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Abstract:We investigate Steiner’s Porism in finite MiquelianMöbius planes constructed over the pair of finite
fields GF(q) and GF(q2), for an odd prime power q. Properties of common tangent circles for two given con-
centric circles are discussed and with that, a finite version of Steiner’s Porism for concentric circles is stated
and proved. We formulate conditions on the length of a Steiner chain by using the quadratic residue theorem
in GF(q). These results are then generalized to an arbitrary pair of non-intersecting circles by introducing the
notion of capacitance, which turns out to be invariant under Möbius transformations. Finally, the results are
compared with the situation in the classical Euclidean plane.
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Introduction
In the 19th century, the Swiss mathematician Jakob Steiner (1796–1863) discovered a beautiful result about
tangent circles in the Euclidean plane, known as Steiner’s Porism. One version reads as follows.

Theorem (Steiner’s Porism). Let B and B󸀠 be disjoint circles in the Euclidean plane. Consider a sequence of
different circles T1, . . . , Tk which are tangent to both B and B󸀠. Moreover, let Ti and Ti+1 be tangent for i =
1, . . . , k − 1. If T1 and Tk are tangent as well, then there are infinitely many such chains. In particular, every
chain of consecutive tangent circles closes after k steps.

Steiner thoroughly investigated such chains and foundmanyniceproperties. For example, he couldprove
that the tangent points of the circles T1, . . . , Tk lie on a circle and that their centers lie on a conic whose foci
are the centers of the initial circles B and B󸀠. He studied conditions for such a chain to close after k steps in
terms of the radii and the distance between the centers ofB andB󸀠. The interested reader can refer to [2], [8]
or [3] for more information on Steiner’s original result. In recent years, some refinements and generalizations
of Steiner’s Porism were studied. For example, in [9] Steiner chains with rational radii are discussed, and in
[1] a three-dimensional analogue of Steiner’s Porism is presented.

Porisms in finite geometry have not been investigated to the same extent as in the Euclidean case. In
particular, as far asweknow, Steiner’s Porismwasnot yet considered infiniteMöbiusplanes.However, chains
of touching circles with a different arrangement have been investigated in [10].

Möbius planes consist of points ℙ and circles 𝔹 which satisfy three axioms. First, there needs to be a
unique circle through three given points. Second, there exists a unique tangent circle through a point on a
given circle and a point not on this circle. Finally, a richness axiom ensures that the plane is not trivial. More
precisely, the three axioms read as follows.

(M1) For any three distinct elements P, Q, R ∈ ℙ, there exists a unique element g ∈ 𝔹 with P, Q, R ∈ g.

Norbert Hungerbühler, ETH Zürich, Department of Mathematics, Rämistrasse 101, 8092 Zürich, Switzerland,
email: norbert.hungerbuehler@math.ethz.ch
*Corresponding author: Katharina Kusejko, Universität Zürich, Institut für Medizinische Virologie, Winterthurerstrasse 190,
8057 Zürich, Switzerland, e-mail: katharina.kusejko@usz.ch



56 | Hungerbühler and Kusejko, Steiner’s Porism in finite Miquelian Möbius planes

Figure 1: Two examples of Steiner chains in the Euclidean plane.

(M2) For any g ∈ 𝔹, P, Q ∈ ℙ with P ∈ g and Q ∉ g, there exists a unique element h ∈ 𝔹 such that P ∈ h and
Q ∈ h, but for all R ∈ ℙ with R ∈ g, P ̸= R, we have R ∉ h.

(M3) There are four elements P1, P2, P3, P4 ∈ ℙ such that for all g ∈ 𝔹, we have Pi ∉ g for at least one
i ∈ {1, 2, 3, 4}. Moreover, for all g ∈ 𝔹 there exists a P ∈ ℙ with P ∈ g.

In the present paper, we look at Steiner’s Porism inMiquelianMöbius planes. They are the classical finite
models for the Möbius axioms and are constructed over the finite field GF(q) of order q, where q is an odd
prime power. The resulting plane is denoted by𝕄(q), the details are explained in the preliminaries. We start
with two circles Ba and Bb with common center 0 and radii a and b. We look for conditions and properties
of their potential common tangent circles. Concerning this question, we find the following:

Theorem (cf. Theorem 2.1). If b/a ̸= 1 is a square in GF(q), then Ba and Bb have exactly 2(q + 1) common
tangent circles.Moreover, these tangent circles are divided into two groups of q+1 common tangent circles, each
group having the same radius. If b/a ̸= 1 is a nonsquare in GF(q), then Ba and Bb do not have any common
tangent circles.

Weare interested in finding a condition for the existence of Steiner chains, i.e. chains of circles T1, . . . , Tk
of the same radius which are tangent to both Ba and Bb and each Ti, 1 ≤ i ≤ k is tangent to its neighbors in
the chain.

In the classical Euclidean plane, conditions on the length of Steiner chains are well-known. For two cir-
cles with a common center and radii 1 and R, one can construct a Steiner chain of length k ≥ 3 which wraps
w times around the smaller circle, if and only if

R = 1 + sin(φ)1 − sin(φ) ,

where φ = wπ
k . In particular, for every k ≥ 3 a Steiner chain of length k can be constructed. We ask for such

conditions in the finite case and obtain the following result:

Theorem (cf. Theorem 4.2). LetB1 andBa2 be two circles in𝕄(q). If q ≡ −1 (mod 4), exactly one Steiner chain
can be constructed withB1 andBa2 . If q ≡ 1 (mod 4), either two or zero Steiner chains can be constructed with
B1 and Ba2 , depending on whether or not a is a square in GF(q). Moreover, only divisors of q + 1 can serve as
the length of a Steiner chain.

In the last section, we introduce the notion of capacitance for a pair of circles and prove that this quantity
is invariant underMöbius transformations. This fact allows to formulate a criterion for the existence of proper
Steiner chains of length k for an arbitrary pair of non-intersecting circles. Finally, the results are compared to
the conditions on Steiner chains in the Euclidean plane.
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1 Preliminaries
We describe an explicit construction of finite Miquelian Möbius planes using finite fields. For that we need to
recall some properties of finite fields GF(q), where q is an odd prime power.

An element a ∈ GF(q) is called a square in GF(q) if there exists some b ∈ GF(q) with a = b2. All other
elements in GF(q) are called nonsquares in GF(q). Exactly half of the elements in GF(q) \ {0} are squares. Note
that the squares of GF(q) form a subgroup of GF(q), but the nonsquares do not. In particular, multiplying two
nonsquares in GF(q) gives a square and multiplying a square and a nonsquare in GF(q) gives a nonsquare.

For any nonsquare δ in GF(q), we can construct an extension field of GF(q) by adjoining some element α
with α2 = δ to GF(q). The elements in the extension field GF(q)(α) are of the form x+ αy for x, y ∈ GF(q). Note
that all elements of GF(q) are squares in GF(q)(α). To see this, take some element x ∈ GF(q). If x is a square
in GF(q), it is clearly a square in GF(q)(α) as well. If x is a nonsquare in GF(q), then δx is a square in GF(q)
and hence δx = y2 which leads to x = α−2y2, i.e. x is a square in GF(q)(α).

Since GF(q)(α) is isomorphic to any field with q2 elements, we denote it by GF(q2).
For z ∈ GF(q2) define the conjugate element of z = x + αy over GF(q) by

z := zq = x − αy.

Note that z = z if and only if z ∈ GF(q). Define the trace of z over GF(q) by

TrGF(q2)/GF(q)(z) := z + z = 2x ∈ GF(q)

and the norm of z over GF(q) by

NGF(q2)/GF(q)(z) := zz = x2 − δy2 ∈ GF(q).

We omit the subscript GF(q2)/GF(q) for notational convenience. Recall that Tr(z) and N(z) are always in
GF(q), but unlike with the complex numbers N(z) can be a nonsquare. Furthermore, z1 + z2 = z1 + z2 and
z1z2 = z1z2. For more background on finite fields see [7].

We now describe the finite Miquelian Möbius plane constructed over the pair of finite fields GF(q) and
GF(q2). This plane is denoted by𝕄(q) and q is called the order of𝕄(q). The q2 + 1 points of𝕄(q) are the
elements of GF(q2) together with a point at infinity, denoted by ∞. We distinguish two different types of
circles. For circles of the first type, we consider solutions of the equation N(z − s) = c, i.e.

B1
(s,c) : (z − s)(z − s) = c (1)

for s ∈ GF(q2) and c ∈ GF(q)\{0}. It can easily be seen that there are q + 1 points in GF(q2) on every circle (1).
Moreover, there are q2(q − 1) circles of the first type. For circles of the second type, we consider the equation
Tr(sz) = c, i.e.

B2
(s,c) : sz + sz = c (2)

for s ∈ GF(q2)\{0} and c ∈ GF(q). For every such choice of s and c, Equation (2) has q solutions in GF(q2). To
obtain circles of the second type, we take those q solutions together with∞. There are (q2 − 1)q choices for
s and c, but scaling with any element of GF(q)\{0} leads to the same circle. Hence there are q(q + 1) circles
of the second type. There are q3 + q circles in total and on each circle there are q + 1 points. This can also be
seen by (M1), as three points uniquely define a circle. Now let a, b, c, d ∈ GF(q2) such that ad − bc ̸= 0. The
map μ defined by

μ :𝕄(q) → 𝕄(q), μ(z) =

{{{{{{
{{{{{{
{

az+b
cz+d if z ̸= ∞ and cz + d ̸= 0
∞ if z ̸= ∞ and cz + d = 0
a
c if z = ∞ and c ̸= 0
∞ if z = ∞ and c = 0

is called a Möbius transformation of 𝕄(q). Every Möbius transformation is an automorphism of 𝕄(q).
A Möbius transformation of the form μ(z) = 1/z is an inversion in the unit circle zz = 1, which means
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that the unit circle is fixed under μ. Möbius planes in which for every circle there exists an inversion are
called inversive Möbius planes. In [4] it is shown that the finite inversive Möbius planes are exactly the finite
Miquelian Möbius planes.

Note that the group of all Möbius transformations is sharply triply transitive, i.e. there is a uniqueMöbius
transformationmapping any three points into any other three given points. Formore background information
on finite Möbius planes, one can refer to [5].

2 Steiner’s Theorem in𝕄(q)
For a circle of the first type B1

(s,c), we refer to s as the center of B
1
(s,c), and c is the square of the radius. Note

that the radius, which is either square root of c, is not necessarily an element of GF(q). Two circles of the first
type are called concentric, if they have the same center. Without loss of generality, we can assume that two
concentric circles have center 0, since the Möbius transformation μ : 𝕄(q) → 𝕄(q) with μ(z) = z − s maps
any two concentric circles with center s to two concentric circles with center 0. In this section we henceforth
consider two concentric circles with center 0, i.e. circlesB1

(0,a) andB
1
(0,b) for a, b ∈ GF(q) \ {0}. For notational

convenience, let us define
Ba := B1

(0,a)

for all a ∈ GF(q) \ {0}.
To obtain more insight into the geometrical properties of the circles, we use Cartesian coordinates in this

section, where z = x + αy represents the point (x, y) and z̄ the point (x, −y). The circleBa2 is then given by

Ba2 : x2 − δy2 = a2,

where δ is a nonsquare in GF(q). Any such circle intersects the x-axis, i.e. the circle of the second type given
by y = 0, in the two points (±a, 0). Now consider the unit circleB1 given by x2 − δy2 = 1 and the point (1, 0).
It is an easy exercise to show that there are exactly two circles which are tangent to both B1 and Ba2 in the
point (1, 0). The first circle has center ( a+12 , 0) and radius a−1

2 , the other one has center (−a+12 , 0) and radius
a+1
2 . Figure 2 page shows those two common tangent circles.

Figure 2: Common tangent circles ofB1 andBa2
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Now consider any (q + 1)th root of unity P, i.e. an element in GF(q2) which satisfies Pq+1 = 1. Since
PP = Pq+1, the rotation given by z 󳨃→ Pz fixes both circles B1 and Ba2 . Moreover, this rotation is a Möbius
transformation and hence takes common tangent circles ofB1 andBa2 again into common tangent circles of
B1 and Ba2 . In particular, there are two circles tangent to B1 at the point P that are also tangent to Ba2 , one
in the point aP and the other in the point −aP. Note that we use the parameter a2 as subscript, as we need it
to be a square in GF(q) for the circlesB1 andBa2 to have common tangent circles.

For a ∈ GF(q) \ {0}, let
τ(a) := {g ∈ 𝔹 : |Ba ∩ g| = 1}

denote the set of all tangent circles ofBa and

τ(a, b) := τ(a) ∩ τ(b)

the set of all common tangent circles ofBa andBb. The following lemma summarizeswhat we just discussed.

Lemma 2.1. If b/a ̸= 1 is a square in GF(q), then |τ(a, b)| = 2(q + 1), otherwise |τ(a, b)| = 0.

The 2(q+1) common tangent circles ofB1 andBa2 partition into two sets. Let P again be a fixed (q+1)th
root of unity. There is one set of q +1 common tangent circles with radius a−1

2 and tangent toB1 in the points
Pj and tangent toBa2 in the points aPj, for j = 0, . . . , q. The other q+1 common tangent circles ofB1 andBa2

have radius a+1
2 and are tangent toB1 in the points Pj and tangent toBa2 in the points −aPj, for j = 0, . . . , q.

Now we want to construct Steiner chains using the common tangent circles of two concentric circles B1
and Ba2 . Note again that the following discussion already covers all cases for two concentric circles Ba and
Bb with a, b ∈ GF(q); to see this, look at the Möbius transformation μ(z) = z/η for η ∈ GF(q2) such that
ηη = a. Note that such an η always exists by the properties of the normmap. Then μmaps the circlesBa and
Bb toB1 andBb/a, respectively.

A Steiner chain of length k ≥ 3 forB1 andBa2 is a chain of k different circles T1, . . . , Tk in τ(1, a2) such
that |Ti ∩ Ti+1| = 1 for i = 1, . . . , k − 1 and |Tk ∩ T1| = 1. Moreover, all circles Ti, i = 1, . . . , k need to be of
the form

Ti = B1
(si ,c).

Note that all these circles Ti have the same radius, only their centers are shifted. One could define degenerate
Steiner chains as well by allowing circles with different radii. In this case, we always obtain a degenerate
chain forB1 andBa2 by considering

B1
( a+12 , a−12 )

→ B1
( a−12 , a+12 )

→ B1
( −a−12 , a−12 )

→ B1
( −a+12 , a+12 )

→ B1
( a+12 , a−12 )

.

Theorem 2.2. If there are two common tangent circles of B1 and Ba2 with the same radius which are tangent
to each other, then a Steiner chain of length k ≥ 3 for some k dividing q + 1 can be constructed.

Proof. We start with two such common tangent circles T1 and T2 of B1 and Ba2 with the same radius and
|T1 ∩ T2| = 1. For some root of unity P, the rotation z 󳨃→ Pz takes the pair (T1, T2) to the pair (T2, T3), which
is again a pair of common tangent circles of B1 and Ba2 which are tangent to each other. We can repeat this
rotation k times, for k a divisor of q +1 and see that we finally end up with the pair (Tk , T1), which is a pair of
common tangent circles ofB1 andBa2 with |T1 ∩ Tk| = 1. In other words, we just constructed a Steiner chain
of length k. 2

Now we obtain our finite version of Steiner’s Theorem.

Theorem 2.3. Consider the circles B1 and Ba2 and assume that we can construct a Steiner chain starting with
a point P onB1. Then a Steiner chain of the same length can be constructed starting with any other point onB1.

Proof. This is immediate by using again a rotation by a root of unity. 2



60 | Hungerbühler and Kusejko, Steiner’s Porism in finite Miquelian Möbius planes

3 The plane𝕄(5)
We have a closer look at the Möbius plane𝕄(5) constructed over GF(5)(α) with α2 = 3, as described in the
preliminaries. Consider the two circles

B1 := B1
(0,1) = {1, 3 + α, 2 + α, 4, 2 + 4α, 3 + 4α} and B4 := B1

(0,4) = {2, 1 + 2α, 4 + 2α, 3, 4 + 3α, 1 + 3α}.

Since 4
1 = 2

2 is a square, the two circles have exactly 12 common tangent circles. which are given by

T1 := B1
(4,4) = {1, 2, 2α, 3 + 2α, 3α, 3 + 3α}

T2 := B1
(2+α,4) = {α, 4 + α, 1 + 3α, 3 + 3α, 1 + 4α, 3 + 4α}

T3 := B1
(3+α,4) = {α, 1 + α, 2 + 3α, 4 + 3α, 2 + 4α, 4 + 4α}

T4 := B1
(1,4) = {3, 4, 2α, 2 + 2α, 3α, 2 + 3α}

T5 := B1
(3+4α,4) = {2 + α, 4 + α, 2 + 2α, 4 + 2α, 4α, 1 + 4α}

T6 := B1
(2+4α,4) = {1 + α, 3 + α, 1 + 2α, 3 + 2α, 4α, 4 + 4α}

and

T7 := B1
(1+3α,1) = {3 + 2α, 4 + 2α, 3α, 2 + 3α, 3 + 4α, 4 + 4α}

T8 := B1
(4+3α,1) = {1 + 2α, 2 + 2α, 3α, 3 + 3α, 1 + 4α, 2 + 4α}

T9 := B1
(3,1) = {2, 4, α, 1 + α, 4α, 1 + 4α}

T10 := B1
(4+2α,1) = {1 + α, 2 + α, 2α, 3 + 2α, 1 + 3α, 2 + 3α}

T11 := B1
(1+2α,1) = {3 + α, 4 + α, 2α, 2 + 2α, 3 + 3α, 4 + 3α}

T12 := B1
(2,1) = {1, 3, α, 4 + α, 4α, 4 + 4α}.

Note that T1 is tangent to B1 in 1 and tangent to B4 in 2. Next, consider T2, which is tangent to B1 in
3 + 4α and tangent toB4 in 1 + 3α. Note that T1 and T2 only intersect in 3 + 3α, i.e. they are tangent. Having
a closer look at T2, we see that only two of the 12 circles above are tangent to T2 in points not on B1 or B4,
namely T1, which we already considered, and T3, which is tangent to T2 in α. Apparently, from now on, there
is a unique way of constructing a chain of common tangent circles ofB1 andB4. Proceeding, we find that T4
is tangent to T3 in 2+3α. Then T5 is tangent to T4 in 2+2α. Finally, we find that T6 is tangent to T5 in 4α and
also T1 is tangent to T6 in 3 + 2α, which closes the chain of circles.

Note that those six tangent points lie on a circle itself, namely on

B2 := B1
(0,2) = {α, 2 + 2α, 3 + 2α, 2 + 3α, 3 + 3α, 4α}.

Summarizing, we denote this chain by

T1
3 + 3α
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ T2

α
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ T3

2 + 3α
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ T4

2 + 2α
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ T5

4α
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ T6

3 + 2α
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ T1.

Note that for the above chain, we only use six out of the twelve common tangent circles of B1 and B4, so let
us start with a tangent circle not used so far, e.g. T7. We find the chain

T7
3α
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ T8

1 + 4α
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ T9

1 + α
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ T10

2α
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ T11

4 + α
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ T12

4 + 4α
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ T7.

Again, the six tangent points form a circle, namely

B3 := B1
(0,3) = {1 + α, 4 + α, 2α, 3α, 1 + 4α, 4 + 4α}.

We proceed from here and look at the circles through two consecutive (where the order is defined by the
chain before) points ofB1 and the corresponding tangency point onB2. We obtain six new circles, which are
all tangent toB2, given by
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S1 := B1
(1+α,2) = {1, 1 + 2α, 3 + 3α, 4 + 3α, 3 + 4α, 4 + 4α}

S2 := B1
(2α,2) = {2, 3, α, 3α, 2 + 4α, 3 + 4α}

S3 := B1
(4+α,2) = {4, 4 + 2α, 1 + 3α, 2 + 3α, 1 + 4α, 2 + 4α}

S4 := B1
(4+4α,2) = {4, 1 + α, 2 + α, 1 + 2α, 2 + 2α, 4 + 3α}

S5 := B1
(3α,2) = {2, 3, 2 + α, 3 + α, 2α, 4α}

S6 := B1
(1+4α,2) = {1, 3 + α, 4 + α, 3 + 2α, 4 + 2α, 1 + 3α}.

These six circles form a chain of tangent circles as well. Moreover, there is a unique circle, apart from B2,
which is tangent to all of those six new circles, namelyB3.

We can perform the same procedure once more, i.e. we consider circles through two consecutive points
on B3 and the corresponding tangency point of the chain in consideration. We obtain six common tangent
circles ofB1 andB4, i.e. we have two chains including all twelve common tangent circles of ofB1 andB4.

Figure 3 summarizes the above discussion, with B4 appearing in two places because the configuration
showing the two Steiner chains of six circles each cannot exist in the Euclidean plane.

B4

B2

B1B3

B4

1 232

3 + 3α

3 + 2α

2 + 3α

2 + 2α

α

4α

3 + 4α

1 + 3α

2 + 4α

4 + 3α

4

3

2 + α

4 + 2α

3 + α

1 + 2α

Figure 3: An example in𝕄(5).
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4 Existence and length of Steiner chains
In what follows, we are mainly interested in the existence of Steiner chains as well as their possible lengths.

Lemma 4.1. Let −a be a nonsquare in GF(q). Then a Steiner chain for B1 and Ba2 can be constructed starting
withB1

(s,c) andB1
(sP,c) for

s = a + 12 , c = (a − 12 )
2

and P = −a
2 + 6a − 1 + 4(a − 1)√−a
(1 + a)2

. (3)

If −a is a square in GF(q), then no Steiner chain can be constructed for the pairB1 andBa2 .

Proof. By the finite version of Steiner’s Theorem (i.e. Theorem 2.3) we can start without loss of generality
with the point 1 on B1 and the point a on Ba2 . The parameters s and c for the circle B1

(s,c) touching B1 and
Ba2 in these two points are straightforward. It is well-known that if there is another circle h ∈ τ(1, a2) with
|h ∩ B1

(s,c)| = 1, then there is a common tangent line l of those two circles through the origin. Moreover, h is
obtained by a reflection of B1

(s,c) at l. By a straightforward calculation, we find that the tangent line of B
1
(s,c)

through the origin touchesB1
(s,c) in the point Q, given by

Q = 2a
a + 1 +

√−a a − 1
a + 1 .

Reflecting the point 1 at the line through 0 and Q gives indeed the formula for P in (3).
If −a is a square in GF(q), then P lies in GF(q). Since 1 and −1 are the only elements in GF(q) on B1, we

need −a to be a nonsquare in GF(q). 2

Theorem 4.2. Let B1 and Ba2 be circles of 𝕄(q). If q ≡ −1 (mod 4), exactly one Steiner chain can be con-
structed with B1 and Ba2 . If q ≡ 1 (mod 4), then either two or zero Steiner chains can be constructed with B1
andBa2 , depending on whether or not a is a square in GF(q).

Proof. In the proof of Lemma 4.1 we have seen that for −a a nonsquare, a Steiner chain can be constructed
starting with the circle B1

(s,c) for s =
a+1
2 and c = ( a−12 )

2. Of course, the whole proof can be done replacing
a by −a. For q ≡ −1 (mod 4), a is a square if and only if −a is a nonsquare, and hence exactly one Steiner
chain can be constructed. For q ≡ 1 (mod 4), a is a square if and only if −a is a square. Therefore, we can
construct either two Steiner chains or none. 2

Before we state our general result about the length of a Steiner chain, we discuss some specific cases for
𝕄(q) in detail. First we give a criterion for Steiner chains of length 3.

Corollary 4.3. A Steiner chain of length 3 can be constructed forB1 andBa2 in𝕄(q) if and only if

a = 7 + 4√3 ∈ GF(q)

and −a is a nonsquare in GF(q). In particular, this is possible only if q = pm for some prime p ≡ ±1 (mod 12).

Proof. By Lemma4.1we know that−a has to be a nonsquare in GF(q). Moreover, if−a is a nonsquare in GF(q),
we can find two circles in τ(1, a2)which are tangent toB1

(s,c), namelyB1
(sP,c) andB

1
(sP,c)

, for P given by (3). For
a Steiner chain of length 3, also B1

(sP,c) and B1
(sP,c)

need to be tangent. So we need P3 = 1, or similar P2 = P
(see Figure 4).

Solving this equation for a leads to a = 7 + 4√3. This is possible only if 3 is a square in GF(q). It is well-
known (see for example [6]) that 3 is a square in GF(q) only if p ≡ ±1 (mod 12), which gives a necessary
condition for q. 2

Note that this already excludes the existence of a Steiner chain of length 3 in𝕄(5). Indeed, we have seen
in Section 3 that only Steiner chains of length 6 occur for two concentric circles in𝕄(5).

In𝕄(11), however, we can find Steiner chains of length 3. For this, we calculate that a = 7 + 4√3 is 5 or
9 in GF(11). Moreover, −5 = 6 as well as −9 = 2 are nonsquares in GF(11). So Steiner chains of length 3 can
be constructed forB1 andB3 as well as forB1 andB4.
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B1

Ba2

1

P

P 2

Figure 4: A Steiner chain of length 3.

Corollary 4.4. A Steiner chain of length 4 can be constructed forB1 andBa2 in𝕄(q) if and only if

a = 3 + 2√2 ∈ GF(q)

and −a is a nonsquare in GF(q). In particular, this is possible only if q = pm for some prime p ≡ ±1 (mod 8).

Proof. Again by Lemma 4.1, −a has to be a nonsquare in GF(q). Moreover, if −a is a nonsquare in GF(q), we
have two circles B1

(sP,c) and B1
(sP,c)

in τ(1, a2), which are tangent to B1
(s,c) with P given by (3). For a Steiner

chain of length 4, we need P4 = 1 or similar, P2 = −1 (see Figure 5).

B1

Ba2

P

P 3

1−1

Figure 5: A Steiner chain of length 4.

Solving this equation for a gives a = 3 + 2√2. This is possible only if 2 is a square in GF(q). Again by [6],
this implies that q = pm for some prime p ≡ ±1 (mod 8). 2
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Let us have a look at𝕄(7). We calculate that a = 3 + 2√2 is 2 or 4 in GF(7). Moreover, −2 = 5 as well as
−4 = 3 are nonsquares in GF(7). So Steiner chains of length 4 can be constructed for B1 and B2 as well as
B1 and B4. Note that 1, 2 and 4 are the only squares in GF(7), hence only Steiner chains of length 4 can be
constructed usingB1 andBb. Moreover, 2 is not a square in GF(11), so in𝕄(11) there are no Steiner chains
of length 4.

Similarly we obtain a criterion for Steiner chains of length 6.

Corollary 4.5. A Steiner chain of length 6 can be constructed forB1 andBa2 in𝕄(q) if and only if a ∈ {3, 1/3}
and −3 is a nonsquare in GF(q).

This criterion is different from the criterion for Steiner chains of length 3 and 4, since no square root
appears in the expression for a above.

By Theorem 2.3 the existence of a Steiner chain of length 6 in𝕄(q) implies that 6 divides q + 1. For p
prime, the condition 6 | p + 1 is actually equivalent with −3 being a nonsquare in GF(p), which can be seen
by number theoretic calculations only. Note that in𝕄(5), this gives 32 = 4 = 3−2, i.e. only for B1 and B4 a
Steiner chain of length 6 can be constructed. Compare these results also to Section 3.

Now we look at the conditions for Steiner chains of length 5 and 8. The expressions for a become more
andmore difficult, since equations of higher order need to be solved. In particular, for Steiner chains of length
5 we need to solve P5 = 1, and for Steiner chains of length 8 we need to solve P4 = −1.

Corollary 4.6. A Steiner chain of length 5 can be constructed forB1 andBa2 in𝕄(q) if and only if

a = 11 − 4√5 + 2√50 − 22√5 ∈ GF(q)

and −a is a nonsquare in GF(q).

We know that if 5 is a square in GF(q), then q = pm for some prime p ≡ ±1 (mod 5), which gives a
necessary, but not sufficient condition for the existence of Steiner chains of length 5.

Corollary 4.7. A Steiner chain of length 8 can be constructed forB1 andBa2 in𝕄(q) if and only if

a = 7 − 4√2 + 2√2(10 − 7√2) ∈ GF(q)

and −a is a nonsquare in GF(q).

Note that 2has to be a square, similar to the condition for Steiner chains of length 4. This is not surprising,
since 8 is a multiple of 4.

Now we are ready to give a condition for Steiner chains of length k ≥ 3.

Theorem 4.8. Let a ∈ GF(q). A Steiner chain of length k ≥ 3 can be constructed for B1 and Ba2 in𝕄(q) if and
only if the following conditions are satisfied:

(1) −a is a nonsquare in GF(q);
(2) a solves the equation Pk = 1 where P is given by

P = −a
2 + 6a − 1 + 4(a − 1)√−a
(1 + a)2

(4)

but Pl ̸= 1 for 1 ≤ l ≤ k − 1.

Proof. Assume that there exists a Steiner chain of length k. By Lemma 4.1, −a has to be a nonsquare in GF(q)
to obtain two circlesB1

(sP,c) andB1
(sP,c)

which are both tangent toB1
(s,c). Again by Theorem 2.3, we know that

starting with two such circlesB1
(sP,c) andB

1
(s,c) in τ(1, a

2)which are tangent, we end upwith a proper Steiner
chain. Moreover, the length of the Steiner chain is then given by the smallest integer k such that Pk = 1, i.e.
we are back at the starting point.

Now assume that the above three conditions are satisfied. Since −a is a nonsquare, we can apply
Lemma 4.1 to obtain a Steiner chain. Since k is by assumption such that Pk = 1 but Pl ̸= 1 for all 1 ≤ l ≤ k −1,
the length of the Steiner chain is indeed k. 2
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5 Generalization
Two disjoint circles in𝕄(q) define a non-intersecting pencil. Such a pencil consist of q − 1 circles and two
limiting points. A Möbius transformation that sends the limiting points to 0 and∞, and a point on one of
the given circles to 1, will take the given circles to a pair of circles centered at 0, one of which is describes by
zz̄ = 1 (see [4], [5] for details, and Section 5.2). This is the same procedure as in the usual proof of Steiner’s
porism in the classical Möbius plane. It allows, also in𝕄(q), to transform a general pair of disjoint circles
into the standard pair treated in the previous sections, and to apply the corresponding results. However, it is
convenient, also from a computational point of view, to skip the transformation step, and to apply the results
in the previous theorems directly to a given pair of disjoint circles. This is done by introducing a Möbius
invariant for arbitrary pairs of circles.

5.1 A Möbius invariant for pairs of circles

In the Euclidean plane two non-intersecting circles form a capacitor. The capacitance is a conformal invariant
and therefore in particular invariant under Möbius transformations. Here we present a discrete analogue of
this fact which will be used later to decide whether any two non-intersecting circles carry a Steiner chain of
length k.

The capacitance associates an element of GF(q) to any pair of circles in𝕄(q) and is defined as follows:

cap(B1
(s1 ,c1),B

1
(s2 ,c2)) :=

1
c1c2
(c1 + c2 − (s1 − s2)( ̄s1 − ̄s2))2

cap(B1
(s1 ,c1),B

2
(s2 ,c2)) = cap(B

2
(s2 ,c2),B

1
(s1 ,c1)) :=

1
c1s2 ̄s2
(s1 ̄s2 + ̄s1s2 − c2)2

cap(B2
(s1 ,c1),B

2
(s2 ,c2)) :=

1
s1 ̄s1s2 ̄s2

(s1 ̄s2 + ̄s1s2)2.

It turns out that this quantity is indeed invariant under Möbius transformations:

Theorem 5.1. LetB, B̃ be two circles and μ a Möbius transformation. Then cap(B, B̃) = cap(μ(B), μ(B̃)).

Proof. It is easy to check that cap is invariant under translations z 󳨃→ ζ = z + a, a ∈ GF(q2) and similarity
transformations z 󳨃→ ζ = bz, b ∈ GF(q2) \ {0}. The only tedious part of the proof is to check that cap is
invariant under the reciprocation μ : z 󳨃→ ζ = 1/z, since in this case circles may change from first type to
second type and vice versa: It is elementary to check that

μ(B1
(s,c)) =
{{
{{
{

B1
( ̄s
s ̄s−c ,

c
(s ̄s−c)2
)

if s ̄s ̸= c

B2
( ̄s,1) if s ̄s = c

and μ(B2
(s,c)) =
{
{
{

B1
( ̄s
c ,

s ̄s
c2
)

if c ̸= 0

B2
( ̄s,0) if c = 0.

We only carry out the invariance proof for one prototypical case of two circles B1
(s1 ,c1) with s1 ̄s1 = c1 and

B1
(s2 ,c2) with s2 ̄s2 ̸= c2. In this case,

cap(B1
(s1 ,c1),B

1
(s2 ,c2)) =

1
c1c2
(c1 + c2 − (s1 − s2)( ̄s1 − ̄s2))2 =

1
c1c2
(c2 + s1 ̄s2 + s2( ̄s1 − ̄s2))2 (5)

where we have used s1 ̄s1 = c1. On the other hand,

cap(μ(B1
(s1 ,c1)), μ(B

1
(s2 ,c2))) = cap(B

2
( ̄s1 ,1),B

1
( ̄s2
s2 ̄s2−c2

, c2
(s2 ̄s2−c2)2

)
)

=
1

c2
(s2 ̄s2−c2)2 s1 ̄s1

(
̄s2

s2 ̄s2 − c2
s1 +

s2
s2 ̄s2 − c2

̄s1 − 1)
2
=
(s2 ̄s2 − c2)2

c1c2
(
̄s2

s2 ̄s2 − c2
s1 +

s2
s2 ̄s2 − c2

̄s1 − 1)
2

(6)

again since s1 ̄s1 = c1. Obviously, the expressions in (5) and (6) agree. The other cases are similar. 2

In a next step we show that, as it is the case in the classical Möbius plane, it is possible to transform any two
non-intersecting Möbius circles into concentric circles.
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5.2 Transformation of non-intersecting circles into concentric circles

Theorem 5.2. Any two disjoint circles in 𝕄(q) can be mapped to concentric circles using a suitable Möbius
transformation.

We give a combinatorial proof which uses the following results.

Lemma 5.3. For any given circleB there are 1
2 (q

3 − 3q2 + 2q) circles disjoint toB.

Proof. By axiom (M2), for a point P on B and any other point Q not on B, there is a unique circle tangent to
B through P and Q. There are q2 + 1 points in total and q + 1 points on B. So for any of the q2 − q points
not on B, there is such a unique circle through a given point P on B. Since there are q + 1 points on every
circle, exactly q of these tangent circles are the same. This can be done for every point on B, which leads to
(q + 1)(q2 − q)/q = q2 − 1 circles which are tangent toB.

For the circles intersecting B, note that by axiom (M1) there is a unique circle through two points on B

and any other point not on B. So for two fixed points on B, there are q2−q
q−1 = q circles intersecting B in those

two points. This can be done for any pair of points onB, which leads to 1
2q

2(q + 1) circles which intersectB.
Since there are q(q2 + 1) circles in total, the number of circles disjoint toB is given by

q(q2 + 1) − (q2 − 1) − 12q
2(q + 1) − 1 = 12 (q

3 − 3q2 + 2q). 2

Lemma 5.4. There are exactly q3 − q Möbius transformations which map the unit circle zz = 1 to itself. In
particular, they are given by

μ1(z) =
bz − ba
−az + 1

for bb = 1 and aa ̸= 1, and by μ2(z) = b/z for bb = 1.

Proof. Recall that Möbius transformations act sharply triply transitively. So for {P1, P2, P3} on the unit cir-
cle zz = 1, there are (q+13 ) choices for mapping it to any three points on zz = 1 again. Moreover, for any
choice of three points, there are 3! = 6 such transformations. Hence, there are 3!(q+13 ) = q

3 − q such Möbius
transformations.

Let us have a closer look at μ1. Of course, we have

(
bz − ba
−az + 1)(

bz − ba
−az + 1)

= 1

whenever bb = 1 and zz = 1. The condition aa ̸= 1 ensures that we do not divide by 0. There are q+1 choices
for b and q2 − (q + 1) choices for a. Hence there are q3 − 2q − 1 transformations μ1.

Similarly, μ2maps the unit circle to itself whenever bb = 1, so there are q+1 such transformations. Since
(q3 − 2q − 1) + (q + 1) = q3 − q, these are indeed all such transformations. 2

Now we are ready to prove Theorem 5.2.

Proof of Theorem 5.2. There are q − 2 circles concentric to zz = 1, namely all those circles zz = c for c =
2, . . . , q − 1. We now apply all the Möbius transformations, which map the unit circle to itself, to those con-
centric circles.

Note that every image occurs exactly 2(q + 1) times. To see this, consider first the circle zz = c for c ∈
{2, . . . , q − 1} fixed. Clearly, μ1 for choosing a = 0 maps zz = c to zz = c, for all bb = 1. Moreover, applying
μ2 to zz = 1

c gives zz = c as well, for all bb = 1. Since for any other choice of a in μ1, the center of zz = c is
translated, the circle zz = c occurs 2(q + 1) times when applying all q3 − q Möbius transformations μ1 and
μ2 described above to zz = c. Similarly we can be proceed for other circles (z − s)(z − s) = c.

So we apply the q3 − q Möbius transformations to the q − 2 circles concentric to zz = 1. Every image
occurs 2(q + 1) times, i.e. we get

(q − 2)(q3 − q)
2(q + 1) =

1
2 (q

3 − 3q2 + 2q)

circles, which is by Lemma 5.3 exactly the number of circles disjoint to zz = 1. 2
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5.3 General criterion for Steiner chains

Let B and B̃ be non-intersecting circles in𝕄(q). As we have seen in Section 5.2, it is possible to transform
them into μ(B) = B1

(0,1), μ(B̃) = B
1
(0,b) by a suitable Möbius transformation. By Theorem 5.1 we have

κ := cap(B, B̃) = cap(μ(B), μ(B̃)) = cap(B1
(0,1),B

1
(0,b)) =

1
b
(1 + b)2.

Solving for b gives b = 1
2 (κ−2±√κ(κ − 4)). Changing between the two possible signs corresponds to applying

anadditional inversion z 󳨃→ 1/z to both circles, andwemay take theplus signby convention. Then the general
criterion follows from Theorem 4.8:

Theorem 5.5. LetB and B̃ be non-intersecting circles, let κ := cap(B, B̃) and b := 1
2 (κ −2+√κ(κ − 4)), and let

b = a2 with a in GF(q). ThenB and B̃ carry a Steiner chain of length k ≥ 3 if and only if the following conditions
are satisfied:

(1) −a is a nonsquare in GF(q);
(2) a solves the equation Pk = 1 where P is given by

P = −a
2 + 6a − 1 + 4(a − 1)√−a
(1 + a)2

(7)

but Pl ̸= 1 for 1 ≤ l ≤ k − 1.

6 Comparison to the Euclidean plane
Steiner’s Porism is well understood in the Euclidean plane. For two concentric circles of radius 1 and R, a
Steiner chain of length k which wraps around the inner circle once can be constructed if and only if

R = 1 + sin(φ)1 − sin(φ)

where φ = π
k . For some values of k, we can express sin( πk ) explicitly in terms of radicals. In the following

table, we calculate R for some values of k.

k 180
k sin π

k R

3 60 √3
2 7 + 4√3

4 45 √2
2 3 + 2√2

5 36
√10−2√5

4 11 − 4√5 + 2√50 − 22√5

6 30 1
2 3

8 22.5
√2−√2

2 7 − 4√2 + 2√20 − 14√2

Table 1: Some values for Steiner chains of length k.

Note that our values for R coincidewith the values for a calculated in the Lemmas 4.3, 4.4, 4.6, 4.5 and 4.7.
Let us have a closer look at why this is the case. Recall that for two common tangent circles of B1 and Ba2 ,
we calculated in Lemma 4.1 the point in which the second circle of the chain is tangent toB1, namely

P = −a
2 + 6a − 1 + 4(a − 1)√−a
(1 + a)2

. (8)

For the construction of a Steiner chain, we needed −a to be a nonsquare in GF(q). So we rewrite P as
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P = −a
2 + 6a − 1
(1 + a)2

+ √−a4(a − 1)
(1 + a)2

. (9)

Note that −a2+6a−1(1+a)2 and 4(a−1)
(1+a)2 are both in GF(q). By assumption, √−a is not in GF(q), so we consider P as an

element of GF(q)(√−a), which is isomorphic to GF(q2). So we can write all elements of GF(q)(√−a) in the
form z = x + y√−a. We refer to x as the real part of z, denoted by ℜ(z), and to y as the imaginary part of z,
denoted by ℑ(z).

Recall that for a Steiner chain of length k the tangent points on B1 are given by 1, P, P2, . . . , Pk−1. The
real part of P2 satisfies

ℜ(P2) = 2ℜ(P)2 − 1

and the imaginary part of P satisfies
ℑ(P2) = 2ℜ(P)ℑ(P).

Note that those equations are the same as for the sine and cosine in the Euclidean plane, namely cos(2φ) =
2 cos(φ)2−1 and sin(2φ) = 2 cos(φ) sin(φ). Hence calculating P2 is in a sense the same as doubling the angle
between 1 and P.

Acknowledgements: We would like to thank J. Chris Fisher for his very helpful comments and detailed sug-
gestions which helped to improve the presentation of this article considerably.
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