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ABSTRACT. Let (M, g) be an oriented Riemannian manifold of dimension at
least 3 and X € X(M) a vector field. We show that the Monge-Ampeére
differential system (M.A.S.) for X-pseudosoliton hypersurfaces on (M, g) is
equivalent to the minimal hypersurface M.A.S. on (M, g) for some Riemannian
metric g if and only if X is the gradient of a function w, in which case g =
e~2"g. Counterexamples to this equivalence for surfaces are also given.

1. INTRODUCTION

Recall that a smooth family of hypersurfaces F; : ¥* — M"*! t > 0, in a
Riemannian manifold (M, g) is called a solution of the mean curvature flow (M.C.F.)
on (0,7), T >0, if

%Ft =-H, on ¥ x (0,7),

Fy=f, on X,

where f: ¥ — M is a given initial hypersurface and H denotes the mean curvature
vector of F;(X). Suppose there exists a conformal Killing vector field X on M with
flow ¢ : M xR — M. A family of hypersurfaces F; is said to be a soliton solution of
the M.C.F. with respect to the conformal Killing vector field X if £, = o H(Fy,t) is
stationary in the normal direction, i.e. F}(X) is the fixed hypersurface f(). In [8]
it was shown that for a given initial hypersurface f : ¥ — M to give rise to a soliton
solution of the mean curvature flow it is necessary that

(1.1) H+ X't =0,

where L denotes the g-orthogonal projection onto the normal bundle of the hyper-
surface f: ¥ — M. If X is Killing, then (LI is also sufficient.

Soliton solutions have played an important role in the development of the theory
of the M.C.F. Such solutions served, e.g., as tailor-made comparison solutions to
investigate the development of singularities (e.g. Angenent’s self-similarly shrinking
doughnut; see [3]). Actually, soliton solutions appear as blowups of so-called type II
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singularities of the flow of plane curves (see [2]). Moreover, soliton solutions turn
out to enjoy certain stability properties and allow some insight into the behaviour
of the mean curvature flow viewed as a dynamical system (see [8], [13] and [6]).

In [§] the boundary value problem for rotating soliton solutions has been dis-
cussed. The corresponding local existence result has been generalised to arbitrary
Killing fields in [9]. For rotating solitons in the Euclidean plane, so-called yin-yang
curves, a quantity was identified that remains invariant along the curve (see [9]).
This invariant made it possible to show that yin-yang curves share fundamental
geometric properties with geodesic curves. In [9] the corresponding results have
been generalised to arbitrary soliton curves on surfaces (see Figure[l)). In addition,

FIGURE 1. If the Gaussian curvature of the simply connected am-
bient surface is less than or equal to 0, then two soliton curves
intersect in at most one point. This fact is illustrated here by two
yin-yang curves rotating about the origin.

it was observed in [9] that translating solitons in the Euclidean plane, the so-called
grim reaper curves, actually are geodesics with respect to a conformally deformed
Riemannian metric. Therefore the natural question arose whether soliton curves
are (at least locally) always geodesic curves with respect to a modified Riemann-
ian metric. This is not the case. On a surface (M, g), the solutions of (L)) are
immersed curves on M which may be reparametrised to become geodesics of the
Weyl connection Vy x given by

(Y1,Y2) = (Dg)y, Yo —g(Y1,Y2)X 4+ g(X, Y1) Y2 + 9(X,Y2) Yy,

where we have written Dy for the Levi-Civita connection of g. The equation (L.1)
is parametrisation invariant, and thus its solutions are naturally interpreted as the
geodesics of a projective structure on M. Recall that a projective structure is
an equivalence class of affine torsion-free connections, where two such connections
are said to be equivalent if they have the same geodesics up to parametrisation.
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Recently in [4], Bryant, Dunajski and Eastwood determined the necessary and suf-
ficient local conditions for an affine torsion-free connection to be projectively equiv-
alent to a Levi-Civita connection. Applying their resultd] it follows that the Weyl
connection whose geodesics are the yin-yang curves is not projectively equivalent to
a Levi-Civita connection. However Jiirgen Moser conjecture that soliton curves
can at least locally be interpreted as geodesics of a Finsler metric. Recent results
about Finsler metrisability of path geometries by Alvarez-Paiva and Berck [1] show
that this is indeed the case. Of course, one can ask analogous questions also for
higher-dimensional solitons. Before we do that, we generalise the notion of soliton
solutions slightly.

Definition. A hypersurface f : ¥ — M solving (1) for some vector field X €
X(M) will be called an X-pseudosoliton hypersurface of (M, g).

Note that the 0-pseudosoliton hypersurfaces are the minimal hypersurfaces of
(M, g). It was observed in [13] (see also [7]) that solitons with respect to gradient
vector fields correspond to minimal hypersurfaces. However it was left open if such a
correspondence holds when the vector field is not the gradient of a smooth function.
In this short article we provide an answer using the framework of Monge-Ampere
differential systems.

In §2 we will associate to the X-pseudosoliton hypersurface equation on (M, g) a
Monge-Ampere system (M.A.S.) on the unit tangent bundle of M whose Legendre
integral manifolds, which satisfy a natural transversality condition, locally corre-
spond to X-pseudosoliton hypersurfaces on M. We then show that for a gradient
vector field X = V u on M, the X-pseudosoliton M.A.S. is equivalent to the min-
imal hypersurface M.A.S. on (M, e ?%g). This was already shown in [13], albeit
expressed in different language. We complete the picture by proving the

Theorem 2.3. The X-pseudosoliton M.A.S. on an oriented Riemannian manifold
(M, g) of dimension n+ 1 > 3 is equivalent to a minimal hypersurface M.A.S. if
and only if X is a gradient vector field.

Theorem 2.3]is wrong for n = 1, i.e. the case of curves on surfaces. We provide
counterexamples and comment on the necessary and sufficient conditions for X in
the surface case. Theorem 2.3 provides an answer to the equivalence problem for
specific M.A.S. in arbitrary dimension n + 1 > 3. The equivalence problem for
general M.A.S. has been studied for 5-dimensional contact manifolds in [5] and in
various low dimensions in [11].

Throughout the article all manifolds are assumed to be connected, and smooth-
ness, i.e. infinite differentiability, is assumed.

2. EQUIVALENCE OF THE SOLITON
AND MINIMAL HYPERSURFACE EQUATION

2.1. Monge-Ampeére systems. Let N be a (2n + 1)-dimensional manifold
equipped with a contact structure, meaning a maximally nonintegrable codimen-
sion 1 subbundle D C T'N which we assume to be given by the kernel of a globally

1Since the computations are somewhat complex, they have been carried out using Maple. The
Maple file can be obtained from the authors upon request.

2Stated on the occasion of a seminar talk of the first author at the Institute for Mathematical
Research (FIM) at ETH Ziirich, March 1999.
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defined contact form 6. Recall that an n-dimensional submanifold f : ¥ — N which
satisfies f*0 = 0 is called a Legendre submanifold of (N, D). A Monge-Ampere dif-
ferential system on (N, D) is a differential ideal M C A*(N) in the exterior algebra
of differential forms on N given by

M={0,d0,¢},

where ¢ € A"(N) is an n-form P The brackets { } denote the algebraic span of the
elements within; i.e., the elements of M may be written as

aNO+BAAI+ Ao,

where «, 3, are differential forms on N. Note that M is indeed a differential
ideal since d¢ lies in the contact ideal C = {6, d6}; cf. [5]. A Legendre submanifold
of (N, D) which pulls back to 0 the n-form ¢ as well will be called a Legendre
integral manifold of M. Two Monge-Ampere systems (N, M) and (N, M) are
called equivalent if there exists a diffeomorphism @ : N — N identifying the two
ideals. Note that this implies that v is a contact diffeomorphism.

2.2. Minimal hypersurfaces via frames. In order to fix notation we review the
description of minimal hypersurfaces using moving frames. For n > 1, let (M, g) be
an oriented Riemannian (n+ 1)-manifold, 7 : F — M its right principal SO(n+1)-
bundle of positively oriented orthonormal frames and 7 : U — M its (sphere)
bundle of unit tangent vectors. Write the elements of F' as (p,eo,...,e,), where
p € M and ey,...,e, is a positively oriented g-orthonormal basis of T, M. The Lie
group SO(n + 1) acts smoothly from the right by

n n
(p7607"'7en)'{r: D, E €T30y« + E €iTin |
i=0 =0

where 7, for i,k = 0, ..., n denote the entries of the matrix . The mapv : F — U,
given by (p, eg, ..., en) — (P, €p), is a smooth surjection whose fibres are the SO(n)-
orbits and thus makes F together with its right action into an SO(n)-bundle over
U. Here we embed SO(n) as the Lie subgroup of SO(n + 1) given by

{( - ) ESO(n—I—l),reSO(n)}.

Let w; € AY(F) denote the tautological forms of F' given by
(wi)(pveov_“’en) (g) = gp (e’i) 71'/(5)) 9

and w;, € A'(F) the Levi-Civita connection forms which satisfy w;s, +wy; = 0. The
dual vector fields to the coframing (w;,w;), % < k, will be denoted by (W;, W ).
Recall that we have the structure equations

n
dwi—l—Zwik Awg =0,

(2.1) k=0

n
dwi + Y wir Awik = Qu,
1=0

3More generally one can define an M.A.S. to be a differential ideal which is only locally gener-
ated by a contact ideal and an n-form. However for our purposes the above definition is sufficient.
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where €, € A%(F) are the curvature forms. Denote by @; the wedge product of
the forms w1, ...,w,, with the i-th form omitted:
dji = W1 /\~~~/\wi,1 /\Wi+1/\"‘/\wn.

For n =1 set w; = 1. Note that the forms

0= wo,

w=wi A Nwnp,

1 i—1 N
p=-0 2(—1) woi N\ Wi
1=

are v-basic, i.e. pullbacks of forms on U which, by abuse of language, will also be
denoted by 0,w, . Since

n
(2.2) dwo = = wok A wk,
k=1

the 1-form 6 is a contact form. Note also that
(2.3) dw+ (=)" tnung=0.

The geometric significance of these forms is the following. Suppose f: X — M is
an oriented hypersurface and Gy : ¥ — U its orientation-compatible Gauss lift. In
other words the value of G at p € X is the unique unit vector at f(p) which is g-
orthogonal to f'(T,X) and together with a positively oriented basis of T),~ induces
the positive orientation of Tt(,) M. By construction we have

(2.4) Gi0=0
and simple computations show that
(2.5) Giw = wpg,

where wy«, denotes the Riemannian volume form on X induced by f*g. Suppose
f:V CX¥ — Fis alocal framing covering Gy and f. Then pulling back (2.4) and
using (2.2) gives

n

Zf*wok/\f*wk =0.

k=1

The independence (2.3 implies that the forms ¢; = f*w; are linearly independent,
and thus Cartan’s lemma yields the existence of functions h;; : V' — R, symmetric
in the indices i, k, such that

n
frwos = E hireg.
k=1

In particular we have
(2.6) Ginw=—Hei N+ Ney,

where H = %Z?:l hi; is the mean curvature of the hypersurface f : ¥ — M.
Conversely if G : N — U is an orientable n-submanifold with G*0 = 0 and G*w # 0,
then 770G : N — M is an immersion. Shrinking N if necessary we can assume that
f=710G: N — M is a hypersurface, which can be oriented in such a way that its
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Gauss lift agrees with G. Thus the Legendre integral manifolds G : ¥ — U of the
M.A.S. Mg, on U, given by

Mg = {97 de, /1'} s
which satisfy the transversality conditions G*w # 0, locally correspond to minimal
hypersurfaces on (M, g).

2.3. X-pseudosoliton hypersurfaces via frames. Given a vector field X on M,
define the functions X; : FF — R by
(2.7) (p, €0 - en) — gp(X(p), e;).
Of course X is the v-pullback of a function on U, which will be denoted by X.
Using (L1) and (2.6) it follows that an oriented hypersurface f : ¥ — M is an
X-pseudosoliton hypersurface if and only if
Gi(p—Xw)=0.
Thus the Legendre integral manifolds G : 3 — U of the M.A.S. M, x on U, given
by
Myx ={0,d0, p — Xw},
which satisfy the transversality conditions G*w # 0, locally correspond to X-pseudo-
soliton hypersurfaces on (M, g). Now suppose X is a gradient vector field X =V, u
for some smooth function v : M — R. Let § = e 2%g, @ : F — M denote the bundle
of positivszly oriented g-orthonormal frames with canonical coframing @;,w;; and
1 : F — F the map which scales a g-orthonormal frame by e“. Then by definition
(2.8) Prw; = e w,
and the structure equations (2.1I)) yield
(2.9) @ik = wik + Upw; — Ui,
where we expand m*du = ZZ:o upwy for some smooth f1_1nctions ug : F'— R. Note
that ug is the v-pullback of the function X. Let 7 : U — M denote the g-unit
tangent bundle with canonical forms fi,w and ¥ : U — U the map which scales a
g-unit vector by e*. Then (2.8) implies that
Yo =e "w,
and thus 1 is a contact diffeomorphism. Moreover (2.8)) and (2.9)) yield

_ em(nmhu & k-1
W= B— Z(—l) (ka +Uk9—uowk)/\wk
(2.10) =1

1
= _e—(n=1u (u -~ Xw+—0A (ivguw)) ;
n
which can be written as a A 0 + v A (1 — Xw) for some (n — 1)-form « and some
smooth real-valued function «v on U. This yields
QZ}*ME*%‘Q = Mg,Vgu-
Summarising we have proved

Proposition 2.1. Let (M, g) be an oriented Riemannian manifold and X = Vg u
a gradient vector field. Then the X-pseudosoliton M.A.S. on (M,g) is equivalent
to the minimal hypersurface M.A.S. on (M,e=2?%g).
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2.4. The nongradient case. Proposition[.I]raises the question if there still exists
a contact equivalence between minimal hypersurfaces and solitons if X is not a
gradient vector field. We will argue next that this is not possible for n > 2, so
assume in this subsection that n > 2. Before providing the arguments we recall a
result from symplectic linear algebra. Suppose (V,©) is a symplectic vector space
of dimension 2n, i.e. © € A%(V*) is nondegenerate. If a form 3 of degree s < p
satisfies

(2.11) BAOn—P =,

then g = 0. This is a corollary of the Lepage decomposition theorem for p-forms
on symplectic vector spaces (cf. [10, Corollary 15.15]). Of course in our setting
the symplectic vector spaces are the fibres of the contact subbundle D and © is
obtained by restricting df to D.

Lemma 2.2. A necessary condition for the X-pseudosoliton M.A.S. to be equivalent
to the minimal hypersurface M.A.S. is the existence of an exact 1-form p such that
d((p—Xw)NO)=pA(p— Xw)Ab.

Proof. Write ¢ = j1 — Xw and suppose there exists a Riemannian metric g and a

diffeomorphism % : U — U such that ¢* Mz = M, x. Then

(2.12) V'a=aN0+BANdO+ v A,

where « is an (n — 1)-form, 8 an (n — 2)-form and v a smooth real-valued function
on U. Note that we have

0=¢pAdb,

0=pAdb.

Wedging ([2.12) with ¢*df, using ([2.13) and that v is a contact diffeomorphism
gives

(2.14) (BAdOAAY) |p =0,

where |p denotes the restriction to the contact subbundle D C TU. Now (2.14)

together with (2.11) implies that 8|p = 0. This yields the existence of an (n — 1)-
form ' such that

(2.13)

B=p"N6.
We can therefore assume that there exists an (n — 1)-form o’ such that
(2.15) P E=a N0+ A

Wedging both sides of ([2.15) with 1*0 gives

P (RAG) = (o) ANO+~Ap) AY*0.
This is equivalent to

v (ENO) =FApAO
for some smooth nonvanishing real-valued function 5. Assume 7 is positive; other-
wise just change signs in the following formulae. Since i A 6 is an exact form (see
@.3)), we must have
d¢ =df A¢,

where we have written £ = ¢ A § and f = —1In|7|. O

Using this lemma we can prove
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Theorem 2.3. The X-pseudosoliton M.A.S. on an oriented Riemannian manifold
(M, g) of dimension n+ 1 > 3 is equivalent to a minimal hypersurface M.A.S. if
and only if X is a gradient vector field.

Remark. Before giving the proof we point out identities which hold for the functions
X; (recall ([.7) for their definition). Since O = (w;i) € A'(F,s0(n + 1)) is a
connection form we have O(W,) = v, where W,, is the vector field obtained by
differentiating the flow

((py€0y.--yen),t) = (p,yeo,...,en) - exp(tv)

and v € so(n+ 1), the Lie algebra of SO(n+ 1). In particular this implies that the
time ¢ flow of the vector field Wy, for ¢ < k maps the frame (p,eq, ..., €, ... €k, .,
en) to the frame

(p,eo,-..,cos(t)e; —sin(t)eg, ..., sin(t)e; + cos(t)ek, ..., en)
and thus
(2.16) Lw,, X; = 6jX; — 6 X,
where £ stands for the Lie derivative.

Proof of Theorem 2.3l We have

dXy = zn:Piwi - En:XkWOk
i=0 k=1

for some smooth functions P; : ' — R. From this it follows with straightforward
computations that the 1-forms p on U which satisfy d¢ = p A £ pull back to F' to
become

n
(2.17) v'p=Awy+n Zkak
k=1

for a smooth function A : F' — R. Differentiating ([2.17) gives

n n

n n
vidp=dA\Awy — Zwok A W +nZka A Wi —nZZka;ﬂ- A w;.
k=1 k=1 i=0 k=1

Wedging with wy A @ yields

n
vidp Awg Ay = ()\wm —ndX; —n Zka1k> Awy A w.
k=1

Using (2.16) we can expand

dX1 /\OJO Nw = ((Emel)wOl + Z (Ewlle)w1k> /\wo A w
k=1

n
k=1
Concluding we get

v¥dp Awg A w1 = (A —nXp)wer Awo Aw.
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Suppose the X-pseudosoliton M.A.S. on (M, g) is equivalent to a minimal hyper-
surface M.A.S. Then, by Lemma [2.2] p has to be exact. This implies that

A= TLXO
and thus

n
v'p=n E Xiw;.
i=0

Note that if x € T'F is a vector tangent to the frame (p, ey, ...,e,), then we have
(Xiw:) () = Y_ gp (9p(X(p), e3)es, 7 (%)) = gp (X(p), 7' (x))
i=0 i=0
and thus
p=nt" (Xb) ,
where X° denotes the g-dual 1-form to X. The 1-form p is exact and thus p = df
for some real-valued function f on U which is locally constant on the fibres of

7:U — M. Since the 7-fibres are connected, it follows that f is constant on the
7-fibres and thus equals the pullback of a smooth function u on M for which

du = nX".

In other words X is a gradient vector field. Conversely if X is a gradient vec-
tor field, then the X-pseudosoliton M.A.S. on (M, g) is equivalent to the minimal
hypersurface M.A.S. on (M, e~2%g) by Proposition R.1] d

Remark. In [5], Bryant, Griffiths and Grossman study the calculus of variations
on contact manifolds in the setting of differential systems. In particular they give
necessary and sufficient conditions for an M.A.S. to be locally of Euler-Lagrange
type, i.e. locally equivalent to an M.A.S. whose Legendre integral manifolds corre-
spond to the solutions of a variational problem. In fact, if one replaces Lemma [2.2]
with [5, Theorem 1.2], a proof along the lines of Theorem 2.3] shows that for n > 2
the X-pseudosoliton M.A.S. is locally equivalent to an M.A.S. of Euler-Lagrange
type if and only if X is a gradient vector field.

2.5. The surface case. Recall that in the case n = 1 of a surface (M, g), the solu-
tions of the X-pseudosoliton equation (1)) are immersed curves on M which may be
reparametrised to become geodesics of a Weyl connection. In his Ph.D. thesis [12],
the second author has constructed a 10-parameter family of Weyl connections on the
2-sphere whose geodesics are the great circles, and thus in particular projectively
equivalent to the Levi-Civita connection of the standard spherical metric. Inspec-
tion shows that there are Weyl connections in this 10-parameter family whose vector
field is not a gradient and thus they provide counterexamples to Theorem [2.3] in
the surface case.

This raises the question of what are the necessary and sufficient conditions for
the X-pseudosolitons curves in order to be the geodesics of a Riemannian metric.
In [12] it was also shown that locally on a surface every affine torsion-free connection
is projectively equivalent to a Weyl connection. Finding the necessary and suffi-
cient conditions thus comes down to finding the necessary and sufficient conditions
for an affine torsion-free connection to be projectively equivalent to a Levi-Civita
connection. Therefore the conditions follow by applying the results in [4], and we
refer the reader to this source for further details.
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