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The Hidden Twin of Morley’s Five Circles
Theorem

Lorenz Halbeisen, Norbert Hungerbühler , and Vanessa Loureiro

Abstract. We give an algebraic proof of a slightly extended version of Morley’s Five Circles
Theorem. The theorem holds in all Miquelian Möbius planes obtained from a separable
quadratic field extension, in particular in the classical real Möbius plane. Moreover, the cal-
culations bring to light a hidden twin of the Five Circles Theorem that seems to have been
overlooked until now.

1. INTRODUCTION. The classical Five Circles Theorem is due to Frank Mor-
ley [8], [9, p. 265]. We quote it here in the version of Tobias Dantzig who provided
a proof based on elementary properties of the Euclidean plane in [3].

Theorem 1. If a ring of five circles be formed, the center of each upon a fixed circle
and each circle of the ring intersecting the next on this fixed circle, the five other
intersections when joined in succession will form a pentacle whose vertices lie one
upon each of the five circles (see Figure 1).

This theorem should not be confounded with similar incidence results like Miquel’s
Pentagon Theorem [7, Théorème III] (see [6] for a computer assisted algebraic proof,
and the gray box on page 246 in [10] for a comment) or the five circle incidence
theorem in [5]. The aim of this article is to set up a simple algebraic proof of a slightly
extended version of Morley’s Five Circles Theorem which can be carried out by hand
and which works for all Miquelian Möbius planes obtained from a separable quadratic
field extension. This shows in particular that the theorem rests on a lesser axiomatic
foundation than Euclidean geometry. Moreover, the careful analysis will bring to light
a hidden twin of the Five Circles Theorem that seems to have been overlooked until
now.

Let us restate Theorem 1 in a more formal way: A circle K carries the five centers
Z1, . . . , Z5 of five circles K1, . . . , K5. Ki−2 and Ki+2 intersect on K in the point Pi

(indices read cyclically) and in Qi . The line li passes through Qi−2 and Qi+2. Then
Theorem 1 claims that the intersection Ri of li−1 and li+1 lies on Ki . Figure 1 illustrates
the situation.

It is not necessary, that the centers Z1, . . . , Z5 sit in cyclic order on K , as Figure 2
suggests.

This looks quite convincing, however, in Figure 3 the theorem seems to fail even
though combinatorially the conditions are satisfied. So, why does the theorem work in
one case but not in the other? Or more precisely: What is the exact formulation of the
conditions so that the vertices Ri of the pentagon lie on the circles Ki?
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Figure 1. The classical Five Circles Theorem.
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Figure 2. Theorem 1 with centers Z1, . . . , Z5 not in cyclic order.

We first analyze this question in Section 2 in the classical model of the Möbius
plane. In Section 3 we will generalize the results to Miquelian Möbius planes obtained
from a separable quadratic field extension.

880 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 130



Z1

P4

K1

Z2

K2

Z3

P5

K3

Z4

P1

K4

P3

P2

Q4

Q1

Q5

l2

l3

Z5

K5

Q3

Q2 l4

l5 l1
R3

R4

R5

R1

R2

Figure 3. Why does Theorem 1 not hold here? We will see in Theorem 5 that in this case other incidences
apply instead.

2. THE FIVE CIRCLES THEOREM IN THE CLASSICAL MÖBIUS PLANE.
The classical model of the Möbius plane is the Riemann sphere, which we interpret
conveniently as C ∪ {∞}. We use the standard notions of Möbius geometry: Circles
(or blocks of the first type) are the complex solutions z of the equation

B1
c,r : (z − c)(z̄ − c̄) = r (1)

for c ∈ C and 0 < r ∈ R. The center of the circle is c, and
√

r is its radius. Lines (or
blocks of the second type) are the complex solutions z of the equation

B2
c,r : c̄z + cz̄ = r (2)

for c ∈ C\{0} and r ∈ R, together with ∞. In the sequel we will use P = C ∪ {∞} for
the set of points, and B for the set of blocks.

Let K ∈ B be a circle, and let Z1, . . . , Z5 ∈ P be five different points on K . There
exists a Möbius transformation z �→ az + b that maps the circle K to the unit circle
B1

0,1 with the equation zz̄ = 1. This transformation maps circles to circles and lines to
lines. In particular, the image of the center of a circle is the center of the image of the
circle. Therefore we may assume without loss of generality that K is the unit circle.
Our first goal is to identify every family consisting of five circles K1, . . . , K5 with the
property that Ki−2 ∩ Ki+2 = {Pi, Qi} for Pi ∈ K and Qi ∈ P, and such that Zi is the
center of Ki for each i ∈ {1, . . . , 5}. To achieve this, we introduce the anti-Möbius
transformation

ϕZ : P → P, z �→ ϕZ(z) := Z2z̄,

for Z ∈ K . It is easy to see that ϕZ has the following properties:

• If z ∈ K , then ϕZ(z) ∈ K .
• ϕZ is an involution.
• Z, −Z and 0 are fixed points of ϕZ .

Hence ϕZ is a reflection with respect to the line containing the points Z, −Z and 0.
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Lemma 2. Let Z1, . . . , Z5 ∈ K = B1
0,1 be five different points. Then there are two

quintuples (I) and (II) of circles K1, . . . , K5 having the following properties: For each
i ∈ {1, . . . , 5} the circle Ki has center Zi , and Ki−2 and Ki+2 intersect at Pi ∈ K and
Qi . The points Pi for the two quintuples are

(I) Pi = −ZiZi+2Zi−2

Zi+1Zi−1
and (II) Pi = ZiZi+2Zi−2

Zi+1Zi−1
, (3)

respectively.

Proof. Suppose that there exist circles K1, . . . , K5 such that for each i ∈ {1, . . . , 5}
the circle Ki has center Zi , and Ki−2 and Ki+2 intersect at Pi ∈ K . The idea is now to
use the map ϕZi

which maps the point Pi+2 to Pi−2. This corresponds to the system of
equations

P4 = ϕZ1(P3) = Z2
1P 3 (4)

P5 = ϕZ2(P4) = Z2
2P 4 = Z2

1Z
2
2P3 (5)

P1 = ϕZ3(P5) = Z2
3P 5 = Z2

1Z
2
2Z

2
3P 3 (6)

P2 = ϕZ4(P1) = Z2
4P 1 = Z2

1Z
2
2Z

2
3Z

2
4P3 (7)

P3 = ϕZ5(P2) = Z2
5P 2 = Z2

1Z
2
2Z

2
3Z

2
4Z

2
5P 3. (8)

We multiply (8) by P3 and obtain

P 2
3 = Z2

1Z
2
2Z

2
3Z

2
4Z

2
5

and hence

P3 = Z1Z2Z3Z4Z5 or P3 = −Z1Z2Z3Z4Z5.

Replacing P3 in (4)–(7) by these expressions we obtain the formulas (3) by using
Zi = 1/Zi .

Conversely, it is obvious that these points satisfy PiP i = 1, and hence lie on K .
So, let Ki be the circle with center Zi through Pi−2. It remains to verify that Pi+2 also
belongs to Ki . Indeed we have

(Pi−2 − Zi)(P i−2 − Zi) = (Z2
i P i+2 − Zi)(Z

2
i Pi+2 − Zi)

= (ZiP i+2 − 1)(ZiPi+2 − 1)

= (Pi+2 − Zi)(P i+2 − Zi),

and the claim follows.

Now we want to express the points Qi in terms of the centers Zi .

Lemma 3. Let K1, . . . , K5 be a quintuple of circles with centers Z1, . . . , Z5 on the
circle K = B1

0,1. Suppose that for each i ∈ {1, . . . , 5}, Ki−2 ∩ Ki+2 = {Pi, Qi} with
Pi ∈ K . Then we have

Qi = Zi−2 + Zi+2 − P iZi−2Zi+2. (9)

Proof. The claim can be checked by showing that the point Qi given by (9) satisfies
the equations of both circles Ki−2 and Ki+2. Indeed, for Ki−2, we have

(Qi − Zi−2)(Qi − Zi−2) = (Zi+2 − P iZi−2Zi+2)(Zi+2 − PiZi−2Zi+2)
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= (1 − P iZi−2)(1 − PiZi−2)

= (Pi − Zi−2)(P i − Zi−2).

A similar calculation shows that Qi lies on Ki+2.

With these preparations we are now ready to investigate the incidence relations in
the two quintuples (I) and (II) of circles in Lemma 2.

The quintuple (I) and the classical Five Circles Theorem. Let us consider the
five circles K1, . . . , K5 having centers Z1, . . . , Z5 on K = B1

0,1, and Ki−2 ∩ Ki+2 =
{Qi, Pi} with

Pi = −ZiZi+2Zi−2

Zi+1Zi−1
, Qi = Zi−2 + Zi+2 − P iZi−2Zi+2.

Inserting the expression for Pi in the expression for Qi yields that

Qi = Zi−2 + Zi+2 + Zi+1Zi−1

Zi

.

Let li denote the line through the points Qi−2, Qi+2, and ∞. Moreover, we will con-
sider the lines hi through the points Zi, Pi , and ∞. These lines are

li = {z : (Qi+2 − z)(Qi−2 − z̄) = (Qi+2 − z̄)(Qi−2 − z)} ∪ {∞}, (10)

hi = {z : (Zi − z)(P i − z̄) = (Zi − z̄)(Pi − z)} ∪ {∞}. (11)

Now we claim that the lines li−1, li+1, and hi meet in the point

Ri = Zi

(
Zi+2

Zi+1
+ Zi−2

Zi−1
+ 1

)
. (12)

Let us check that Ri belongs to li−1. If we use the expression (12) for Ri in place of z

in (10) we obtain for the bracket factors

Qi+1 − Ri = (Zi−1 − Zi) (Zi−2 + Zi−1)

Zi−1

Qi+2 − Ri = (ZiZi+2 − Zi+1Zi−1) (Zi+1Zi−2 + Zi+2Zi−1)

ZiZi+1Zi+2Zi−2Zi−1

Qi+1 − Ri = (Zi − Zi−1) (Zi−2 + Zi−1)

ZiZi−2Zi−1

Qi+2 − Ri = (Zi+1Zi−1 − ZiZi+2) (Zi+1Zi−2 + Zi+2Zi−1)

Zi+1Zi+2Zi−1
.

Indeed the product of the first two expressions agrees with the product of the last two.
Hence z = Ri satisfies the equation of the line li−1. Similar calculations show that Ri

also lies on the lines li+1 and hi .
In order to prove the original version of the Five Circles Theorem, we need to show

that Ri belongs to the circle Ki with center Zi through the points Pi+2, Pi−2, Qi−2,
Qi+2 which is given by the equation

(Zi − z)(Zi − z̄) = (Zi − Pi+2)(Zi − P i+2). (13)
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If we use the expression (12) for Ri in place of z in (13) we obtain for the bracket
factors

Zi − Ri = −Zi (Zi+1Zi−2 + Zi+2Zi−1)

Zi+1Zi−1

Zi − Ri = −Zi+1Zi−2 + Zi+2Zi−1

ZiZi+2Zi−2

Zi − Pi+2 = Zi (Zi+1Zi−2 + Zi+2Zi−1)

Zi+1Zi−2

Zi − P i+2 = Zi+1Zi−2 + Zi+2Zi−1

ZiZi+2Zi−1
.

Indeed the product of the first two expressions agrees with the product of the last two.
Hence Ri ∈ Ki as claimed.

Observe that we actually proved a slightly enhanced version of the Five Circles
Theorem since we showed that the lines hi also pass through the points Ri (see Fig-
ure 4). In fact, there is yet another incidence to be discovered in this configuration: Let
us reflect the point Zi in the perpendicular bisector of Zi−1 and Zi+1. The mirrored
point is Ci = Zi+1Zi−1

Zi
∈ K . Using the expressions we found for the points Pi, Qi , and

Ri it is then easy to verify that

(Ci − Pi−1)(Ci − P i−1) = (Ci − Pi+1)(Ci − P i+1)

= (Ci − Ri−1)(Ci − Ri−1)

= (Ci − Ri+1)(Ci − Ri+1)

= (Ci − Qi)(Ci − Qi) = (Zi−2 + Zi+2)
2

Zi−2Zi+2
.

Hence the five points Pi−1, Pi+1, Ri−1, Ri+1, and Qi lie on a circle with center Ci and
radius |Zi−2 + Zi+2|.

Notice that if

Zi−2Zi+1 = −Zi+2Zi−1 (14)

then

Pi−2 = Pi+2 = Qi−2 = Qi+2 = Ri = Zi,

which means that the circle Ki degenerates to a point. Vice versa, Pi−2 = Pi+2 = Zi

implies (14).
Before we formulate our results as a theorem, we turn our attention to the second

quintuple of circles which we identified in Lemma 2. It will turn out that these circles
carry a twin of the original Five Circles Theorem.

The quintuple (II) and the Twin of the Five Circles Theorem. Let us consider the
five circles K1, . . . , K5 having centers Z1, . . . , Z5 on K = B1

0,1, and Ki−2 ∩ Ki+2 =
{Pi, Qi} with

Pi = ZiZi+2Zi−2

Zi+1Zi−1
, Qi =Zi−2 + Zi+2 − P iZi−2Zi+2 =Zi−2 + Zi+2 − Zi+1Zi−1

Zi

.
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Let, as before, li denote the line through Qi−2, Qi+2, ∞ given by (10), and hi the line
through Zi, Pi, ∞ given by (11). Then the points

Si,i−1 = Zi

(
Zi−2

Zi−1
− Zi+2

Zi+1
+ 1

)
and Si,i+1 = Zi

(
Zi+2

Zi+1
− Zi−2

Zi−1
+ 1

)

are the intersections of hi with li−1 and li+1, respectively, which can easily be checked
by inserting these expressions in (10) and (11). We now claim that Si,i−1 and Si,i+1 are
points on Ki . Indeed, if we insert Si,i−1 for z in (13) we obtain for the bracket factors

Zi − Si,i−1 = Zi (Zi+1Zi−2 − Zi+2Zi−1)

Zi+1Zi−1

Zi − Si,i−1 = −Zi+1Zi−2 − Zi+2Zi−1

ZiZi+2Zi−2

Zi − Pi+2 = Zi (Zi+1Zi−2 − Zi+2Zi−1)

Zi+1Zi−2

Zi − P i+2 = −Zi+1Zi−2 − Zi+2Zi−1

ZiZi+2Zi−1

and we see that the product of the first two and the product of the last two expressions
agree. A similar calculation shows that Si,i+1 also lies on Ki . Notice that in the classical
Five Circles Theorem carried by the quintuple (I) the intersection of hi and li−1 agrees
with the intersection of hi and li+1. For the quintuple (II) of circles this is no longer
the case. Indeed, we have:

Lemma 4. For the quintuple (II) there holds Si,i−1 
= Si,i+1 for all i ∈ {1, . . . , 5},
unless Ki degenerates to a point.

Proof. Assume by contradiction that Si,i−1 = Si,i+1, i.e.,

Si,i−1 − Si,i+1 = 2Zi

(
Zi−2

Zi−1
− Zi+2

Zi+1

)
= 0.

This is equivalent to

Zi = ZiZi+2Zi−1

Zi+1Zi−2
= Pi+2,

where we have used (3) for the last equality. But this would mean that Ki degenerates
to a point.

Let us again consider the points Ci = Zi+1Zi−1
Zi

which we obtain by reflecting Zi in

the perpendicular bisector of Zi−1 and Zi+1. Then, using as usual that Zi = 1/Zi , it is
easy to check that

(Ci − Pi−1)(Ci − P i−1) = (Ci − Pi+1)(Ci − P i+1)

= (Ci − Si+1,i )(Ci − Si+1i )

= (Ci − Si−1,i )(Ci − Si−1,i ) = 2 − Zi−2

Zi+2
− Zi+2

Zi−2

= 0,
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since Zi−2 
= Zi+2. Thus the four points Pi−1, Pi+1, Si+1,i , and Si−1,i lie on a circle
with center Ci ∈ K .

Similarly, for the points Di = −Ci we have

(Di − Pi−1)(Di − P i−1) = (Di − Pi+1)(Di − P i+1)

= (Di − Si−1,i−2)(Di − Si−1,i−2)

= (Di − Si+1,i+2)(Di − Si+1,i+2)

= (Di − Qi)(Di − Qi) = (Zi−2 + Zi+2)
2

Zi−2Zi+2
.

Hence the five points Pi−1, Pi+1, Si−1,i−2, Si+1,i+2, and Qi lie on a circle with center
Di ∈ K with radius |Zi−2 + Zi+2|. It follows that the line through the points Ci, Di, ∞
is the perpendicular bisector of the points Pi−1, Pi+1.

Notice that if

Zi−2Zi+1 = Zi+2Zi−1 (15)

then

Pi+2 = Pi−2 = Qi−2 = Qi+2 = Si,i−1 = Si,i+1 = Zi,

which means that the circle Ki degenerates to a point. Vice versa, Pi+2 = Pi−2 = Zi

implies (15).
We can now combine our findings and formulate the following theorem which con-

tains the classical Five Circles Theorem and its twin. Since our calculations carry over
to Miquelian Möbius planes obtained from a separable quadratic field extension, the
theorem is valid in this more general framework (see Section 3).

Theorem 5. Let Z1, . . . , Z5 be five different points on the circle K given by the equa-
tion zz̄ = 1, and let Ci = Zi−1Zi+1

Zi
∈ K . Then there are two families of five circles

K1, . . . , K5, where Zi is the center of Ki and such that Ki−2 and Ki+2 intersect at Pi ∈
K and at Qi for each i ∈ {1, . . . , 5}. Let li denote the line through Qi−2, Qi+2, ∞, and
hi the line through Zi, Pi, ∞. Then,

• in one family the three lines hi, li+1, li−1, meet in a point Ri ∈ Ki and the five points
Pi−1, Pi+1, Ri−1, Ri+1, and Qi lie on a circle with center Ci (see Figure 4).

• In the other family the lines hi and li−1 meet in Si,i−1 ∈ Ki and the lines hi and li+1

meet in Si,i+1 ∈ Ki . Moreover, the four points Pi−1, Pi+1, Si+1,i , and Si−1,i lie on a
circle with center Ci and the five points Pi−1, Pi+1, Si−1,i−2, Si+1,i+2, and Qi lie on
a circle with center Di = −Ci . (see Figure 5).

Recall that the point Ci is geometrically obtained by reflecting Zi in the perpendic-
ular bisector of Zi−1 and Zi+1, and Di is the antipode of Ci on K .

3. GENERALIZATION TO MIQUELIAN MÖBIUS PLANES. A Möbius plane
is an incidence structure consisting of points P and blocks B which satisfies the fol-
lowing axioms (see, e.g., [4, Chapter 6] or [1]):

(M1) For any three points P, Q, R, P 
= Q, P 
= R and Q 
= R, there exists a unique
block C with P ∈ C, Q ∈ C and R ∈ C.
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Figure 4. The enhanced Five Circles Theorem. In order not to overload the figure, from the five additional
circles only the dotted one with center C4 is drawn.

(M2) For any block C, and points P, Q with P ∈ C and Q /∈ C, there exists a unique
block D such that P ∈ D and Q ∈ D, but for all points R with R ∈ C, P 
= R,
we have R /∈ D.

(M3) There are four points P1, P2, P3, P4 such that for all blocks C, we have Pi /∈ C

for at least one i ∈ {1, 2, 3, 4}. Moreover, for all blocks C there exists a point P

with P ∈ C.

The blocks generalize the lines and circles of the classical Möbius plane. Note, how-
ever, that the term “center of a circle” does not appear in the axioms.

A Möbius plane is called Miquelian if in addition the Six Circles Theorem of
Miquel [7, Théorème I] holds:

Theorem 6 (Miquel). If one can assign 8 points P1, . . . , P8 to the corners of a cube
in such a way that the points assigned to five of its faces each lie on a circle, then this
is also the case for the points assigned to the 6th face (see Figure 6).

A famous result by Chen [2] states that a Miquelian Möbius plane is isomorphic to
a Möbius plane M(K, q) over a field K where q(z) = z2 + a0z + b0 is an irreducible
polynomial with a0, b0 ∈ K . Here, the set of points in M(K, q) is

P := K2 ∪ {∞},
where ∞ /∈ K , and the set of blocks B consists of

• lines, i.e., the sets of solutions (x1, x2) of the equations ux1 + vx2 + w = 0 for
u, v, w ∈ K, (u, v) 
= (0, 0), and the element ∞, and
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Figure 6. The Six Circles Theorem of Miquel.

• circles, i.e., the sets of solutions (x1, x2) of the equations x2
1 + a0x1x2 +

b0x
2
2 + ux1 + vx2 + w = 0 for u, v, w ∈ K , if this set of solutions consists of

more than one point.
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A point is incident with a block, if it is an element of the block. Let E be the splitting
field of q. Hence there are α1, α2 ∈ E such that q(z) = (z + α1)(z + α2), and E is a
two dimensional vector space over K with basis {1, α1} or {1, α2}. Since every point
(x1, x2) ∈ K2 can be represented by z = x1 + α1x2 or z = x1 + α2x2, we can identify
K2 with E. If q is separable, i.e., α1 
= α2, then the mapping

¯ : E → E, z = x1 + α1x2 �→ z̄ = x1 + α2x2 = x1 + a0x2 − α1x2

is an involutorial automorphism of E (observe that α1 + α2 = a0). Hence we have

x1 = α1z̄ − α2z

α1 − α2
, x2 = z − z̄

α1 − α2
,

and the equation of a line ux1 + vx2 + w = 0 can be written in the form c̄z + cz̄ = r

with c ∈ E \ {0} and r ∈ K . Similarly, the equation of a circle x2
1 + a0x1x2 + b0x

2
2 +

ux1 + vx2 + w = 0 can be written as a quadratic equation of the form (z − c)(z̄ − c̄) =
r for r ∈ K \ {0}, and c ∈ E; use x2

1 + a0x1x2 + b0x
2
2 = zz̄ for z = x1 + α1x2. Hence

in this case the center c can be assigned to the circle. For K = R and q(z) = z2 + 1 we
have E = C and we are in the situation of the classical model of the Möbius plane as
described in the previous section. Another example is the Galois field K = GF(t) for
an odd prime power t = pn, and q(z) = z2 − α for a non-square α ∈ GF(t). Then,
GF(t)(α) ∼= GF(t2) and the conjugation is given by the Frobenius automorphism
z �→ z̄ = zt .

If q is separable, the proofs of the previous section carry over verbatim to the
Möbius plane M(K, q). Notice also, that every finite extension of a finite field is
separable. Hence Theorem 5 is valid in each Miquelian Möbius plane M(K, q) if
q is separable, and in particular in every finite Miquelian Möbius plane. Notice how-
ever that by (3), over a field K of characteristic 2, the two families of five circles in
Theorem 5 coincide: The twin is identical to the classical statement in this case.

4. SOME CLOSING REMARKS. The reader may notice that there are other inci-
dences hidden in the Five Circles configuration:

• Each one of the quadruples Zi, Pi+1, Qi+2, ∞ and Zi, Pi−1, Qi−2, ∞ are contained
in a block.

• The line li and the line l′i through the points Zi−1, Zi+1, ∞ are touching at ∞ (i.e.,
the lines are parallel).

However, both observations are general properties of Miquelian Möbius planes
obtained from a separable quadratic field extension and not limited to the Five Circles
configuration as we show in the following two propositions.

Proposition 7. Let K be a circle, P, X, Y ∈ K , KX the circle with center X through
P , and KY the circle with center Y through P . Let Q 
= P be the second intersection
of KX and KY , and PX 
= P and PY 
= P the second intersections of K with KX and
KY , respectively. Then the points X, Q, PY , ∞ and the points Y, Q, PX, ∞ each lie on
a line (see Figure 7, left).

Proof. We may again assume that K is the unit circle with the equation zz̄ = 1. Using
the maps ϕX and ϕY , we find PX = X2P and PY = Y 2P . It is then elementary to check
that

Q′ = X + Y − XYP
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Figure 7. Two general incidence relations in Miquelian Möbius planes.

is the intersection of the lines through X, PY , ∞ and Y, PX, ∞. If we use that
X = 1/X, Y = 1/Y , and P = 1/P , a short calculation shows that z = Q′ solves
the equations

(X − z)(X − z̄) = (X − P)(X − P)

(Y − z)(Y − z̄) = (Y − P)(Y − P)

of KX and KY , respectively. Hence it follows that Q′ = Q.

Proposition 8. Let K be a circle, X, Y, Z ∈ K , KX a circle with center X, KY a
circle with center Y , and KZ a circle with center Z, such that KX ∩ KY = {P, Q}
with P ∈ K and KX ∩ KZ = {R, S} with R ∈ K . Then the lines through Y, Z, ∞ and
through Q, S, ∞ are touching at ∞ (see Figure 7, right).

Proof. We assume again that K is the unit circle zz̄ = 1. By the map ϕX we find that
R = X2P . Then we infer from the proof of Proposition 7 that Q = X + Y − XYP

and S = X + Z − XZP . Thus the lines through R, S, ∞ and through Y, Z, ∞ are
given by the equations

(Q − z)(S − z̄) = (Q − z̄)(S − z),

(Y − z)(Z − z̄) = (Y − z̄)(Z − z).

It is now easy to check that (Q − S)(Z − Y ) − (Q − S)(Z − Y ) = 0, and hence the
two lines are indeed touching at ∞.
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On Erdős’s Proof of the Existence of Cages

We consider the problem of the existence of an r-regular graph with girth (length
of shortest cycle) g; such a graph of minimum order is an (r, g)-cage. For example,
the Petersen graph is the unique (3, 5)-cage; see [2] for more details. Proofs of the
existence of cages have been given by Sachs [3] and Erdős, in [1]. Here we give a
simplification of Erdős’s argument with a slightly weaker bound.

Theorem. For all integers r ≥ 2 and g ≥ 3, there is an r-regular graph with girth
g and order

n = 4 + 2(r − 1) + 2(r − 1)2 + · · · + 2(r − 1)g−2 + (r − 1)g−1.

Proof. The disjoint union of a g-cycle and a (g + 1)-cycle satisfies the theorem for
r = 2, so assume that r ≥ 3. Choose G to be a graph of order n with maximum
degree at most r , girth g, and the maximum number of edges subject to these con-
straints. Such a graph must exist because the disjoint union of a g-cycle with n − g

isolated vertices has maximum degree 2 ≤ r and girth g.
Call a vertex v of G deficient if degG v < r . We may assume that G has a deficient

vertex, as otherwise we are done. Let u and v be deficient vertices, and choose them
to be distinct if possible (otherwise we allow u = v). Since u and v are deficient, for
each nonnegative integer i, there are at most (r − 1)i vertices at distance i from each
of them. Our choice of G ensures that it has enough vertices that we can find some
vertex x with dG(u, x) ≥ g − 1 and dG(v, x) ≥ g.

If x is itself deficient, then the graph G + ux has maximum degree at most r ,
girth g (because dG(u, x) ≥ g − 1), and one more edge than G, a contradiction to
our choice of G. Thus we may assume that x has degree r ≥ 3. This implies that G

has some edge xy whose removal does not destroy all of its cycles of length g, so the
girth of G − xy is still g.

Because dG(v, x) ≥ g, we have dG(v, y) ≥ g − 1. This implies that the graph
G − xy + ux + vy has girth g and one more edge than G. If the maximum degree
of G − xy + ux + vy is at most r , this contradicts our choice of G. The only way
this could fail is if u = v and degG u = r − 1. In that case, the other n − 1 vertices
are not deficient (we chose v 
= u if it was possible). Thus the sum of the degrees
of all the vertices of G—which is always twice the number of edges—is nr − 1.
However, n is even when r is odd, so nr − 1 is always odd, and thus this situation
cannot occur.
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