there exist free
bracket figures m; and m; with m = (my)m,. It is easy to see, that m ~— (my,m,) defines
a Catalan mapping.

Example: m = ((()(O0)XO0) = m1 = (O(00)), m2 = (00)-

3.4 Trivalent plane rooted trees: Let m be a trivalent plane tree with root . We
take the vertex s next to r as the root of the two trivalent plane subtrees with root s—the
left one as my, the right one as m, (right means here the first branch that we meet walking
anticlockwise round s starting in ). This decomposition is a Catalan mapping.

m m;
?;—e %

Figure 6: Decomposition of a trivalent plane rooted tree

my

3.5 Catalan trees: Let m be a Catalan tree with root 7 and s the vertex next to 7.
We take the most left branch starting in s as subtree m; with root s. If we denote the
rest of m by m,, we get a Catalan mapping m — (mq, m2). See Figure 7.

FASY:

Figure 7: Decomposition of a Catalan tree
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134 THE ISOMORPHISM PROBLEM FOR CATALAN FAMILIES

3.6 Lattice paths: Let m be a path as described in Section 1.6. Starting in the origin
we go the first point (p,p) of the path lying on the diagonal. We denote the path from
(1,0) to (p,p — 1) by my and the path from {p,p) to (n,n) by ms. This decomposition
defines a Catalan mapping. See Figure 8.

[ 17 Jw \ i R
i ﬁZJE! i .i [ l - - Al
] 4 > bl | Bl
. , 1 ‘
T i T

- R 1, (I ITTTT
m m, m,

Figure 8: Decomposition of a lattice path

4 Catalan Isomorphisms

Now we regard the examples given above as special Catalan families. By Theorem 2 we
can find isomorphisms between them by considering corresponding decompositions. It
will turn out that all these isomorphisms, although they are given recursively, admit a
nonrecursive interpretation. Variants of most of the following isomorphisms (but not their
derivation) may be found in the previously mentioned literature.

4.1 Free bracket figures versus plane Catalan trees: Let m = (a)b, a and b be
free bracket figures. The Catalan decomposition is m = (a)b — m; = a, my = b. The
corresponding Catalan tree has according to Theorem 2 the corresponding decomposition
(see Figure 9). The subtrees A with root r and B with root s correspond to a and b

(a)h ~-—> Q
©O)
®

Figure 9: Corresponding decomposition of a free bracket figure and a Catalan tree

respectively. Hence we may describe the isomorphism like this: Every edge corresponds
to a pair of brackets which contains.the bracket figure that corresponds to the part of the

tree which continues the edge. Hence, we can “read” the bracket figure as the thin line in
Figure 10 indicates:

(0000

Figure 10: Isomorphism between free bracket figures and Catalan trees
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4.2 Trivalent plane rooted trees versus Catalan trees: Let ¢ be a trivalent rooted
tree. The corresponding Catalan tree T has the corresponding decomposition: See Fig-
ure 11. The subtrees a with root v and b with root v correspond to the subtrees A with

‘) A
RO NP Ve
@

Figure 11: Corresponding decomposition of a trivalent plane tree and a Catalan tree

root s and B with root r respectively. Now it is easy to see how we get from ¢ to T: We
contract the dashed edge in ¢ and continue in the same way in the subtrees. Thus we
may describe the isomorphism like this: First we bring the trivalent rooted plane tree in a
special position: all edges run from left to right or from bottom to top. Then we contract
the horizontal edges (See Figure 12).

Rt

Figure 12: Isomorphism between trivalent plane trees and Catalan trees

Now we leave it to the reader to carry out explicitly the construetion of the following
isomorphisms and only give some of the results:

4.3 Lattice paths versus bracket figures: Consider a lattice path as in Section 1.6.
For every horizontal step write “(” and for every vertical step write “+”. Then the missing
“)” and the variables are easily completed.

4.4 Bracket figures versus free bracket figures: Consider a bracket figure as in
Section 1.2. Remove all variables and write ©)” for every “+” to get the corresponding free
bracket figure.

4.5 Bracket figures versus Euler triangulation: Figure 13 should make clear this
isomorphism.

(((ax (b)) d)* ((exf)xg)) <a— b f

a 8

Figure 13: Isomorphism between bracket figures and Euler triangulation
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136 THE ISOMORPHISM PROBLEM FOR CATALAN FAMILIES

4.6 Trivalent trees versus Euler triangulation: This isomorphism is also used in
order to formulate the problem of coloring a map in the language of graph theory. See
Figure 14.

?

AN

g

Figure 14: Isomorphism between trivalent plane rooted trees and Euler triangulation

Remark 3: This last isomorphism may be used to count the number of trivalent plane
trees (no more rooted) with n + 2 leaves: We have to count the Euler triangulations of
a regular polygon modulo the dihedral group. Burnside’s Lemma leads to the following

formula for n even

, 1l . 3n+6 2n+ 4
Kl = 573 (Cn +—=5—Cy+ = C_)
and for n odd ) o s
T n
Kal = 575 <Cn+(n+2)CE + cn_s__) .

where we used the convention C, := 0 for n ¢ IN.

Remark 4: The same methods as for Catalan families apply to find isomorphisms for
other combinatorial families, e.g. the generalized Catalan families described in [4].

5 Algorithmic remarks

In this section we adapt some ideas of [7] and [10] to define a ranking on special Catalan
families and show the connection to the isomorphism problem.

Theorem 3 For every special‘ Catalan family (M, f) there exists a unique total order on
M (usually called a ranking) compatible to f in the following sense: For x € M,, y € M,
with f(z) = (z1,2,) € M; X M; and f(y) = (y1,y2) € My X M,, there holds

u<vor

T <y <= uw="v and z, <y, or
u=uvandzy, =y, and T, < Y,

Proof: On M, we have the trivial total order relation. Let < be defined on M;, 0 < i < n,
and z,y € Mpy1, f(z) = (21,22), f(¥) = (¥1,%2). Then

Jr. Comb., Inf. & Syst. Sci.
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Tq < Yy or

Ty {xlzyland:pz<y2

extends < to M,;. We complete the construction by y < z for 2 € My, y € M; with
¢ < n. The uniqueness is evident. O

Definition 4 The above total order relation on M is called Catalan relation.

The following algorithm produces a list of My, ..., M, ordered by the Catalan relation:

begin
produce(my)
fori=1ton do
fork=0toi—1do
begin
p=n—-1-k
for my € My, do
' for my € M, do produce( f~*(my, my))
end
end

Note that two lists. produced by the above algorithm for two different Catalan families
represent the Catalan isomorphism between those two families: element n of the first list
corresponds to element n of the second list. As an example we give the listings of the free
bracket figures and the bracket figures:

M, @ T

M, (z*z)
((z*xz)*z)

Mj (z (2 *(z*a)))

0

) (zx((z*2)xz))
() ((zx2)*(z*2))
) ((ex(zx2))*x)
) (((zx2)xz)*z)

6 Catalan families as species

A species is a functor from the category C of finite sets and bijections into the category
D of finite sets and functions (see [6], [9] or [8]). Two species A, B are called isomorphic
(written A ~ B) if there exists a natural isomorphism % between the functors A4 and B,
i.e. for all objects U in C there exists a bijection ¢y : A[U] — B[U] such that for every
morphism f: U — V in C the following diagram commutes:

AU] 2 A
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138 THE ISOMORPHISM PROBLEM FOR CATALAN FAMILIES

Sometimes it is convenient to identify the finite sets and bijections of C as the sets
{1,...,n} and the permutations.

Now, e.g. Catalan trees may be interpreted as the species of L-enriched rooted trees (L
the species of linear orders) as described in [6] modulo the permutation group S, on
the vertices. But then the image of a permutation on the vertices under the action of
the functor maps each equivalence class with respect to 5, onto itself and is hence just
the identity. Since all equipotent species which map the morphisms of C to the identity
are trivially isomorphic with respect to every bijection 1, we certainly need a refined
interpretation of Catalan families as species. The idea is to use the notion of linear species
which we obtain by replacing in the above definition C by the category £ of linearly
ordered finite sets with bijections (see [6]) and sometimes it is also convenient to consider
subcategories of L.

Let us first define the (linear) species T" of trivalent rooted trees: For the finite set U, =
{1,...,2n} (with its natural linear order) we define T'[U/,] to be the set of trivalent rooted
trees with n + 2 leaves as described in Section 1.4. As morphisms we take the group of
permutations of U, generated by the transpositions 7, exchanging element 2k — 1 and 2k
(k =1,...,n). The image of 7, under the action of the functor 7" is defined as follows:
T[] horizontally flips every subtree starting in a vertex of level k (see Figure 15).

7. level
R SR SR, 5. S W
S.level

........................ 4. level
3. level

2. level

1. level

—

Figure 15: The action of T'[74] on a tree in T[Us]

Now we define the (linear) species B of bracket figures: For the finite set U, = {1,...,2n}
(with its natural linear order) we define B[U,] to be the set of bracket figures with n 4 1
variables as described in Section 1.2. Again, we take as morphisms the group of permu-
tations of U, generated by the transpositions 7. The image of 7, under the action of the
functor B is defined as follows: B[t,] flips every subfigure at bracket-depth & as indicated
in the example below.

Example: The action of B[r,] on a bracket figure in B[Us]

(((z(zz))z)2)(z((z(z(22)))2))) — ((z2)z)2)z)(«((((22)Z)z)2)))

—_—

It is now easy to verify that the so defined species of trivalent rooted trees and bracket
figures are isomorphic (as species) and the isomorphism is just the one given in Section 4.
Moreover one can check that 7'~ X -7 -T 4 1 in the sense of species (and analogously for
B) where X is the species of singletons and 1 is the species of the empty set (for this and
the definition of the operations “-” and “+” on linear species see [6]). This leads again to

the formulas (1)—(3).
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