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Abstract. Let Σ be a codimension one submanifold of an n-dimensional
Riemannian manifold M , n � 2. We give a necessary condition for an
isometric immersion of Σ into R

q equipped with the standard Euclidean
metric, q � n+1, to be locally isometrically C1-extendable to M . Even if
this condition is not met, “one-sided” isometric C1-extensions may exist
and turn out to satisfy a C0-dense parametric h-principle in the sense of
Gromov.
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1. Introduction

Let (M, g) be an n-dimensional (n � 2) Riemannian manifold. Unless other-
wise stated, all manifolds and metrics are assumed to be smooth. An isometric
immersion is a map u : M → R

q satisfying

g = u∗g0, (1)

where g0 = 〈·, ·〉 denotes the Euclidean metric. If u is in addition a home-
omorphism onto its image, we call u an isometric embedding. Recall that u
is called short, provided the equality in (1) is replaced by > in the sense of
quadratic forms, i.e. if g − u∗g0 is positive definite. Since g is symmetric, the
above system consists of sn = n(n + 1)/2 equations and q unknowns. Usually,
sn is referred to as the Janet-dimension. For an analytic metric g, the Janet–
Burstin–Cartan Theorem (see [9,10,21]) gives the local existence of an analytic
solution to (1) in the formally determined case q = sn. In the smooth category,
the local existence of a smooth solution follows from the works by Nash, Gro-
mov, Rokhlin and Greene (see [14,15,29]) provided q = sn +n. In the formally
overdetermined case q = n+2, Nash proved in [28] a surprising local existence
result for C1-maps and showed that in this case every short immersion can be
uniformly approximated by C1-isometric immersions. His work was improved
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by Kuiper in [24,25] to the case q = n+1. The Nash–Kuiper theorem guaran-
tees for example the existence of an isometric C1-embedding of the flat torus
into R

3 of which a visualization appeared in [2,3]. A further refinement in the
codimension one case has been obtained by Conti, de Lellis and Székelyhidi in
[11], where the authors prove the same statement for C1,α-isometric immer-
sions provided α < 1

1+2sn
. The existence of weak solutions to (1) if q = n is

treated in [22].
There is an accompanying extension problem related to (1): Let Σ be

a hypersurface in (M, g) and let f : Σ → (Rq, g0) be a smooth isometric
immersion (embedding). When does f admit an extension to an isometric
immersion (embedding) v : U → R

q satisfying

v∗g0 = g

v|Σ = f,
(2)

where U ⊂ M is a neighborhood of a point in Σ? This question was first
considered by Jacobowitz in the case of high codimension and high regularity
in [20]. Jacobowitz derived a necessary condition on the second fundamental
forms of Σ in M and f(Σ) in R

q respectively for isometric C2-extensions
to exist and showed that this condition is “almost” sufficient to prove local
existence in the analytic and smooth categories requiring the same conditions
on the dimension (q = sn and q = sn + n) as in the respective local existence
Theorems above.

In the present work we will focus on the low regularity and low codimen-
sion case. Using a length comparison argument we will show that Jacobowitz’
obstruction to local isometric C2-extensions is also an obstruction to local iso-
metric C1-extendability. However, restricting the neighborhood U in (2) to one
side of Σ only, we will prove the existence of one-sided isometric C1-extensions
under very mild hypotheses on Σ and f , providing an analogue of the Nash–
Kuiper Theorem for isometric extensions. It turns out that the so obtained
isometric C1-extensions satisfy a C0-dense parametric h-principle in the sense
of Gromov.

1.1. Main Results

In local coordinates the problem (2) can be reformulated as follows: Equip
an open ball in R

n centered at zero with an appropriate metric g and let the
isometric immersion f : B → R

n+1 be prescribed on B which is the intersection
of the closure of the ball with R

n−1 × {0}. The intersections of the ball with
R

n−1 × R�0 and R
n−1 × R�0 are then called one-sided neighborhoods of B.

The image of a one-sided neighborhood of B under the inverse of a local chart
will be called also a one-sided neighborhood (of a point in Σ). In order to state
our main results, we need the following
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Definition 1. Let Ω be a one-sided neighborhood of B. A C∞-immersion u :
Ω̄ → R

n+1 is called a short map adapted to (f, g) whenever u|B = f and
g − u∗g0 � 0 in the sense of quadratic forms with equality on B only. By
taking the inverse of a local chart again, we get a notion of an adapted short
map on the manifold level.

We are now ready to state our main results:

Theorem 1 (C1-extensions). Let u : Ω̄ → R
n+1 be a short map adapted to

(f, g). Then for every ε > 0, there exists a C1-immersion v : Ω̄ → R
n+1

satisfying v∗g0 = g, v|B = f and ‖u − v‖C0(Ω̄) < ε. Moreover, the maps u and
v are homotopic within the space of short maps adapted to (f, g), and if u is
an embedding we can choose v to be an embedding as well.

As a Corollary of Theorem 1 we obtain the following statement about
isometric extensions of the standard inclusion ι : S1 ↪→ R

2 × {0} ⊂ R
3 to an

isometric immersion S2 → R
3 (here S1 is the equator of S2).

Corollary 1 (Flexible extensions on S2). There are infinitely many isometric
C1-embeddings v : S2 → R

3 satisfying v|S1 = ι.

Observe that this corollary is in sharp contrast to the following uniqueness
Theorem (see [4–8,11]):

Theorem 2 (Borisov). If α > 2
3 , the standard inclusion S2 ↪→ R

3 is the only
isometric C1,α-extension of ι to S2 up to reflection across the plane containing
ι(S1).

Remark 1. The threshold α between uniqueness and abundance of solutions
is still an open problem (see for instance [1], [11] and [31, p. 8, Problem 27]).
The proof of Theorem 2 relies on the conservation of a weak form of Gaussian
curvature for C1,α-immersions whenever α > 2/3 (see [11] and the discussion
in [12, p. 369]).

1.2. Organization of the Paper

In Sect. 2, we will present the obstruction to isometric C1-extendability
(Proposition 1) and the construction of adapted short maps (Proposition 2).
The construction of one-sided isometric C1-extensions is based on an iteration
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scheme called convex integration which is a generalization by Gromov [16] of
Nash’s original method used in [28]. The strategy consists in writing the metric
defect of an adapted short map as a sum of primitive metrics and add suc-
cessively error terms. This uses a Corrugation that is presented in Sect. 3. In
Sect. 4 we give the construction of one-sided isometric C1-extensions. These
extensions satisfy a C0-dense parametric h-principle. This is the content of
Sect. 5. In Sect. 6, we show how one can get an isometric extension that is
an embedding. Section 7 indicates how to obtain global results from the local
ones by a partition of unity argument. We will formulate all our results for
the codimension one case q = n + 1, but they can be carried on to higher
codimension as well (see Remark 3).

2. Obstructions and Adapted Short Maps

2.1. Obstructions

In this section, we will show that Jacobowitz’ necessary condition for the
existence of isometric C2-extensions is in fact an obstruction to isometric C1-
extensions. Recall that Σ is a hypersurface of an n-dimensional Riemannian
manifold (M, g) and f : Σ → R

n+1 is an isometric immersion we seek to extend
to a neighborhood U of a point in Σ.

Let A ∈ Γ(S2(T ∗Σ) ⊗ NΣ) denote the second fundamental form of Σ in
M , and

h(X,Y ) := g(ν,A(X,Y )),

where ν ∈ Γ(NΣ) is a unit vector field. Let further Ā ∈ Γ(S2(T ∗Σ) ⊗ f∗N Σ̄)
be the second fundamental form of Σ̄ := f(Σ) in R

q. In [20], Jacobowitz
shows that if u ∈ C2(U,Rq) solves (2), then there exists a unit vector field
ν̄ ∈ Γ(f∗N Σ̄) such that h(X,Y ) = 〈ν̄, Ā(X,Y )〉 for all vector fields X,Y ∈
Γ(T (Σ∩U)). In particular, |h(X,Y )|g � |Ā(X,Y )|. Hence we get as a corollary:

Corollary 2 (C2-obstruction). If there exists a unit vector v ∈ TpΣ such that

|h(v, v)|g > |Ā(v, v)|,
no isometric extension u ∈ C2(U,Rq) can exist.

In order to prove the obstruction to isometric C1-extendability, we need
the following lemma that seems to appear for the first time in [17,18, Theorem
5] but we will give a more modern proof:

Lemma 1. Let γ : [0, ε) → (M, g) be a unit speed C4-curve with γ(0) = p and
let kg denote the geodesic curvature of γ at p. Then the geodesic distance from
p to γ(t) satisfies

d(p, γ(t)) = t − k2
g

24
t3 + O(t4) for t → 0.
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Proof. In order to fix notation, the Levi-Civita connection of g is denoted by
∇ and we will invoke the Einstein summation convention (summation over
repeated indices). Pick geodesic normal coordinates centered at p (see e.g.
[23]). Then

d(p, γ(t)) =
∫ t

0

g (γ̇(s), ∂r(s)) ds,

where ∂r(s) := (d expp)γ̄(s)(γ̄(s) |γ̄(s)|−1
g ) is the radial vector field and γ̄(t) :=

exp−1
p (γ(t)). Using the Gauss-Lemma we find

d(p, γ(t)) =
∫ t

0

g(γ̇(s), ∂r(s)) ds

=
∫ t

0

g
(
(d expp)γ̄(s)( ˙̄γ(s)), (d expp)γ̄(s)

(
γ̄(s)

|γ̄(s)|g

))
ds

=
∫ t

0

g
(

˙̄γ(s), γ̄(s)
|γ̄(s)|g

)
ds

=
∫ t

0

d
ds

|γ̄(s)|g ds = |γ̄(t)|g.
Consider the expansion

γ̄(t) = ˙̄γ(0)t +
¨̄γ(0)
2!

t2 +
...
γ̄ (0)
3!

t3 + O(t4) for t → 0.

Fix the coordinates such that γ̇ = ˙̄γi∂i and such that in zero γ̇(0) = ∂1|t=0.
Since

(d expp)0 : T0(TpM) ∼= TpM → TpM

is the identity, we find ˙̄γ(0) = γ̇(0). Moreover since ∇γ̇ γ̇|t=0 = ∇∂1 γ̇|t=0 and

∇2
γ̇ γ̇
∣∣
t=0

= ∇2
∂1

γ̇
∣∣
t=0

, we compute ∇∂1
˙̄γi∂i = ¨̄γk∂k + ˙̄γiΓk

1i∂k and since the

Christoffel symbols vanish at p, we obtain

∇γ̇ γ̇|t=0 = ¨̄γ(0).

For the second covariant derivative we compute

∇2
∂1

γ̇ = ∇∂1(¨̄γ
k + ˙̄γiΓk

1i)∂k

= (
...
γ̄ k + ¨̄γiΓk

1i + ˙̄γi∂1Γk
1i)∂k + (¨̄γk + ˙̄γiΓk

1i)Γ
l
1k∂l.

Evaluating in zero gives

∇2
γ̇ γ̇
∣∣
t=0

=
...
γ̄ (0) + ˙̄γi∂1Γk

1i∂k

∣∣
t=0

Using the following identity that holds in normal coordinates (see [26, equation
(6)])

∂lΓi
jk(0) = −1

3
(
Ri

jkl(0) + Ri
kjl(0)

)
and γ̇(0) = ∂1|t=0, we obtain
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∇2
γ̇ γ̇
∣∣∣
t=0

=
...
γ̄ (0) + ∂1Γ

k
11∂k

∣∣∣
t=0

=
...
γ̄ (0) − 1

3

(
Rk

111(0) + Rk
111(0)

)
∂k|t=0 =

...
γ̄ (0),

where the last equality follows from the antisymmetry of the curvature tensor
in the last two slots. It follows that (for t → 0)

d(p, γ(t))2 = |γ̄(t)|2g = t2 +
1

2
g(∇γ̇ γ̇, γ̇)|t=0 t3 +

1

4
k2

gt4 +
1

3
g(γ̇, ∇2

γ̇ γ̇)
∣∣
t=0

t4 + O(t5)

and since γ is parametrized by arc length, g(∇γ̇ γ̇, γ̇)|t=0 = 0 and k2
g =

− g(γ̇,∇2
γ̇ γ̇)
∣∣
t=0

. This implies

d(p, γ(t))2 = t2 − k2
g

12
t4 + O(t5).

The desired result follows from applying
√

1 + x = 1 + 1
2x + O(x2) for x → 0.

�

Proposition 1 (C1-obstruction). If there exists a unit vector v ∈ TpΣ such that
|h(v, v)|g > |Ā(v, v)|, no isometric extension u ∈ C1(U,Rq) can exist.

Proof. We argue by contradiction. Suppose u exists and let γ : [0, ε) → Σ ∩ U
be a geodesic with γ(0) = p and γ̇(0) = v such that dM (p, γ(t)) is realized by a
minimizing geodesic σ : [0, 1] → U for all t ∈ [0, ε). Let p̄ = f(p) and γ̄ = f ◦γ.
Observe that

|u(σ(1)) − u(σ(0))| �
∫ 1

0

∣∣∣∣ d
dt

(u ◦ σ)(t)
∣∣∣∣ dt =

∫ 1

0

|σ̇(t)|g dt = dM (p, γ(t)),

hence dRq (p̄, γ̄(t)) � dM (p, γ(t)). Since we have kg(p) = (∇M
γ̇ γ̇)(0) =

(∇Σ
γ̇ γ̇)(0) + A(v, v), we find

dM (p, γ(t)) = t − |h(v, v)|2g
24

t3 + O(t4) for t → 0.

This together with an analogous computation of the geodesic curvature of γ̄
in p̄ gives

dRq (p̄, γ̄(t)) − dM (p, γ(t)) =
1
24
(|h(v, v)|2g − |Ā(v, v)|2) t3 + O(t4) for t → 0

contradicting dRq (p̄, γ̄(t)) � dM (p, γ(t)).
�

Observe that the foregoing proposition does not exclude the existence of
a C1-solution to (2) on a one-sided neighborhood of Σ (the part of U that
doesn’t contain the geodesic segment σ in M that relies p and γ(t)). However
such a “one-sided” isometric extension cannot be of class C2 since Corollary 2
is a pointwise statement and would apply to points in Σ.
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2.2. Short Maps

We now present a sufficient condition for the existence of adapted short maps.

Proposition 2. Let f : Σ → R
n+1 be an isometric immersion. Suppose there

exists a unit normal field ν̄ ∈ Γ(f∗N Σ̄) such that h(·, ·)−〈Ā(·, ·), ν̄〉 is positive
definite. Then around every p ∈ Σ, there exists a short map adapted to (f, g).
This adapted short map can be chosen to be an embedding.

Proof. Choose a submanifold chart around p ∈ Σ as in Definition 1 and let
ρ : B → Σ be a parametrization. Consider the maps

ψ : B × [0, ε] → M

(x, t) �→ expρ(x)(−tν(x))

u : B × [0, ε] → R
n+1

(x, t) �→ (f ◦ ρ)(x) − s(t)ν̄(x),

where s ∈ C∞(R�0,R) satisfies s(0) = 0, s′(0) = 1, s′′(0) < 0 and ν ∈ Γ(NΣ)
is the unit vector field such that 〈A(·, ·), ν〉 = h(·, ·). We claim that the map
u is a short map adapted to (f ◦ ψ,ψ∗g). It is clear from the definition, that
u|B = f ◦ ψ|B and we need to show that ψ∗g − u∗g0 � 0 with equality on
B only. We think of (M, g) as being smoothly and isometrically embedded in
some euclidean space (Nash Embedding Theorem [29]) to consider the Taylor
expansion of ψ around t = 0 (see e.g. [27]):

ψ(x, t) = ρ(x) − tν(x) +
1
2
Ã(ν(x), ν(x))t2 + O(t3),

where Ã is the second fundamental form of M with respect to that embedding.
A direct computation shows that

ψ∗g − u∗g0 =
((

2thij − 2s(t)〈Ā(∂i, ∂j), ν̄〉)
ij

0
0 1 − s′(t)2

)
+ O(t2).

This error is positive definite if and only if 2t(hij − 〈Ā(∂i, ∂j), ν̄〉) + O(t2)
is positive definite, which is the case for small t > 0 by assumption. The
statement regarding embeddings follows immediately from the compactness of
B× [0, ε], the fact that exp is a local diffeomorphism and an appropriate choice
of ε > 0.

�

Example 1 (Existence of adapted short maps despite the C1-obstruction). The
Euclidean metric of Rn in polar coordinates (r, ϕ2, . . . ϕn) reads

dr ⊗ dr + r2
n∑

i,j=2

gij dϕi ⊗ dϕj ,
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where the gij do not depend on r. We now equip R
n with a new metric

ĝ = dr ⊗ dr + Ψ(r)
n∑

i,j=2

gij dϕi ⊗ dϕj ,

where Ψ is a smooth real valued function satisfying Ψ(1) = 1 and Ψ′(1) > 2.
The map f : Sn−1 ↪→ R

n × {0} ⊂ R
n+1 is an isometric embedding of Sn−1 ⊂

(Rn, ĝ) into (Rn+1, g0). Let ∂i := ∂ϕi
for i ∈ {2, . . . , n} and hĝ denote the

scalar second fundamental form of Sn−1 in R
n. Since −∂r is a unit normal

vector field on Sn−1, we find that

hĝ
ij = −dr(∇ĝ

∂i
∂j) = −dr(Γk

ij∂k) = −Γr
ij =

1
2
Ψ′(1)gij

and hence hĝ
ij − hg0

ij = 1
2 (Ψ′(1) − 2)gij > 0 in the sense of quadratic forms.

Choosing v := ∂i for any i ∈ {2, . . . , n}, the C1-obstruction shows that there
exists no ĝ-isometric C1-extension of f to a neighborhood of Sn−1 but accord-
ing to the previous Proposition, we can construct a short map adapted to
(f, ĝ).

3. Convex Integration

The goal of this section is to turn adapted short maps into one-sided isometric
C1-extensions. The construction of these extensions is based on the method
of Nash [28], Kuiper [24,25], Conti et al. [11]. We start with a short map
adapted to (f, g), u : Ω̄ → R

n+1 and decompose the metric defect into a sum
of primitive metrics as

(g − u∗g0)x =
m∑

k=1

a2
k(x)νk ⊗ νk,

where a2
k are nonnegative smooth functions on Ω̄\B that extend continuously

to B and vanish on B, νk ∈ Sn−1 and m ∈ N is a finite number but at most
m0 � m terms in the above sum are non-zero for fixed x, where m0 depends
only on the dimension n. This decomposition is the content of [1, p. 202,
Lemma 1] but we will include a sketch of the proof to convenience the reader.

Lemma 2 (Decomposition of the metric defect into primitive metrics). Let
P be the space of positive definite (n × n)-matrices. If A ∈ P, then there
exists a sequence (νk)k∈N such that νk ∈ Sn−1 for all k and a sequence μk ∈
C∞

c (P, [0,∞)) such that

A =
∑

k

μ2
k(A)νk ⊗ νk,

where almost all of the coefficients μk(A) are zero.
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Proof. (Sketch). The set P̂ := {A ∈ P, tr A = 1} is an open convex subset of
the set

L := {B ∈ Sym(n), tr B = 1}, dim L =
n(n + 1)

2
− 1.

Therefore, each element of P̂ is contained in the interior of a simplex

conv
(
A1, . . . , An(n+1)/2

) ⊂ L

(by Carathéodory’s theorem on convex sets). If A ∈ P̂ is contained in a non-
degenerate simplex

Sj = conv(Aj
1, . . . , A

j
n(n+1)/2),

where each Aj
i ∈ P̂, one can write A in barycentric coordinates with respect

to Sj as

A =
n(n+1)/2∑

i=1

μ2
i,j(A)Aj

i ,

where μi,j ∈ C∞(Sj , (0, 1)). Since each Aj
i is diagonalizable one can write

Aj
i =

n∑
k=1

(cj
i,k)2(νj

i,k) ⊗ (νj
i,k),

where cj
i,k ∈ R and νj

i,k ∈ Sn−1. Now take a partition of unity subordinate to

a locally finite cover C of P̂ by non-degenerate open simplices in L in order
to obtain the desired (finite) decomposition

A =
∑

k

μ2
k(A)νk ⊗ νk.

For a general element A ∈ P, observe that A = tr A(tr A)−1A and use the
fact that

(tr A)−1A ∈ P̂.

By continuity of the functions μk, the decomposition applies to the metric
defect of an adapted short map too and since Ω̄ is compact, the decomposition
will also be finite (see [1, p. 202, Lemma 1] for more details). �

Once one has such a decomposition of the metric defect, a stage consists
of m steps, of which each aims at adding one primitive metric a2(x)ν ⊗ ν. Fix
orthonormal coordinates in the target so that the metric u∗g0 can be written
as ∇uT ∇u, where ∇u = (∂ju

i)ij . For a specific unit vector ν ∈ Sn−1 and a
smooth nonnegative function a ∈ C∞(Ω̄), we aim at finding v : Ω̄ → R

n+1

satisfying ∇vT ∇v ≈ ∇uT ∇u + a2ν ⊗ ν. Nash solved this problem using an
ansatz of the form

v(x) = u(x) +
a(x)
λ

(cos(λ〈x, ν〉)β1(x) + sin(λ〈x, ν〉)β2(x)) , (3)
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S1r2 (−1)S2r1 (0)

Figure 1. The left image illustrates the Nash Twist and the
right one, the codimension one Corrugation

where λ > 0 is a (large) constant and βi are mutually orthogonal unit normal
fields, requiring thus two codimensions (Nash Twist). We will explain this
ansatz in more detail below. The improvement to codimension one has first
been achieved by Kuiper [24,25] with the use of a different ansatz (Strain).
We will use a Corrugation introduced by Conti et al. [11] [see Eq. (14)] and
modify it slightly in order to achieve the desired metric change within the class
of adapted short maps (Fig. 1). First, we give a geometric motivation for the
choice of the Corrugation that follows [1]. Choose vectors

ξ̃ := ∇u · (∇uT ∇u
)−1 · ν, ζ̃ := � (∂1u ∧ ∂2u ∧ · · · ∧ ∂nu) ,

where � denotes the Hodge star with respect to the usual metric and orientation
in R

n+1. Let

ξ :=
ξ̃

|ξ̃|2
, ζ :=

ζ̃

|ζ̃||ξ̃|
. (4)

We use an ansatz of the form

v(x) = u(x) +
1
λ

(Γ1(x, λ〈x, ν〉)ξ(x) + Γ2(x, λ〈x, ν〉)ζ(x)) ,

where Γ ∈ C∞(V̄ × S1,R2), (x, t) �→ Γ(x, t) is a family of loops still to be
constructed. The differential of v reads

∇v = ∇u + ∂tΓ1ξ ⊗ ν + ∂tΓ2ζ ⊗ ν +
1
λ

E,

where E := ξ∇xΓ1 + ζ∇xΓ2 + Γ1∇ξ + Γ2∇ζ and therefore

∇vT ∇v = ∇uT ∇u +
1

|ξ̃|2
(
2∂tΓ1 + (∂tΓ1)2 + (∂tΓ2)2

)
ν ⊗ ν + r, (5)

where

r =
2
λ

Sym
(∇uT E

)
+

2
λ

(
∂tΓ1ν � ET ξ + ∂tΓ2ν � ET ζ

)
+

1
λ2

(
ET E

)

and Sym(A) := 1
2 (A + AT ) denotes the symmetrization of A and a � b :=

Sym(a⊗ b). In order to equate the coefficient of ν ⊗ ν in (5) and a2, ∂tΓ needs
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to satisfy the circle equation (∂tΓ1 + 1)2+∂tΓ2
2 = 1+|ξ̃|2a2. Since we require Γ

to be 2π-periodic, we also need
∮

S1 ∂tΓ dt = 0. Note that in codimension two,
where ξ and ζ can be replaced by mutually orthogonal normal vectors say β1

and β2, a similar ansatz leads to the circle equation ∂tΓ2
1 + ∂tΓ2

2 = a2 which is
clearly fulfilled by the choice ∂tΓ(x, t) := a(x)(− sin(t), cos(t)). This explains
the Nash Twist (3). We look for a 2π-periodic map ∂tΓ(x, ·) that takes values
in a circle parametrized by

(s, t) �→
√

1 + s2

(
cos(f(s)b(t))
sin(f(s)b(t))

)
−
(

1
0

)
,

where s := |ξ̃|a and f(s) and b(t) are still to be chosen. In order to satisfy the
periodicity condition, we require

1
2π

∮
S1

(√
1 + s2

(
cos(f(s)b(t))
sin(f(s)b(t))

)
−
(

1
0

))
dt = 0.

The second component should be zero independently of s when integrated.
This forces b to be 2π-periodic and antisymmetric with respect to π. The
simplest choice is b(t) := sin t. For the first component, we aim at finding a
function f such that

J0(f(s)) :=
1
2π

∫ 2π

0

cos(f(s) sin t) dt =
1√

1 + s2
.

Note that J0 is the zeroth Bessel function of the first kind.

Lemma 3 (Existence of f). There exists a function f ∈ C∞(R) such that
J0(f(s)) = 1√

1+s2 =: w(s) satisfying

0 < |f ′(s)| �
√

2 + s2

1 + s2
. (6)

Proof. Observe that w ∈ C∞(R) takes values in (0, 1]. Since J0 : [0, μ] → [0, 1]
is a bijection (μ being the smallest positive zero of J0) and J ′

0 doesn’t admit
any zero on (0, μ], its inverse J−1

0 is in C∞([0, 1)). Now set

f(s) := sgn s · J−1
0 (w(s)).

This function is clearly smooth on R\{0}. Since f corresponds around zero to
the function constructed by means of the implicit function Theorem in Lemma
2 in [11], f ∈ C∞(R) (Fig. 2). We will now prove an estimate, from which (6)
follows. We will need the following three estimates:

2x − 2
x + 1

� log x � x − 1√
x

, x � 1 (7)

|f(s)|
2
√

1 + s2
� |J1(f(s))| (8)

x2

8
− x4

96
� J2(x) � x2

8
(9)
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μ

−μ

f

Figure 2. The graph of the function f over the interval [−5, 5]

A proof of (7) can be found in [30]. We prove (8) using an integral represen-
tation for Bessel functions, trigonometric identities and integration by parts:

J1(f(s)) =
1
2π

∫ 2π

0

sin(f(s) sin t) sin tdt

=
f(s)
2π

∫ 2π

0

cos2 t cos(f(s) sin t)dt

=
f(s)
4π

∫ 2π

0

cos(2t) cos(f(s) sin t)dt +
f(s)
4π

∫ 2π

0

cos(f(s) sin t)dt

=
f(s)

2
(J2(f(s)) + J0(f(s)))

=
f(s)

2

(
J2(f(s)) +

1√
1 + s2

)
. (10)

The identity (10) implies (8) since J2 is nonnegative on [−μ, μ]. In order to
prove (9) we use again an integral representation for J2 and integration by
parts to obtain

J2(x) =
1
2π

∫ 2π

0

cos(2t) cos(x sin t)dt

=
x

4π

∫ 2π

0

sin(2t) cos t sin(x sin t)dt

� x2

4π

∫ 2π

0

| sin(2t) cos t sin t|dt =
x2

8
.
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For the other inequality of (9), we use the same expression for J2 and use
sin x = x + R3(x), where |R3(x)| � |x|3

3! . It follows that

J2(x) =
x

4π

∫ 2π

0

sin(2t) cos t (x sin t + R3(x sin t)) dt

=
x2

8
+

x

4π

∫ 2π

0

sin(2t) cos t R3(x sin t)dt

and hence

x2

8
− J2(x) � x4

24π

∫ 2π

0

| sin(2t) cos t sin3 t|dt =
x4

96
.

Using the definition of f implies

0 < f ′(s) =
s

J1(f(s))
√

(1 + s2)3

and hence (8) implies

f ′(s) � 2s

f(s)(1 + s2)
.

Multiplication with f and integration together with the second inequality of
(7) gives

|f(s)| �
√

2 log(1 + s2) �
√

2s2

√
1 + s2

. (11)

We return to the identity (10) and use (9) together with x2

16 � x2

8 − x4

96
on [−μ, μ] to obtain

16s

f(s)(1 + s2)(8 + f2(s)
√

1 + s2)
� f ′(s) � 32s

f(s)(1 + s2)(16 + f2(s)
√

1 + s2)

(12)

Multiplication of the first inequality of (12) with f and (11) implies

8|s|
(4 + s2)(1 + s2)

� 1
2

∣∣(f2)′(s)
∣∣

and hence integrating together with the first inequality of (7)

|f(s)| � 2

√
2
3

log
(

4s2 + 4
s2 + 4

)
� 4

√
s2

8 + 5s2
.

This lower bound on f can be plugged in the second inequality of (12) to
obtain

0 < |f ′(s)| �
(√

8 + 5s2
)3

2(1 + s2)
(
8 + s2

(
5 +

√
1 + s2

)) .
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From this estimate, (6) follows by using
(√

8 + 5s2
)3 �

√
8 + 4s2(8 + 6s2) in

the numerator and 5 +
√

1 + s2 � 6 in the denominator.
�

With this choice of f , let Γ : R2 → R
2,

Γ(s, t) :=
∫ t

0

(√
1 + s2

(
cos(f(s) sin u)
sin(f(s) sin u)

)
−
(

1
0

))
du.

Lemma 4 (Corrugation). The function Γ is 2π-periodic in the second argument,
hence Γ : R × S1 → R

2, and it holds that

|∂tΓ(s, t)| �
√

2|s|, (13)

where the constant
√

2 is optimal.

Proof. For the periodicity we compute directly (see also [11] for this compu-
tation):

Γ(s, t + 2π) − Γ(s, t) =
∫ t+2π

t

(√
1 + s2

(
cos(f(s) sin u)
sin(f(s) sin u)

)
−
(

1
0

))
du

=
∫ 2π

0

(√
1 + s2

(
cos(f(s) sin u)
sin(f(s) sin u)

)
−
(

1
0

))
du

= 2π

(√
1 + s2J0(f(s)) − 1

0

)
=
(

0
0

)
.

In order to prove (13), observe that since ∂tΓ(0, t) = 0, integrating in s yields

∂tΓ(s, t) =
∫ s

0

∂s∂tΓ(r, t) dr,

and we need to show that |∂s∂tΓ| is bounded by
√

2. We compute

∂s∂tΓ(s, t) =
s√

1 + s2

(
cos(f(s) sin t)
sin(f(s) sin t)

)
+

+
√

1 + s2f ′(s) sin t

(− sin(f(s) sin t)
cos(f(s) sin t)

)
,

hence using (6)

|∂s∂tΓ(s, t)|2 � s2

1 + s2
+ (1 + s2)[f ′(s)]2 � 2.

Since ∂s∂tΓ(0, π
2 ) =

√
2, the constant is optimal.

�

Remark 2. Note that Conti, de Lellis and Székelyhidi use the same Corrugation
function, but in [11], Γ is shown to exist on [0, ε] × S1 for some small number
ε > 0 and estimates on the derivatives of all orders are provided. The difference
is that here Γ is shown to exist on all of R×S1, the estimate (13) holds globally
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Figure 3. u(S1) and v(S1) for the choices λ = 3, . . . , 7

and we do not need estimates on the higher order derivatives at the price of
getting lower regularity of the solution in the end.

Adding a primitive metric a2ν ⊗ ν to ∇uT ∇u is done with the ansatz

v(x) = u(x)+
1
λ

(Γ1(a(x)|ξ̃(x)|, λ〈x, ν〉)ξ(x)+Γ2(a(x)|ξ̃(x)|, λ〈x, ν〉)ζ(x)) (14)

and we say that v is obtained from u by Convex Integration.

Remark 3. In higher codimension q > n + 1, one can always find (locally) a
smooth normal vector field (that plays the role of ζ), hence the same construc-
tion can be be used in the case of higher codimension. For this reason we will
restrict ourselves to the codimension 1 case.

Example 2. If the Corrugation above is applied to the map u : S1 → R
2

that sends S1 to a circle with radius 1
2 , the above map produces the following

picture (Fig. 3):

4. Iteration

4.1. Step

Since the ansatz (14) reaches the desired metric change only up to an error
term O(λ−1), the Corrugation above is not suitable for adapted short maps
since it possibly adds a metric defect on B, where the adapted short map is
already isometric. we will overcome this difficulty by replacing the primitive
metric we wish to add by a “cut-off” primitive metric that vanishes near B.
Adding this modified primitive metric can then be done while leaving the initial
map u unchanged near B. Up to these modifications, we will follow the lines of
the Nash–Kuiper iteration scheme as done in the lecture notes by Székelyhidi
[1].

In order to perform this “cut-off”, let � > 0 and let η̃� be a C∞-function
defined on R such that η̃� vanishes on (−∞, �/2], is monotonically increas-
ing on [�/2, �] and constant with value 1 elsewhere. Let then η� : Ω̄ → R,
η�(x1, . . . , xn) = η̃�(xn) and let

Ω̄j := {x ∈ Ω̄,dist(x,B) � j},

where dist denotes the euclidean distance (Fig. 4).
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j

Ω c
j

¯

¯

Ω j

Figure 4. Illustration of the definition of Ω̄j

Proposition 3 (kth step). Let uk−1 ∈ C∞(Ω̄,Rn+1) be an immersion. Then for
every ε > 0 and every 0 < δ < 1 there exists an immersion uk ∈ C∞(Ω̄,Rn+1)
depending on a real number λk that agrees with uk−1 on Ω̄�/2 such that the
following estimates hold:

‖uk − uk−1‖C0(Ω̄) � ε, (15)

|∇uk − ∇uk−1| �
√

2ak + O(λ−1
k ), (16)∥∥∇uT

k ∇uk − [∇uT
k−1∇uk−1 + (1 − δ)η2

� a2
kνk ⊗ νk

]∥∥
C0(Ω̄)

� δ2

2m . (17)

Proof. We use the ansatz

uk(x) = uk−1(x) +
1
λk

[Γ1 (s, λk〈x, νk〉) ξk(x) + Γ2 (s, λk〈x, νk〉) ζk(x)], (18)

where s := (1 − δ)1/2η�(x)ak(x)|ξ̃k(x)| and the vector fields ξk and ζk are
constructed as in (4) and ak is nonnegative. Observe that ak might fail to be
smooth on B, but since η�ak is smooth, so is uk. Since Γ(0, t) = 0 and η�|Ω̄�/2

=
0, uk and uk−1 agree on Ω̄�/2. From (18) we immediately get |uk −uk−1| � C

λk
,

where C depends on Ω̄ and k. Choosing λk adequately proves (15). For the
differential one gets ∇uk = ∇uk−1 + ∂tΓ1ξk ⊗ νk + ∂tΓ2ζk ⊗ νk + 1

λk
Ek, where

Ek := (1 − δ)
0
/

12∂sΓ1ξk ⊗ grad(η�ak|ξ̃k|)
+(1 − δ)

0
/

12∂sΓ2ζk ⊗ grad(η�ak|ξ̃k|) + Γ1∇ξk + Γ2∇ζk.

Using the definition of ξk and ζk we obtain

|∂tΓ1ξk ⊗ νk + ∂tΓ2ζk ⊗ νk|2 � | (∂tΓ1ξk + ∂tΓ2ζk) ⊗ νk|2
� |∂tΓ1ξk + ∂tΓ2ζk|2

� |ξ̃k|−2|∂tΓ|2.
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This estimate together with (13) leads to the pointwise estimate

|∇uk − ∇uk−1| � |∂tΓ1ξk ⊗ νk + ∂tΓ2ζk ⊗ νk| + λ−1
k |Ek|

� |ξ̃k|−1|∂tΓ| + λ−1
k |Ek|

�
√

2(1 − δ)
0
/

12akη� + λ−1
k |Ek|

�
√

2ak + λ−1
k |Ek|,

which proves (16). The pullback metric is given by

∇uT
k ∇uk = ∇uT

k−1∇uk−1 + (1 − δ)η2
� a2

kνk ⊗ νk + rk,

where

rk :=
2
λk

Sym
(∇uT

k−1Ek

)
+

2
λk

(
∂tΓ1νk � ET

k ξk + ∂tΓ2νk � ET
k ζk

)
+

1
λ2

k

ET
k Ek.

Observe that |Ek| � C(ak + η�), where the constant C depends on �, k and Ω̄.
This leads to the estimate

|rk| � C

λk
(ak + η� + a2

k + η2
� ), (19)

where again, the constant depends on �, k and Ω̄. Hence ‖rk‖C0(Ω̄) � δ2

2m
provided λk is large enough. The computation of the pullback metric also
implies ∇uT

k ∇uk � ∇uT
k−1∇uk−1 + rk, hence uk is an immersion provided λk

is large enough.
�

4.2. Stage

A stage consists in adding iteratively “cut-off” primitive metrics while con-
trolling the C1-norm of the resulting maps. This is the key ingredient to later
obtain the convergence in C1(Ω̄,Rn+1). The process leaves the initial map
unchanged near B.

Proposition 4 (Stage). Let u ∈ C∞(Ω̄,Rn+1) be a short map adapted to (f, g).
For any ε > 0 there exists a map ũ ∈ C∞(Ω̄,Rn+1) with the following proper-
ties:

‖u − ũ‖C0(Ω̄) � ε, (20)

‖g − ∇ũT ∇ũ‖C0(Ω̄) � ε, (21)

‖∇u − ∇ũ‖C0(Ω̄) � C‖g − ∇uT ∇u‖ 1
2
C0(Ω̄)

. (22)

Moreover, ũ is an adapted short map with respect to (f, g) provided ε > 0 is
small enough.

Proof. Choose � > 0 such that

‖g − ∇uT ∇u‖C0(Ω̄�) <
ε

2
(23)
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and δ such that the following two conditions are met:

δ id <
(
g − ∇uT ∇u

) |Ωc
�/2

, (24)

δ < min
{

ε
2‖g − ∇uT ∇u‖−1

C0(Ω̄)
,
√

ε
}

. (25)

Now we use Proposition 3 iteratively and choose λk in each step such that the
following three conditions hold:

‖rk‖C0(Ω̄) � δ2

2m
, (26)

‖uk − uk−1‖C0(Ω̄) <
ε

m
, (27)

1
λk

‖Ek‖C0(Ω̄) � 1
m

‖g − ∇uT ∇u‖ 1
2
C0(Ω̄)

. (28)

We start with the map u0 = u and will get after m steps the desired map
ũ := um. We have

‖ũ − u‖C0(Ω̄) �
m∑

k=1

‖uk − uk−1‖C0(Ω̄)

(27)
< ε.

This proves (20). We have

g − ∇ũT ∇ũ = g − ∇uT ∇u + ∇uT ∇u − ∇ũT ∇ũ

=
m∑

k=1

(
a2

kνk ⊗ νk + ∇uT
k−1∇uk−1 − ∇uT

k ∇uk

)

=
m∑

k=1

(
a2

kνk ⊗ νk − (1 − δ)η2
� a2

kνk ⊗ νk − rk

)

=
m∑

k=1

((
1 − (1 − δ)η2

�

)
a2

kνk ⊗ νk − rk

)
.

(29)

Using (23), (25) and (26) we get on Ω̄�:

‖g − ∇ũT ∇ũ‖C0(Ω̄�) � ‖g − ∇uT ∇u‖C0(Ω̄�) +
δ2

2
<

ε

2
+

ε

2
� ε.

On Ωc
� we use (25), (26) and (29) to obtain

‖g − ∇ũT ∇ũ‖C0(Ωc
�)

� δ‖g − ∇uT ∇u‖C0(Ω̄) +
δ2

2
< ε.

which proves (21). For the proof of (22), we use (16), (28) and the uniform
bound

‖g − ∇uT ∇u‖C0(Ω̄) � |(g − u∗g0)x(νk, νk)| =
m∑

i=1

a2
i (x)|〈νk, νi〉|2 � a2

k(x)
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to obtain (since at most m0 of the functions ak are non-zero for fixed x) the
uniform bound

|∇ũ − ∇u| �
m∑

k=1

(√
2|ak| + λ−1

k ‖Ek‖C0(Ω̄)

)

�
√

2m0‖g − ∇uT ∇u‖ 1
2
C0(Ω̄)

+ ‖g − ∇uT ∇u‖ 1
2
C0(Ω̄)

�
(√

2m0 + 1
)

‖g − ∇uT ∇u‖ 1
2
C0(Ω̄)

.

We need to show that the new map ũ is again an adapted short map. Since
ũ|Ω̄�/2

= u0|Ω̄�/2
we need to verify the shortness condition on Ωc

�/2 only. We
use (24), (26) and (29):

g − ∇ũT ∇ũ � δ
(
g − ∇uT ∇u

)−
m∑

k=1

rk

� δ2 id −
m∑

k=1

rk � δ2

2
id .

By choosing ε > 0 small enough, we ensure that ũ is an immersion. Observe
that since g is positive definite on Ω̄, there exists a positive minimum μ of
the function Ω̄ × Sn−1 → R, (x, v) �→ (g)x(v, v) and hence g � μ id in the
sense of quadratic forms. Pick any v ∈ Sn−1. Then |(∇ũ)xv|2 = gx(v, v) −
(g − ũ∗g0)x (v, v) � μ − ε > 0, whenever ε > 0 is small enough.

�

Corollary 3. Let u, ũ and ε > 0 be from the previous Proposition. Then there
is a homotopy H̃ : [0, 1]× Ω̄ → R

n+1 relating u and ũ within the space of short
maps adapted to (f, g) and we have the estimates

‖H̃ − u‖C0(Ω̄) � ε, (30)

H̃(τ, ·)∗g0 − u∗g0 �
(‖g − u∗g0‖C0(Ω̄) + ε

)
id . (31)

Proof. Let η(τ) := η̃1/2(τ) and consider the map H : [0, 1] × Ω̄ → R
n+1 given

by

(τ, x) �→ uk−1(x) +
1
λk

[Γ1 (s(τ), λk〈x, νk〉) ξk(x) + Γ2 (s(τ), λk〈x, νk〉) ζk(x)],

where s(τ) := η(τ)(1 − δ)1/2η�ak|ξ̃k|. Clearly, H is a homotopy relating uk−1

and uk with the property that uk−1 ≡ H(τ, ·) ≡ uk on Ω̄�/2. We must show
that whenever uk−1 is an adapted short map, so is H(τ, ·) for all τ . Observe
that H(τ, ·) adds the metric term (1 − δ)η2

� η2(τ)a2
kνk ⊗ νk + rk(τ) to u∗

k−1g0.
Inequality (19) implies that (26) holds uniformly in τ provided λk is large
enough i.e. ‖rk(τ)‖C0(Ω̄) � δ2

2m . It follows that
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u∗
k−1g0 − δ2

2m
id � H(τ, ·)∗g0 � u∗

kg0 +
δ2

2m
id . (32)

We choose δ in the proof of the previous Proposition such that u∗g0 > δ2 id
holds additionally. Since u∗

kg0 − u∗
k−1g0 � rk, we find inductively u∗

kg0 >

(δ2 − k δ2

2m ) id > 0 and hence u∗
kg0 − δ2

2m id > δ2
(

m−1
2m

)
id � 0, showing that

H(τ, ·) is never singular. We are left to show that g − H(τ, ·)∗g0 > 0 on Ωc
�/2:

g − H(τ, ·)∗g0 � g − u∗
kg0 − δ2

2m
id

�
k∑

j=1

(
(1 − (1 − δ)η2

� )a2
jνj ⊗ νj − rj

)
+

m∑
j=k+1

a2
jνj ⊗ νj − δ2

2m
id

�
m∑

j=1

(
δa2

jνj ⊗ νj − rj

)− δ2

2m
id � δ(g − u∗g0) − δ2(m + 1)

m
id

> δ2

(
m − 1
2m

)
id � 0.

The homotopy H̃ relating u and ũ is now obtained from the concatenation of
the homotopies relating uk−1 and uk for k = 1, . . . , m. From (27) we know
that

‖H(τ, ·) − uk−1‖C0(Ω̄) � ε

m
.

In particular we get for H̃ the uniform estimate (30). The inequality (32)
implies u∗g0 − δ2 id � H̃(τ, ·)∗g0 � ũ∗g0 + δ2 id and hence we get using (29)
and (25)

H̃(τ, ·)∗g0 − u∗g0 � ũ∗g0 − u∗g0 + δ2 id

�
m∑

j=1

(1 − δ)η2
� a2

kνk ⊗ νk + δ2 id

�
(‖g − u∗g0‖C0(Ω̄) + ε

)
id,

thus proving (31).
�

4.3. Passage to the Limit

Proposition 4 can be used iteratively with an adequate sequence (εk)k�1 to
achieve the convergence in C1(Ω̄,Rn+1).

Theorem 3 (Iteration and C0-density). Let u0 : Ω̄ → R
n+1 be a short map

adapted to (f, g). For every ε > 0 there exists a sequence (uk)k∈N of adapted
short maps uk ∈ C∞(Ω̄,Rn+1) converging to an isometric immersion u ∈
C1(Ω̄,Rn+1) which coincides with u0 on B and such that ‖u − u0‖C0(Ω̄) � ε.
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Proof. Apply Proposition 4 iteratively to u0 with a sequence (εk)k�1 satisfying∑
εk � ε,

∑√
εk < ∞ and choose each εk such that after the kth stage, the

resulting map is again an adapted short map. Since for j > i we have

‖uj − ui‖C1(Ω̄) � ‖uj − ui‖C0(Ω̄) + ‖∇uj − ∇ui‖C0(Ω̄)

�
∞∑

k=i+1

‖uk − uk−1‖C0(Ω̄) +
∞∑

k=i+1

‖∇uk − ∇uk−1‖C0(Ω̄)

�
∞∑

k=i+1

εk +
∞∑

k=i

√
εk

i,j→∞−→ 0,

(uk)k∈N is Cauchy in C1(Ω̄,Rn+1) and therefore admits a limit map u : Ω̄ →
R

n+1 satisfying u∗g0 = g (since εk → 0 as k → ∞). This shows that u is
immersive. Observe that the limit of the pullback metrics equals the metric
pulled back by u since the convergence is in C1(Ω̄,Rn+1). Moreover

‖u − u0‖C0(Ω̄) �
∞∑

k=1

‖uk − uk−1‖C0(Ω̄) �
∞∑

k=1

εk � ε.

The equality on B is clear since uk+1|B = uk|B for all k ∈ N.
�

5. h-Principle

We will now show that there is a homotopy of short maps adapted to (f, g)
relating u and u0 from the previous Theorem. This implies that one-sided
isometric C1-extensions satisfy an h-principle.

Corollary 4. The maps u and u0 from the previous Theorem are homotopic
within the space of short maps adapted to (f, g).

Proof. Observe that Theorem 3 together with Corollary 3 delivers a Cauchy
sequence uk : Ω̄ → R

n+1 in C1(Ω̄,Rn+1) and homotopies hk relating uk−1

and uk within the space of short maps adapted to (f, g). Let ck(τ, x) := uk(x)
be the constant homotopy and define the following homotopies (� denotes
concatenation) (Fig. 5):

Hk := h1 � (h2 � · · · � (hk � ck)) .

We will show that

H(τ, x) :=

{
lim

k→∞
Hk(τ, x), whenever τ ∈ [0, 1)

u(x), if τ = 1

is the desired homotopy between u and ũ. We first show that H is continuous
in τ = 1. For fixed τ ∈ [0, 1), choose k such that 1 − 1

2k−1 � τ < 1 − 1
2k . Since

k → ∞ as τ → 1, we find
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u1

u2

...

1
2

3
4 . . .1− 1

2nu0

Figure 5. Construction of the homotopy H

|H(τ, x) − H(1, x)| �
∣∣∣∣H(τ, x) − H

(�2kτ�
2k

, x

)∣∣∣∣+
∣∣∣∣H
(�2kτ�

2k
, x

)
− u(x)

∣∣∣∣
� |H(τ, x) − uk−1(x)| + |uk−1(x) − u(x)|
� εk + ‖uk−1 − u‖C0(Ω̄)

k→∞−→ 0

uniformly in x, where the last inequality follows from (30). Similarly, we prove
continuity of H∗g0 in τ = 1.

|H(τ, x)∗g0 − gx| �
∣∣∣∣∣H(τ, x)∗g0 − H

(�2kτ�
2k

, x

)∗
g0

∣∣∣∣∣+
∣∣∣∣∣H
(�2kτ�

2k
, x

)∗
g0 − gx

∣∣∣∣∣
� |H(τ, x)∗g0 − (u∗

k−1g0)x| + |(u∗
k−1g0)x − gx|

� εk−1 + εk + ‖u∗
k−1g0 − g‖C0(Ω̄)

k→∞−→ 0

uniformly in x, where the last inequality follows from (31).
�

Corollary 4 together with Theorem 3 means in the language of Gromov
[16], Eliashberg and Mishashev [13], that the one-sided isometric C1-extensions
satisfy a C0-dense h-principle. The next Proposition shows that this C0-dense
h-principle is also parametric, i.e. whenever two isometric extensions u are
homotopic within the space of adapted short maps, then there is a homotopy
of solutions relating them.

We start now with a homotopy H : [0, 1] × Ω̄ → R
n+1,H(τ, ·) =: uτ ,

where u0 and u1 are isometric C1-extensions and uτ is a short map adapted
to (f, g) for τ ∈ (0, 1), that is, u0 and u1 are isometric C1-extensions that
can be deformed into each other via adapted short maps. The goal is to show
that there is a homotopy that carries u0 to u1 in the space of C1-isometric
extensions.
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Proposition 5 (Parametric stage). Let uτ ∈ C∞(Ω̄,Rn+1) be defined as above.
For any ε > 0 there exists a homotopy H̃(τ, ·) := ũτ ∈ C∞(Ω̄,Rn+1) such that
we have the following estimates uniformly in τ :

‖uτ − ũτ‖C0(Ω̄) � ε, (33)

‖g − (ũτ )∗g0‖C0(Ω̄) � ε, (34)

‖∇uτ − ∇ũτ‖C0(Ω̄) � C‖g − (∇uτ )T ∇uτ‖ 1
2
C0(Ω̄)

. (35)

Moreover ũ0 and ũ1 are isometric C1-extensions and ũτ is a short map adapted
to (f, g) for τ ∈ (0, 1) provided ε > 0 is small enough.

Proof. We can decompose g − (uτ )∗g0 =
∑m

k=1(a
τ
k)2νk ⊗ νk and use Propo-

sition 3 with aτ
k instead of ak and replace the function η� by a new function

Θ�(τ, x) := η�(x)η�(τ)η�(1−τ). This is done because otherwise we cannot have
an estimate corresponding to (24) (see (37)). With these choices, we can obtain
the same estimates as in Proposition 3: Choose � > 0 such that

|g − (∇uτ )T ∇uτ | <
ε

2
(36)

holds on [0, 1] × Ω̄\Θ−1
� (1) and δ such that

δ id <
(
g − (∇uτ )T ∇uτ

) |
[0,1]×Ω̄\Θ−1

� (0)
, (37)

δ < min

{
ε

2

(
max

τ∈[0,1]
‖g − (∇uτ )T ∇uτ‖C0(Ω̄)

)−1

,
√

ε

}
. (38)

We iterate Proposition 3 to get after m steps a homotopy H̃(τ, ·) =: ũτ with
‖ũτ − uτ‖ < ε uniformly in τ . This shows (33) and is done exactly as in the
non-parametric case. The computation (29) is replaced by

g − (∇ũτ )T ∇ũτ =
m∑

k=1

((
1 − (1 − δ)Θ2

�

)
(aτ

k)2νk ⊗ νk − rτ
k

)
, (39)

where ‖rτ
k‖C0(Ω̄) � δ2

2m can be achieved as in Proposition 3. Using (36) and

(38) we get on [0, 1] × Ω̄\Θ−1
� (1):

|g − (∇ũτ )T ∇ũτ | � |g − (∇uτ )T ∇uτ | +
δ2

2
<

ε

2
+

ε

2
� ε.

On Θ−1
� (1) we use (38) and (39) to obtain

|g − (∇ũτ )T ∇ũτ | � δ‖g − (∇uτ )T ∇uτ‖C0(Ω̄) +
δ2

2
< ε,

which proves (34). The proof of (35) is obtained exactly as in the non-
parametric case by choosing λk in each step large enough:

|∇ũτ − ∇uτ | �
m∑

k=1

(
C|aτ

k| +
1
λk

‖Eτ
k‖C0(Ω̄)

)
� ‖g − (∇uτ )T ∇uτ‖ 1

2
C0(Ω̄)

.
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We are left to show that uτ is an adapted short map for τ ∈ (0, 1) and a
solution for τ = 0, 1. Since ũτ ≡ uτ on Θ−1

� (0) we must only show that ũτ is
short on Θ−1

� ((0, 1]). We compute

g − (∇ũτ )T ∇ũτ � δ(g − (∇uτ )T ∇uτ ) −
m∑

k=1

rτ
k � δ2 id −δ2

2
id > 0.

The rest of the proof is exactly the same as in the non-parametric case.
�

Theorem 3 and its proof can be taken over word by word for the para-
metric case and delivers the desired homotopy.

6. From Immersions to Embeddings

This section follows the lecture notes by Székelyhidi [1] very closely. We show
that if the adapted short map is an embedding (see Proposition 2), we can
force the isometric extension to be an embedding as well.

6.1. Step and Stage

First we show that adding a primitive metric works in the class of embeddings.
Taylor’s formula implies that v(y) − v(x) = (∇v)x(y − x) + O(|y − x|2). Write
h := x − y. Then

|v(y) − v(x)|2 =
〈
(∇vT ∇v)xh, h

〉
+ O(|h|3)

=
〈
(∇uT ∇u)xh, h

〉
+ (1 − δ)η2

� (x)a2(x)|〈ν, h〉|2
+ O

(
λ−1|h|2)+ O(|h|3)

� |u(y) − u(x)|2 + O
(
λ−1|h|2)+ O(|h|3)

= |u(y) − u(x)|2 (1 + O
(
λ−1
)

+ O(|h|)) ,
hence there exists μ > 0 and λ large enough, such that |v(y) − v(x)| � |u(y) −
u(x)|/2, whenever |h| < μ. The uniform convergence of ‖u − v‖C0(Ω̄) → 0 as
λ → ∞ implies that for any δ > 0 there exists λ large enough such that

|v(y) − v(x)| � |v(y) − u(y)| + |u(y) − u(x)| + |u(x) − v(x)|
� |u(y) − u(x)| + δ.

This in turn implies the uniform convergence

|v(y) − v(x)|
|u(y) − u(x)|

λ→∞→ 1

on Λμ := {(x, y) ∈ Ω̄ × Ω̄, |y − x| � μ}. Hence |v(y) − v(x)| � |u(y) − u(x)|/2
whenever |y −x| � μ and λ large enough. This shows that after a step (and in
particular after a stage), we can get an embedding provided u is an embedding.
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6.2. Passage to the Limit

Now we show that the map u obtained in Theorem 3 is an isometric embedding
provided u0 is an embedding. Since Ω̄ is compact and u is immersive, we just
need to check, that u is injective. We have

|u(y) − u(x)|2 = 〈(u∗g0)xh, h〉 + o(|h|2)
= 〈(u∗g0 − u∗

0g0)xh, h〉 + 〈(u∗
0g0)xh, h〉 + o(|h|2)

=
m∑

k=1

a2
k(x) 〈(νk ⊗ νk)xh, h〉 + 〈(u∗

0g0)xh, h〉 + o(|h|2)

� 〈(u∗
0g0)xh, h〉 + o(|h|2)

= |u0(x) − u0(y)|2 (1 + o(1)) .

As before, we get the existence of a number μ > 0 such that

|u(x) − u(y)| � |u0(x) − u0(y)|
2

provided |h| < μ. Note that this calculation holds for any u being an isometric
extension and is thus independent of the choice of ε in the Theorem. If u0 is
an embedding, we have

min
(x,y)∈Λμ

|u0(x) − u0(y)| � m̃ > 0.

Now choose ε := m̃
4 . The Theorem delivers a map u with ‖u − u0‖C0(Ω̄) < m̃

4 ,
we conclude that

|u0(x) − u0(y)| − m̃

2
� |u(x) − u(y)|.

On Λμ we thus find |u(x)−u(y)| � |u0(x)−u0(y)|/2 which proves that u is an
isometric embedding. This together with Theorem 3 and Corollary 4 completes
the proof of Theorem 1.

7. Global C1-Extensions

In this section, “global” has to be understood in the sense that we want to
construct solutions to (2) on a neighborhood of Σ (and not only of a point
in Σ). In order to fix the setting, let (M, g) be an oriented connected and
compact Riemannian n-manifold and Σ an oriented connected and compact
codimension one submanifold of M with trivial normal bundle. Let further
f : Σ → R

n+1 be an isometric immersion.

7.1. Norms on Manifolds

Let A := {ϕj : Uj → Vj ⊂ R
n}j be a finite atlas of M such that the Uj

are diffeomorphic to open balls in R
n and such that the maps ϕj extend to

diffeomorphisms ϕj : Ūj → V̄j . The inverse maps are denoted by ψj . Let A
furthermore be the completion of a submanifold atlas of Σ in the sense that a
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coordinate neighborhood Ū belongs either to the submanifold atlas (i.e. maps
Ū ∩ Σ to R

n × {0}) or doesn’t intersect Σ.

Definition 2. For f ∈ C1(M) and g ∈ Γ(S2(T ∗M)) we define the following
norms:

‖f‖C0(M) = max
p∈M

|f(p)| = max
j

‖ψ∗
j f‖C0(V̄j),

‖df‖C0(M) := max
j

‖ψ∗
j df‖C0(V̄j) = max

j
‖∇(f ◦ ψj)‖C0(V̄j),

‖g‖C0(M) := max
j

‖ψ∗
j g‖C0(V̄j),

‖f‖C1(M) := ‖f‖C0(M) + ‖df‖C0(M).

Using these definitions we obtain

Lemma 5. Let f ∈ C0(M), ω ∈ Γ(T ∗M) and g ∈ Γ(S2(T ∗M)) be compactly
supported in Ūk. Then there exists a constant C only depending on the atlas
such that the following estimates hold

‖f‖C0(M) = ‖f ◦ ψk‖C0(V̄k),

‖ω‖C0(M) � C‖ψ∗
kω‖C0(V̄k),

‖g‖C0(M) � C‖ψ∗
kg‖C0(V̄k).

Proof. Unwinding the definitions gives the first equality. For the second esti-
mate, one finds

‖ω‖C0(M) = max
j

max
x∈V̄j

sup
v∈Sn−1

|ω((∇ψj)x(v))|

= max
j

max
x∈V̄j

sup
v∈Sn−1

|ψ∗
kω(∇(ϕk ◦ ψj)x(v))|

= max
j

max
x∈V̄j

sup
v∈Sn−1

|∇(ϕk ◦ ψj)x(v)|
∣∣∣ψ∗

kω
( ∇(ϕk◦ψj)x(v)

|∇(ϕk◦ψj)x(v)|
)∣∣∣

� max
k,j

‖∇(ϕk ◦ ψj)‖C0(V̄j) ‖ψ∗
kω‖C0(V̄k) =: C ‖ψ∗

kω‖C0(V̄k)

and the last estimate is obtained similarly.
�

7.2. One-Sided Neighborhoods

We need to introduce an equivalence relation on M to get an adequate notion
of one-sided neighborhood: pick a submanifold chart ϕ : Ū → V̄ . The points
p, q ∈ Ū are equivalent whenever the nth coordinate of ϕ(p) and ϕ(q) have
the same sign. Points of coordinate neighborhoods that do not intersect Σ are
equivalent. The transitive closure of this equivalence relation is denoted by ∼
and defines then an equivalence relation on M that clearly does not depend
on the choice of A .
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Lemma 6. It holds that 2 � #(M/∼) � 3.

Proof. The points in Σ are not equivalent to the points in M\Σ. This proves
the first inequality. On the other hand each point (path-connectedness) is
equivalent to a point in a submanifold chart. In a submanifold chart, ∼ has
trivially three equivalence classes, since the nth component of the coordinate
expression of a point is positive, negative or zero. �
Definition 3. Let Ū be a closed neighborhood of Σ in M . If ∼ has three equiv-
alence classes, Ū can be divided into three parts U+, Ū ∩ Σ and U− according
to ∼. We call Ū± one-sided neighborhoods of Σ.

If ∼ has only two equivalence classes, we restrict our considerations to
neighborhoods that split into three equivalence classes and use the definition
above. This is always possible since the normal bundle of Σ is trivial and
diffeomorphic to a tubular neighborhood of Σ in M via Ψ : Σ × (−ε, ε) → M .

7.3. Cut-Off

Let Φ := Ψ−1, π : Σ×(−ε, ε) → (−ε, ε) be the projection onto the second factor
and let Ω̄ be a one-sided neighborhood of Σ that has a nonempty intersection
with Ψ(Σ × [0, ε)) and set η� : Ω̄ → [0, 1]

p �→
{

(η̃� ◦ π ◦ Φ)(p), whenever p ∈ Ψ(Σ × [0, ε))
1 elsewhere

and fix the following notation: Ω̄β := Ω̄∩Ψ(Σ×[0, β]). Observe that η� vanishes
on Ω̄�/2 and equals one on Ωc

�.

7.4. Step

Let {ςj ∈ C∞
c (Uj)}j be a partition of unity subordinate to A in the sense that∑

j ς2 ≡ 1.

Definition 4. Let Ω̄ be a one-sided neighborhood of Σ. A short map adapted to
(f, g), u : Ω̄ → R

n+1 is a smooth immersion satisfying u|Σ = f and g−u∗g0 � 0
in the sense of quadratic forms with equality on Σ only.

The metric defect of an adapted short map can be written as g − u∗g0 =∑
j ς2

j (g − u∗g0). With the notation ς̂j := ςj ◦ ψj , one gets ς2
j (g − u∗g0) =

ϕ∗
j

(
ς̂2
j (ψ∗

j g − (u ◦ ψj)∗g0)
)

and with the use of a decomposition into primitive
metrics for

ψ∗
j g − (u ◦ ψj)∗g0 =

m∑
k=1

a2
k,jν

j
k ⊗ νj

k,

the metric defect can be written as

g − u∗g0 =
∑
k,j

ϕ∗
j ((ς̂jak,j)2ν

j
k ⊗ νj

k).

Note that m depends on j in general but we will suppress this dependence
since we can choose the maximal m over all charts.
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Proposition 6 (Global step). Let u ∈ C∞(Ω̄,Rn+1) be an immersion. For every
ε > 0 there exists an immersion v ∈ C∞(Ω̄,Rn+1) that agrees with u on Ω̄�/2

such that the following estimates hold:

‖v − u‖C0(Ω̄) <
ε

#A m
, (40)

‖dv − du‖C0(Ω̄) � C‖g − u∗g0‖
1
2
C0(Ω̄)

, (41)

v∗g0 − [u∗g0 + ϕ∗
j ((1 − δ)(ς̂jak,j · η� ◦ ψj)2ν

j
k ⊗ νj

k)] � δ2

2#A m
(g − u∗g0).

(42)

Proof. We use the ansatz

v(p) = u(p) +
1

λk,j
[Γ1(s, λk,j〈x, νj

k〉)ξk,j(x) + Γ2(s, λk,j〈x, νj
k〉)ζk,j(x)],

where s := (1 − δ)1/2η�(ψj(x))ς̂j(x)ak,j(x)|ξ̃k,j(x)|, x = ϕj(p) and the vector
fields ξk,j and ζk,j are constructed as in the local step with the map u ◦ ψj

instead of u. Observe that the map v − u is compactly supported in Ūj . Since
in this case

‖v − u‖C0(Ω̄) � 1
λk,j

‖Γ1ξk,j + Γ2ζk,j‖C0(V̄j),

we can choose λk,j large enough to get (40). For the pullback one finds

v∗g0 = ϕ∗
j (v ◦ ψj)∗g0

= ϕ∗
j ((u ◦ ψj)∗g0 + (1 − δ)(ς̂jak,j · η� ◦ ψj)2ν

j
k ⊗ νj

k + rk,j)

= u∗g0 + ϕ∗
j ((1 − δ)(ς̂jak,j · η� ◦ ψj)2ν

j
k ⊗ νj

k) + ϕ∗
jrk,j .

In view of the local step and since ‖ϕ∗
jrk,j‖C0(Ω̄) � ‖rk,j‖C0(V̄j) by Lemma 5

we can choose λk,j large enough such that

ϕ∗
jrk,j |Ωc

�/2
� δ

2#A m
(g − u∗g)|Ωc

�/2
(43)

in the sense of quadratic forms. This proves (42). Observe that ϕ∗
jrk,j |Ω̄�/2

≡ 0.
Since dv − du is also compactly supported in Ūj , one gets

‖dv − du‖C0(Ω̄) � ‖∇((v − u) ◦ ψj)‖C0(V̄j)

� ‖ak,j ς̂j‖C0(V̄j) + O(λ−1
k,j)

� ‖g − u∗
0g0‖

1
2
C0(Ω̄)

(44)

as in the local step. The maps u and v agree on Ω̄�/2 by construction and are
immersions (similar argument as in the local step).

�
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7.5. Stage

To prove the global stage, we use Proposition 6 #A m times to prove the same
estimates as in the local case.

Proposition 7 (Global stage). Let u ∈ C∞(Ω̄,Rn+1) be a short map adapted to
(f, g). For any ε > 0 there exists a map ũ ∈ C∞(Ω̄,Rn+1) with the following
properties:

‖u − ũ‖C0(Ω̄) � ε, (45)

‖g − ũ∗g0‖C0(Ω̄) � ε, (46)

‖du − dũ‖C0(Ω̄) � C‖g − u∗g0‖1/2

C0(Ω̄)
. (47)

Moreover, ũ is a short map adapted to (f, g) provided ε > 0 is small enough.

Proof. Choose � > 0 and δ > 0 such that

‖g − u∗g0‖C0(Ω̄�) <
ε

2
, (48)

δ < min
{ε

2
‖g − u∗g0‖−1

C0(Ω̄)
,
√

ε
}

. (49)

Using Proposition 6 iteratively we find after #A m steps a new map ũ :=
u#A m such that

‖ũ − u‖C0(Ω̄) � ε,

provided the frequencies λk,j in each step are chosen appropriately. Moreover

g − ũ∗g0 = g − u∗g0 − (ũ∗g0 − u∗g0)

=
∑
k,j

[ϕ∗
j ((ς̂jak,j)

2νj
k ⊗ νj

k) − ϕ∗
j ((1 − δ)(ς̂jak,j · η� ◦ ψj)

2νj
k ⊗ νj

k) − ϕ∗
j rk,j ]

=
∑
k,j

[ϕ∗
j ((1 − (1 − δ)(η� ◦ ψj)

2)(ς̂jak,j)
2νj

k ⊗ νj
k) − ϕ∗

j rk,j ].

On Ω̄� this yields

g − ũ∗g0 �
∑
k,j

[ϕ∗
j ((ς̂jak,j)2ν

j
k ⊗ νj

k) − ϕ∗
jrk,j ]

� g − u∗g0 −
∑
k,j

ϕ∗
jrk,j

and therefore using (48) and (49) ‖g−ũ∗g0‖C0(Ω̄�) � ‖g − u∗g0‖C0(Ω̄�)
+ δ2

2 � ε.
On Ωc

� we find

g − ũ∗g0 �
∑
k,j

δ[ϕ∗
j ((ς̂jak,j)2ν

j
k ⊗ νj

k) − ϕ∗
jrk,j ]

� δ(g − u∗g0) −
∑
k,j

ϕ∗
jrk,j
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and hence ‖g − ũ∗g0‖C0(Ωc
�)

� δ‖g − u∗g0‖C0(Ω̄) + δ2

2 � ε. This proves (46).
For the shortness we find on Ωc

�/2 using (43):

g − ũ∗g0 �
∑
k,j

δ[ϕ∗
j ((ς̂jak,j)2ν

j
k ⊗ νj

k) − ϕ∗
jrk,j ]

� δ(g − u∗g0) −
∑
k,j

ϕ∗
jrk,j � δ(g − u∗g0) − δ

2
(g − u∗g0)

� δ

2
(g − u∗g0) > 0.

The proof of (47) then follows from (44) and an appropriate choice of frequen-
cies λk,j in each step (as in the local case). The rest of the argument is similar
to the one in the local case. �

The Iteration Theorem 3 and its proof can be taken over word by word
to the global case.

7.6. Applications

We can now prove Corollary 1:

Proof. Whenever ε > 0 is small enough, the image of the map

Φε : [−π
2 , π

2 ] × [0, 2π] → R
3, (ϑ, ϕ) �→ (

1 − ε sin2 ϑ
)
⎛
⎝cos ϑ cos ϕ

cos ϑ sin ϕ
sinϑ

⎞
⎠

is a two-dimensional submanifold S of R3. Since Φε is singular at the poles,
we parametrize S around the poles by fε : B1/2(0) → R

3

fε(x, y) := (1 − ε(1 − x2 − y2))
(
x, y,

√
1 − x2 − y2

)T

.

One can check that S is diffeomorphic to S2 (S2 corresponds to the choice ε =
0) and that with the induced metric of R3 we have gS2 − gS � 0 with equality
on the equator only. We can apply now Theorem 3 to each of the hemispheres
S2

± and get sequences of maps (u±
k )k∈N. Observe that for each k, the two maps

give rise to an embedding uk : S2 → R
3 since an open neighborhood of the

equator remains unchanged after k steps. The C1-convergence of the sequences
implies that also the limit maps

v± := lim
k→∞

u±
k

give rise to an isometric C1-embedding v : S2 → R
3 which extends the stan-

dard inclusion S2 ⊃ S1 ↪→ R
3. �
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Example 3 (Dirichlet problem). Let Ω = D2, g be a Riemannian metric on Ω
and let f : ∂Ω → R

2 × {0} ⊂ R
3 be a smooth isometric embedding. One can

consider the Dirichlet problem for maps u ∈ C1(Ω̄,R3) given by{∇uT ∇u = g in Ω
u = f on ∂Ω.

(50)

There is a rigidity theorem for solutions to this problem: In order to state
it, recall that (Ω̄, g) is called a smooth positive disk, if g has positive Gauss
curvature Kg > 0.

Theorem 4 (Hong [19]). Let (Ω̄, g) be a smooth positive disk with positive geo-
desic curvature along ∂Ω. Then there is a unique (up to rigid motions) smooth
isometric embedding u : Ω̄ → R

3 such that u(∂Ω) is a planar curve.

The global variant of Theorem 1 implies that whenever there exists a
short map u0 adapted to (f, g), then for any ε > 0, there exists a C1-solution
u to (50) such that ‖u − u0‖C0(Ω̄) < ε. In order to produce adapted short
maps, we can use Hong’s theorem: Fix a positive disk (Ω̄, g) that satisfies the
assumptions from Hong’s theorem and consider a perturbed metric g̃ that is
C2-close to g and such that g − g̃ � 0 with equality on ∂Ω only. This can be
achieved by setting g̃ = ϕg, where ϕ : Ω̄ → (0, 1] is a smooth function such
that ϕ|∂Ω ≡ 1, 0 < ϕ|Ω < 1 and such that ‖1−ϕ‖C2(Ω̄) is very small. It follows
from the estimate

‖Kg − Kg̃‖C0(Ω̄) � C‖g − g̃‖C2(Ω̄)

that (Ω, g̃) also satisfies the assumptions of Hong’s theorem. The corresponding
isometric embedding ũ : Ω̄ → R

3 is then a short map adapted to (f, g), where
f = ũ|∂Ω.

Example 4 (Coin through paper hole). Consider the map γa(t) = Ca(cos t,
a sin t)T , where a > 0 and Ca is chosen, such that∫ 2π

0

|γ̇a(t)|dt = 2π.

A reparametrization of γa by arc length delivers an isometric embedding fa :
S1 → R

2 ⊂ R
3. Let ε > 0 and consider the maps α : S1 × [0, ε] → R

2

and β : S1 × [0, ε] → R
3 given by α(r, t) := (1 + r + r2)(cos t, sin t)T and

β(r, t) := fa(t) + re3, where {e1, e2, e3} denotes the standard basis of R
3.

These maps have the property that

α∗gR2 − β∗gR3 =
(

4r(1 + r) 0
0 r(1 + r)(2 + r + r2)

)

and hence the map β◦α−1 is short map adapted to (fa, gR2). The global variant
of Theorem 3 delivers an isometric extension of fa for every a which can be
interpreted as follows: A direct computation shows that

lim
a→0

diamR2(fa(S1)) = π,
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hence one can cut a circle of radius 1 out of a sheet of paper and push an
idealized coin of diameter < π through the hole when deforming the paper
accordingly.
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[12] De Lellis, C., jun Székelyhidi, L.: The h-principle and the equations of fluid
dynamics. Bull. Am. Math. Soc. New Ser. 49(3), 347–375 (2012)

[13] Eliashberg, Y., Mishachev, N.: Introduction to the h-principle. In: Graduate
Studies in Mathematics, vol. 48. American Mathematical Society, Providence
(2002)

[14] Gromov, M.L., Rokhlin, V.A.: Embeddings and immersions in Riemannian
geometry. Russ. Math. Surv. 25(5), 1–57 (1970)

[15] Greene, R.E.: Isometric embedings. Bull. Am. Math. Soc. 75, 1308–1310 (1969)

[16] Gromov, M.: Partial differential relations. Ergebnisse der Mathematik und ihrer
Grenzgebiete (3), vol. 9. Springer, Berlin (1986)



Vol. 71 (2017) The One-Sided Isometric Extension Problem 781

[17] Haantjes, J.: Distance geometry. Curvature in abstract metric spaces. Nederl.
Akad. Wetensch. Proc. 50, 496–508 (1947)

[18] Haantjes, J. : Indag. Math. 9, 302–314 (1947)

[19] Hong, J.: Darboux equations and isometric embedding of Riemannian mani-
folds with nonnegative curvature in R3. Chin. Ann. Math. Ser. B. 20(2), 123–
136 (1999)

[20] Jacobowitz, H.: Extending isometric embeddings. J. Differ. Geom. 9, 291–
307 (1974)
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ETH Zürich
Rämistrasse 101
8092 Zurich
Switzerland
e-mail: norbert.hungerbuehler@math.ethz.ch;

micha.wasem@math.ethz.ch

Received: October 21, 2015.

Accepted: August 12, 2016.

http://dx.doi.org/10.4171/CMH/370
http://dx.doi.org/10.4171/CMH/370

	The One-Sided Isometric Extension Problem
	Abstract
	1. Introduction
	1.1. Main Results
	1.2. Organization of the Paper

	2. Obstructions and Adapted Short Maps
	2.1. Obstructions
	2.2. Short Maps

	3. Convex Integration
	4. Iteration
	4.1. Step
	4.2. Stage
	4.3. Passage to the Limit

	5. h-Principle
	6. From Immersions to Embeddings
	6.1. Step and Stage
	6.2. Passage to the Limit

	7. Global C1-Extensions
	7.1. Norms on Manifolds
	7.2. One-Sided Neighborhoods
	7.3. Cut-Off
	7.4. Step
	7.5. Stage
	7.6. Applications

	References




