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A set S ⊆ R is called a set of range uniqueness (SRU) for 
the set Pn of real polynomials of degree at most n, if for all 
f, g ∈ Pn, f [S] = g[S] =⇒ f = g. We show that for every 
natural number n, there are SRUs for Pn of cardinality 2n +1, 
but there are no such SRUs of size 2n. We also construct SRUs 
for the set P of all real polynomials.
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1. Introduction

Let F be a set of functions from R to R. Then a set S ⊆ R is called a set of range 
uniqueness (SRU) for F if the following implication holds: For all f, g ∈ F ,
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f [S] = g[S] =⇒ f = g

where f [S] :=
{
y ∈ R | ∃x ∈ S (f(x) = y)

}
. A set S ⊆ R is called a multiset of 

range uniqueness (MSRU) for F if the above implication holds when f [S] and g[S] are 
interpreted as multisets, where multisets are collections in which the elements can appear 
more than once. The concepts SRU and MSRU carry over in the obvious way to functions 
on C instead of R.

Clearly, if S is an (M)SRU for a set F , then S is also an (M)SRU for any subset 
G ⊆ F . On the other hand, we will say that S is a disassociating (M)SRU for G ⊆ F if 
S is an (M)SRU for G, but not for F .

The question of the existence of SRUs has been studied in the past quite intensively. 
For example, SRUs always exist (i.e., provable in ZFC) for the set of all Lebesgue-
measurable functions on R, as has been shown by Burke and Ciesielski in [2]. In [4]
Diamond, Pomerance, and Rubel construct SRUs for the set Cω(C) of entire functions: 
In particular, for N∗ := N \ {0}, 

{ 1
n | n ∈ N∗}, 

{ 1
n! | n ∈ N∗} and 

{
1

ln(n+1) | n ∈ N∗
}

are SRUs for Cω(C). Notice that, for example, S :=
{ 1

n | n ∈ N∗} is not an SRU for the 
set of functions C∞(C), since

f(x + iy) =
{

exp
(
− 1

x2

)
sin

(
π
x

)
for x + iy &= 0,

0 for x + iy = 0,

and the zero-function g(x) = 0 agree on S. Hence, S =
{ 1

n | n ∈ N∗} is a disassociat-
ing SRU for Cω(C) ⊆ C∞(C). The continuum hypothesis implies the existence of an 
SRU for the class Cn(R) of continuous nowhere constant functions from R to R (see 
the work [1] of Berarducci and Dikranjan). Halbeisen, Lischka and Schumacher have 
replaced the continuum hypothesis by a weaker condition (see [5]), but the existence 
of such a set is not provable in ZFC. In [3], Burke and Ciesielski have shown that a 
meager SRU for the family of continuous functions satisfying the Luzin N-condition al-
ways exists for the class of differentiable functions and the class of absolutely continuous 
functions.

If we consider the full regularity spectrum of function spaces, we see that the question 
of SRUs for polynomials has not yet been touched. It is the aim of this article to close 
this gap. We start in Section 2 by constructing SRUs for the set R[x] of real polynomials 
in one variable. Surprisingly, the question of an SRU for the finite dimensional vector 
spaces of polynomials of bounded degree is then much harder to answer (see Sections 3
and 4).

2. An MSRU and an SRU for the set of polynomials

The aim of this section is to construct an SRU for the set R[x] of real polynomials in 
one variable which is not an SRU for the set of entire functions.
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Theorem 1. The set N = {0, 1, 2, . . .} of natural numbers is an MSRU for the set R[x]
of real polynomials in one variable.

Proof. Let p ∈ R[x] be a polynomial. We want to show that p is uniquely determined by 
its multiset p[N]. To do this, we arrange the multiset p[N] in ascending order ξ0 ≤ ξ1 ≤
ξ2 ≤ . . . if p[N] is bounded from below, and in descending order if p[N] is bounded from 
above. In what follows it suffices to consider the first case, the second case is analogous.

There exists α ≥ 0 such that p is monotone increasing on [α, ∞). Let

M := max
{
p(x) | x ∈ [0,α]

}
.

Then there is a number β ≥ α, β ∈ N, such that p(β) ≥ M . It follows that

ξn = p(n) for all n ∈ N, n ≥ β. (1)

Hence, any two polynomials which have the same multiset image p(N) must agree on an 
end-segment of N and are therefore equal. ✷

In order to actually reconstruct the polynomial p from its multiset p(N), one can 
proceed as follows: Consider the difference operator ∆ acting on the set of sequences:

∆(a0, a1, a2, . . .) := (a1 − a0, a2 − a1, . . .).

We apply ∆ repeatedly to the sequence ξ := (ξ0, ξ1, ξ2, . . .): ∆n+1(ξ) = ∆(∆n(ξ)). Then 
it follows from (1) that there is an iteration ∆g(ξ) which has a constant tail ∆g(ξ) =
(∗, ∗, . . . , ∗, c, c, c, . . .), c &= 0. We conclude that g is the degree of the polynomial p, 
and that p is the unique interpolation polynomial of this degree through the points 
(β, ξβ), (β + 1, ξβ+1), . . . , (β + g, ξβ+g).

Remarks.

1. Observe that N is not an SRU for the set of polynomials R[x]: For example, for the 
polynomials p(x) = x(x − 1) and q(x) = x(x + 1), we have that the sets p[N] and 
q[N] agree.

2. We also remark, that there is no algorithm which would allow to compute p from the 
multiset p[N], since one cannot verify in finitely many steps if a certain iteration 
∆n(ξ) has a constant tail.

3. It is easy to see that every cofinite subset of N is also an MSRU for the set of 
polynomials R[x]. On the other hand, a finite set cannot be an MSRU for the set of 
polynomials R[x].

4. As a last remark we would like to mention that for any transcendental number τ , {τ}
is an SRU for the set Q[x] of rational polynomials. The reason is that the reals in the 
field Q(τ) form an infinite dimensional vector space over Q with basis {τn | n ∈ N}. 
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With a similar argument one can show, for example, that for each prime p and for 
every n ∈ N∗, 

{
p

1
n+1

}
is a disassociating SRU for Qn ⊆ Qn+1, where Qn and Qn+1

denote the rational polynomials of degree at most n and n + 1, respectively.

Theorem 2. The set S := N ∪
{
n + 1

n | n ∈ N, n > 0
}

is an SRU for the set R[x] of real 
polynomials in one real variable. S is not an SRU for the set Cω(C) of entire functions.

Proof. Let p ∈ R[x] be a polynomial. We will show, that p can be reconstructed from 
the set p[S]. To do so, we first sort the set p[S] in ascending order ξ0 < ξ1 < ξ2 < . . . if 
p[S] is bounded from below, and in descending order if p[S] is bounded from above. We 
consider only the first case, the second is analogous.

Let, as in the proof of Theorem 1, β ∈ N be such that p is monotone increasing on 
[β, ∞) and p(x) ≤ p(β) for all x ∈ [0, β]. In particular, the values p(n) and p 

(
n + 1

n

)
are 

distinct for all n ≥ β. Hence, for some k ∈ N we have:

ξk = p(β) < ξk+1 = p
(
β + 1

β

)
< ξk+2 = p(β + 1) < ξk+3 = p

(
β + 1 + 1

β + 1
)
< . . .

If we apply repeatedly the difference operator ∆ to the two sequences ξeven := (ξ2n)n∈N

and ξodd := (ξ2n+1)n∈N we will find that, depending on the parity of k, exactly one of 
the sequences ∆g(ξeven) or ∆g(ξodd) has a constant tail (∗, ∗, . . . , ∗, c, c, c, . . .), c &= 0, for 
some g ∈ N. In fact, if k is even, then ∆g(ξeven) has a constant tail and g is the degree 
of p, if k is odd, then ∆g(ξodd) has a constant tail and g is the degree of p. Observe 
that for the sequence η = (p(n + 1

n ))n∈N∗ the m-th difference sequence ∆m(η) can never 
have a zero tail for some m ∈ N (and hence, no constant tail for m − 1). This is because 
the n-th term in the sequence ∆m(η) is given by a rational function with a pole in 0
evaluated in n. Such a function cannot have infinitely many zeros.

Now, we consider the unique interpolation polynomial q of degree g through the points 
(0, ξk), (1, ξk+2), (2, ξk+4), . . .. Then p must be one of the polynomials qj(x) := q(x − j), 
j ∈ N, namely the only qj for which qj(j + 1

j ) = ξk+1.
It remains to show that S is not an SRU for the set of entire functions. Indeed, 

according to the Weierstrass product theorem, there is an entire function with zeros 
exactly in S and which therefore agrees with the zero function on S. ✷

By applying Theorem 2 separately to the real and imaginary part of complex poly-
nomials, one obtains the following:

Corollary 3. The set S := N ∪
{
n + 1

n | n ∈ N∗} is a disassociating SRU for the set 
C[z] of complex polynomials in one complex variable considered as a subset of the entire 
functions Cω(C).
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3. An SRU for Pn of size 2n + 1

In this section we will show that for every s ≥ 2n + 1 there is an SRU of size s for the 
set Pn of all real polynomials of degree at most n. For this, we first introduce a special 
type of directed graphs.

Definition 4. A directed graph G is a pair (V, E), where V is a set (the vertices of G) and 
E ⊆ V × V (the edges of G). The elements of E are denoted (vi, vj), where vi, vj ∈ V . 
For v ∈ V , we define

indegreeG(v) :=
∣∣{v′ ∈ V : (v′, v) ∈ E

}∣∣ ,

outdegreeG(v) :=
∣∣{v′ ∈ V : (v, v′) ∈ E

}∣∣ .

Before we consider special directed graphs, let us give a few general definitions:

Definition 5. Let G = (V, E) be a directed graph.

• A cycle is a subgraph C = (VC , EC) of G with VC = {c0, c1, . . . , cm−1} and EC =
{(ci, c(i+1) mod m) | i ∈ N} for an m ≥ 2.

• A loop is a subgraph L = (VL, EL) of G with VL = {w} and EL = {(w, w)}.
• A path is a subgraph P = (VP , EP ) of G with VP = {p0, p1, . . . , pm−1} and EC =

{(pi, pi+1) | 0 ≤ i ≤ m − 2} for an m ≥ 2.

Let k, n ∈ N∗ with k ≥ 2n and let {x0, x1, . . . , xk} ⊆ R. For all 0 ≤ i ≤ k let 
vi := (xi, x2

i , . . . , x
n
i ). The following family G of directed graphs will play a crucial role 

in the construction of SRUs of size 2n + 1 for the set Pn:

G is the family of all directed graphs G = (V, E) with vertex set V =
{v0, v1, . . . , vk} and a set E of directed edges (vi, vj), such that for each 
v ∈ V we have

indegreeG(v) ≥ 1 and outdegreeG(v) ≥ 1 .

Definition 6. Let l ∈ N. Cycles and loops C0 = (VC0 , EC0), . . . , Cl = (VCl , ECl) are called 
obviously different if for every 0 ≤ i ≤ l there is a yi ∈ VCi with

yi /∈




l⋃

j=0
VCj



 \ VCi .

We partition the family G of directed graphs G = (V, E) into two parts, namely the 
graphs of type 1n and the graphs of type 2n.
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Definition 7. A graph G = (V, E) ∈ G is of type 1n iff there are at most n obviously 
different cycles and loops in G. Otherwise G is of type 2n.

In Sections 3.1 and 3.2, we consider graphs of type 1n and we will show in Proposi-
tion 20, that for every graph G = (V, E) of type 1n and all sets U ∈ Rk+1 which are 
open in the box topology, there is a (2n + 1) × (2n + 1)-matrix

MG(x0, x1, . . . , xk) =





1 vi0 −vj0
1 vi1 −vj1
...

...
...

1 vi2n −vj2n





with il, jl ∈ {0, 1, . . . , k} (for 0 ≤ l ≤ 2n) and (vil , vjl) ∈ E (for 0 ≤ l ≤ 2n), and an 
open set UG ⊆ U in the box topology, such that for all (x0, x1, . . . , xk) ∈ UG we have

det
(
MG(x0, x1, . . . , xk)

)
&= 0 . (2)

Concerning graphs H = (V, E) of type 2n, let C0 = (VC0 , EC0), . . . , Cn = (VCn , ECn)
be n + 1 obviously different loops and cycles. Let xi0 , xi1 , . . . , xin be n + 1 vertices of H
such that for each 0 ≤ l ≤ n, xil ∈ VCl and

xil /∈
(

n⋃

m=0
VCm

)
\ VCl .

We will show in Section 3.3 that for every open set U ⊆ Rk+1 in the box topology there 
is an open set UH ⊆ U in the box topology such that for all (x0, x1, . . . , xk) ∈ UH we 
have

det
(
MH(x0, x1, . . . , xk)

)
&= 0 , (3)

where

MH(x0, x1, . . . xk) =





|VC0 |
∑

x∈VC0
x

∑
x∈VC0

x2 . . .
∑

x∈VC0
xn

|VC1 |
∑

x∈VC1
x

∑
x∈VC1

x2 . . .
∑

x∈VC1
xn

...
...

... . . . ...
|VCn |

∑
x∈VCn

x
∑

x∈VCn
x2 . . .

∑
x∈VCn

xn




.

As a consequence of (2) and (3), and since |G| < ∞, we can find a point 
(m0, m1, . . . , mk) ∈ Rk+1 such that for all G ∈ G of type 1n

det (MG(m0,m1, . . . ,mk)) &= 0

and for all H ∈ G of type 2n
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det (MH(m0,m1, . . . ,mk)) &= 0.

This leads to the following

Theorem 8. The set S := {m0, m1, . . . , mk} is an SRU for Pn.

Proof. Assume towards a contradiction that S is not an SRU for Pn. So, there are two 
polynomials

f(x) = a0 + a1x + a2x
2 + · · · + anx

n

and

g(x) = b0 + b1x + b2x
2 + · · · + bnx

n

such that f &= g but f [S] = g[S]. Let G = (V, E) with

V := S and E := {(mi,mj) | f(mi) = g(mj)}.

Note that G ∈ G. There are two cases:

Case 1: G is of type 1n.
In this case

MG(m0,m1 . . . ,mk) =





1 vi0 −vj0
1 vi1 −vj1
...

...
...

1 vi2n −vj2n





has non-zero determinant. Note that for all 0 ≤ l ≤ n we have that

f(mil) = g(mjl) ⇐⇒

(a0 − b0) + (a1mil + · · · + anm
n
il) − (b1mjl + · · · + bnm

n
jl) = 0.

So, f and g satisfy the following system of linear equations:

MG(m0, . . . ,mk) ·





a0 − b0
a1
...
an
b1
...
bn





=





0
0
...
0
0
...
0





.
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Since det (MG(m0, . . . ,mk)) &= 0, this equation has a unique solution, namely





a0 − b0
a1
...
an
b1
...
bn





=





0
0
...
0
0
...
0





.

Therefore, f = g, which is a contradiction to our assumption that S is not an SRU.

Case 2: G is of type 2n.
In this case

MH(m0, . . . ,mk) =





|VC0 |
∑

x∈VC0
x

∑
x∈VC0

x2 . . .
∑

x∈VC0
xn

|VC1 |
∑

x∈VC1
x

∑
x∈VC1

x2 . . .
∑

x∈VC1
xn

...
...

... . . . ...
|VCn |

∑
x∈VCn

x
∑

x∈VCn
x2 . . .

∑
x∈VCn

xn





with n + 1 obviously disjoint cycles C0, . . . , Cn. For all 0 ≤ i ≤ n we have that

∑

m∈VCi

(f − g)(m) = 0.

In other words, we have to solve the following system of linear equations:

MH(m0, . . . ,mk) ·





a0 − b0
a1 − b1

...
an − bn



 =





0
0
...
0



 .

Since det(MH(m0, . . . , mk)) &= 0 this equation has a unique solution, namely





a0 − b0
a1 − b1

...
an − bn



 =





0
0
...
0



 .

Therefore, f = g, which is again a contradiction. ✷

It remains to prove the equations (2) and (3), respectively.
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3.1. Graphs of type 1n

Definition 9. Let G = (V, E) ∈ G be a directed graph and let G′ = (V ′, E′) ⊆ G. For 
each vertex v ∈ V ′ we define

degG′(v) := indegreeG′(v) + outdegreeG′(v).

Moreover, for all v ∈ V \ V ′ we define degG′(v) := 0.

Definition 10. Let n ∈ N∗ and let G = (V, E) be a graph of type 1n with |V | ≥ 2n + 1. 
A nice sequence of length m ∈ N of G is a sequence of graphs

G0 = (V0, E0) ⊆ G1 = (V1, E1) ⊆ · · · ⊆ Gm = (Vm, Em) ⊆ G = (V,E)

with the following properties: For all 0 ≤ i ≤ m

1. we have that |Ei| ∈ {2i, 2i + 1};
2. there are at most i obviously different loops and cycles in Gi;
3. we have that Ei+1 \ Ei has one of the following forms:

• Ei+1 \ Ei = {(vj , vj), (vk, vl)} with degGi
(vj) = 0, and degGi

(vk) = 0 or 
degGi

(vl) = 0;
• Ei+1 \ Ei = {(vj , vk), (vl, vj)} with degGi

(vj) = 0.

Definition 11. Two directed graphs G1 = (V1, E1) and G2 = (V2, E2) are called undirected 
edge disjoint if and only if the corresponding undirected graphs do not share any edges.

Lemma 12. Let n ∈ N∗. Every graph G = (V, E) of type 1n with |V | ≥ 2n + 1 has a nice 
sequence

G0 = (V0, E0) ⊆ G1 = (V1, E1) ⊆ . . . ⊆ Gm = (Vm, Em) ⊆ G

of length m with |Em| ≥ 2n + 1.

Proof. Let G = (V, E) be a graph of type 1n. Let L be the set of all isolated loops of G. 
To be more precise

L := {({v}, {(v, v)}) ⊆ G | degG(v) = 2}.

Notice that since G is of type 1n, |L| ≤ n, and since G ∈ G, at least n + 1 edges belong 
to cycles or paths.
How to construct Gm. (See also Example 13.)
We start with the empty graph H0 := (∅, ∅).
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Step 1: Adding cycles
Let C0, C1, . . . , Cl be a maximal family of pairwise disjoint cycles. First, add C0 =
(VC0 , EC0) to H0, and then add a maximal subset M ⊆ L to H0 + C0 with

|M| ≤ |EC0 |− 2.

The resulting graph is called H0
1 . Furthermore, let L0

1 := L \ M. Repeat the same 
construction with respect to C1, a maximal subset M ⊆ L0

1, and the graph H0
1 , in 

order to obtain H1
1 , and so on. We define H1 = (VH1 , EH1) := H l

1 and L1 := Ll
1. 

Note that in this graph |VH1 | = |EH1 |.
Step 2: Adding paths

Let P0 = (VP0 , EP0) be a maximal path in G which is undirected edge disjoint from 
H1. In addition, we require that all vertices of P1 (except possibly the first or the 
last one) are disjoint from the vertices in H1. We allow P0 to start and end in the 
same vertex if this vertex is in H1. In this case, P0 is a cycle which shares a vertex 
with one of the cycles C0, . . . , Cl. Since G ∈ G, we have that if P0 starts (or ends) 
in a vertex which is not in H1, it starts (or ends) in a loop, and in this case, we add 
these loops to P0. Let l0 ∈ {0, 1, 2} be the number of loops in P0. There are two 
cases:
• |L1| ≤ |EP0 | − l0 − 1

If |EP0 | + |L1| is odd, then remove the first edge (which might be a loop) from 
the path P0. Otherwise, do not modify P0. Then add P0 and L1 to H1. This new 
graph is called H0

2 and we define L0
2 := ∅. Note that there is a surjection from the 

set of all edges of H0
2 to the set of all vertices of H0

2 .
• |L1| > |EP0 | − l0 − 1, i.e., |L1| ≥ |EP0 | − l0

Let M ⊆ L1 be a (|EP0 | − l0 − 1)-element subset. Now, remove the first edge 
(which might be a loop) from P0, add this new path to H1, and add M to H1. 
The resulting graph is called H0

2 . Moreover we define L0
2 := L1 \ M. Note that 

there is a surjection from the set of all edges of H0
2 to the set of all vertices of H0

2 .
Repeat the same construction with respect to H0

2 and L0
2, in order to obtain H1

2 , 
and so on. Finally, let m :=

⌊
|EGm |

2

⌋
, denote the resulting graph Gm = (VGm , EGm)

and the resulting set of loops Lm. Note that by construction, |VGm | ≤ |EGm |, and 
since |L| ≤ n, Lm = ∅.

How to construct Gi for 1 ≤ i ≤ n. (See also Example 14.)
We start with the graph Gm and first construct Gm−1. For this let C0, . . . , Cl be the 
pairwise disjoint cycles from Step 1 and let P0, . . . , Ps be the paths from Step 2 in the 
order we added them to the graph. For each 0 ≤ i ≤ l let Mi ⊆ L be the set of all loops 
we added to the graph together with the cycle Ci. And for each 0 ≤ j ≤ s let Nj ⊆ L
be the set of all loops we added to the graph together with the path Pj. First of all we 
will completely remove EPs from Gm. This is possible because |EPS | + |Ns| is even.



L. Halbeisen et al. / Linear Algebra and its Applications 589 (2020) 39–61 49

Case 1: There is a loop (v, v) in Ps = (VPs , EPs).
We define

Gm−1 := (VGm , EGm \ {(a, b) ∈ EPs | a = v or b = v}).

Remove the vertex v and the corresponding edges from Ps.
Case 2: We are not in Case 1 and there is a vertex v in Ps with degGm

(v) = 1.
If Ns &= ∅ let e0 be a loop from Ns. Moreover let e1 ∈ EPs be the edge that contains 
v. Define

Gm−1 := (VGm , EGm \ {e0, e1}).

Remove v and e1 from Ps.
If Ns = ∅ there is a vertex w ∈ VPs with degGm

(w) = 2. We define

Gm−1 := (VGm , EGm \ {(a, b) ∈ EPs | a = w or b = w}).

Remove w and the corresponding edges from Ps.
Case 3: We are not in one of the previous cases.

There is a vertex v ∈ VPs with degGm
(v) = 2. We define

Gm−1 := (VGm , EGm \ {(a, b) ∈ EPs | a = v or b = v}).

Remove v and the corresponding edges from Ps.

After doing this process ks := |EPs |+|Ns|
2 many times, we found a sequence

Gm ⊇ Gm−1 ⊇ · · · ⊇ Gm−ks

of graphs. Do the same with all other paths Ps−1, . . . , P1, P0.

Without loss of generality assume that Gm−ks contains only cycles from Step 1 and the 
loops 

⋃l
i=0 Mi. We will now remove all but at most one edge of Cl from Gm−ks .

Case 1: Each vertex in VCl has degree 2 or 0.
Let v ∈ VCl with degree degGm−ks

(v) = 2. We define

Gm−ks−1 := (VGm−ks
, EGm−ks

\ {(a, b) ∈ ECl | a = v or b = v}).

Remove v and the corresponding edges from Cl.
Case 2: There is a vertex v in VCl with degree 1.

If Ml &= ∅ let e0 be a loop from Ml. Moreover, let e1 ∈ ECl be the edge that 
contains v. Define
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Gm−ks−1 := (VGm−ks
, EGm−ks

\ {e0, e1}).

Remove e1 and v from Cl. If Ml = ∅ there is a vertex w ∈ VCl with degGm−ks
(w) = 2. 

We define

Gm−ks−1 := (VGm−ks
, EGm−ks

\ {(a, b) ∈ EPs | a = w or b = w}).

Remove w and the corresponding edges from Cl.

Repeat this process until |ECl | ≤ 1, and then, repeat this procedure again with all other 
cycles. So, we found a sequence of graphs

Gm−ks ⊇ Gm−ks−1 ⊇ · · · ⊇ Gt

for some t ∈ N. If |EGt | ≥ 2, then any two distinct edges e0, e1 ∈ EGt are from two 
different disjoint cycles. So, we can remove them. The resulting graph is called Gt−1. 
Redo this process until we found a graph with at most one edge. ✷

Example 13. In this example we will construct the graph G9 for the following graph G
of type 1n (Figs. 1–11):

Fig. 1. Graph G = (V,E).

Fig. 2. Cycle C0.

Fig. 3. Graph H1.

Fig. 4. Path P0.
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Fig. 5. Graph H0
2 .

Fig. 6. Path P1.

Fig. 7. Graph H1
2 .

Fig. 8. Path P2.

Fig. 9. Graph H2
2 .

Fig. 10. Path P3.

Fig. 11. Graph H3
2 = G9.
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Example 14. In this example we will construct a nice sequence for the graph G of Ex-
ample 13. We start with the graph Gm = G9 we found in Example 13 (Figs. 12–20):

Fig. 12. Graph G9.

Fig. 13. Graph G8.

Fig. 14. Graph G7.

Fig. 15. Graph G6.

Fig. 16. Graph G5.

Fig. 17. Graph G4.

Fig. 18. Graph G3.
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Fig. 19. Graph G2.

Fig. 20. Graph G1.

Corollary 15. Let n ∈ N∗, every graph G = (V, E) of type 1n with |V | ≥ 2n + 1 has a 
nice sequence

G0 = (V0, E0) ⊆ G1 = (V1, E1) ⊆ . . . ⊆ Gn = (Vn, En) ⊆ G

with |En| = 2n + 1.

Proof. Let G = (V, E) be a graph of type 1n. By Lemma 12, there is a nice sequence

H0 = (V0, E0) ⊆ H1 = (V1, E1) ⊆ · · · ⊆ Hm = (Vm, Em)

with |Ei| ∈ {2i, 2i + 1} (for all 0 ≤ i ≤ n). If |En| = 2n + 1, then we are done because

H0 ⊆ H1 ⊆ · · · ⊆ Hn

is a nice sequence with the right form. So, assume that |En| = 2n. In this case we have 
that m ≥ n + 1. Choose any e0 ∈ E1 (if possible, let e0 be a loop). Then

(
V1, E1 \ {e0}

)
⊆

(
V2, E2 \ {e0}

)
⊆ . . . ⊆

(
Vn+1, En+1 \ {e0}

)

is a nice sequence with the right form. ✷

3.2. Matrices of type 1n

Let k ≥ n, and for all 0 ≤ i, j ≤ k and all 0 ≤ s ≤ n define

1_vi_ − vj := (1, xi, x
2
i , . . . , x

s
i ,−xj ,−x2

j , . . . ,−xs
j).

For every graph G = (V, E) of type 1n choose a nice sequence

G0 = (V0, E0) ⊆ G1 = (V1, E1) ⊆ · · · ⊆ Gn = (Vn, En)
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with |En| = 2n + 1. For every graph G of type 1n and all 0 ≤ s ≤ n let MGs(x0, . . . , xk)
be a square matrix with pairwise different rows 1_vi_− vj where (vi, vj) ∈ EGs . For all 
0 ≤ s ≤ n we define

Cs :=
{
MGs(x0, . . . , xk) | G is a graph of type 1n

}
.

Furthermore, we define MG := MGn(x0, . . . , xk).

Definition 16. Let n ∈ N∗, let k ≥ 2n, let 1 ≤ s ≤ n, and let C ∈ Cs. Assume that C has 
two rows of the form

1_vi_ − vj

1_vt_ − vl

with 0 ≤ i, j, t, l ≤ k. Then we define C1_vi_−vj ,1_vt_−vl to be the matrix that we obtain 
from C by deleting the rows 1_vi_−vj and 1_vt_−vl, as well as the (s +1)-th column 
and the (2s + 1)-th column.

Lemma 17. Let n ∈ N∗, let k ≥ 2n, let 1 ≤ s ≤ n and let C ∈ Cs. Moreover, let 
0 ≤ i, j, t ≤ k such that C has two rows of the form

1_vi_ − vj

1_vj_ − vt

with i &= j, t &= j and there are no other rows which contain vj or −vj. We assume that 
det(C1_vi_−vj ,1_vj_−vt) &≡ 0. Then we have that det(C) &≡ 0.

Proof. First of all, we do a Laplace expansion of C along the row 1_vi_ − vj . So, we 
have that

det(C) = ε0x
s
j det(C) + γ,

where C is the matrix that we obtain from C by deleting the row 1_vi_ − vj and the 
(2s + 1)-th column. Moreover, γ is a polynomial in which there is no term of the form 
x2s
j and we have that ε0 ∈ {−1, 1}. Now we do a Laplace expansion along the remainders 

of the row 1_vj_ − vt. We get

det(C) = ε1x
s
j det(C1_vi_−vj ,1_vj_−vt) + δ,

where δ is a polynomial in which there is no term of the form xs
j and ε1 ∈ {−1, 1}. So, 

we have that

det(C) = ε0ε1x
2s
j det(C1_vi_−vj ,1_vj_−vt) + ε0x

s
jδ + γ.
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In the polynomial ε0xs
jδ + γ there is no term of the form x2s

j and

ε0ε1x
2s
j det(C1_vi_−vj ,1_vj_−vt) &≡ 0 ,

which concludes the proof of the lemma. ✷

Lemma 18. Let n ∈ N∗, let k ≥ 2n, let 1 ≤ s ≤ n and let C ∈ Cs. Moreover, let 
0 ≤ i, j, t ≤ k such that C has two rows

1_vi_ − vi

1_vj_ − vt

with t &= j and there are no other rows which contain vi, vj , −vi or −vj. We assume that 
det(C1_vi_−vi,1_vj_−vt) &≡ 0. Then we have that det(C) &≡ 0.

Proof. First of all, we do a Laplace expansion of C along the row 1_vi_ − vi. So, we 
have that

det(C) = ε0x
s
i det(C) + γ,

where C is the matrix that we obtain from C by deleting the row 1_vi_ − vi and the 
(2s + 1)-th column. Moreover, γ is a polynomial in which there is no term of the form 
xs
ix

s
j and ε0 ∈ {−1, 1}. Now, we do a Laplace expansion along the remainders of the row 

1_vj_ − vt. We get

det(C) = ε1x
s
j det(C1_vi_−vi,1_vj_−vt) + δ,

where δ is a polynomial in which there is no term of the form xs
j and ε1 ∈ {−1, 1}. So, 

we have that

det(C) = ε0ε1x
s
ix

s
j det(C1_vi_−vi,1_vj_−vt) + ε0x

s
i δ + γ.

In the polynomial ε0xs
i δ + γ there is no term of the form xs

ix
s
j and

ε0ε1x
s
ix

s
j det(C1_vi_−vi,1_vj_−vt) &≡ 0 ,

which concludes the proof of the lemma. ✷

Lemma 19. Let n ∈ N∗, let k ≥ 2n, let 1 ≤ s ≤ n and let C ∈ Cs. Moreover, let 
0 ≤ i, j, t ≤ k such that C has two rows

1_vi_ − vi

1_vt_ − vj
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with t &= j and there are no other rows which contain vi, vj , −vi or −vj. We assume that 
det(C1_vi_−vi,1_vj_−vt) &≡ 0. Then we have that det(C) &≡ 0.

Proof. The proof is similar to the proof of Lemma 18. ✷

Proposition 20. Let n ∈ N∗, k ≥ 2n and MG = MG(x0, . . . , xk) ∈ Cn. Then for every 
open set U ⊆ Rk+1 in the box topology there is an open set UG ⊆ U in the box topology 
such that

det(MG) &= 0

for all (x0, x1, . . . , xk) ∈ UG.

Proof. It suffices to prove that det(MG) is a non-zero polynomial in the k + 1 variables 
x0, x1, . . . , xk. Let

G0 ⊆ G1 ⊆ · · · ⊆ Gn

be the nice sequence we used to construct MG. Note that MG0 = (1), and therefore, 
det(MG0) = 1 &≡ 0. Assume that for an i with 0 ≤ i < n, we have already shown that 
det(MGi) &≡ 0. Now, we want to show that det(MGi+1) &≡ 0. For this, let a and b be the 
two rows which are added to MGi in order to obtain MGi+1 . Since the matrices MGi are 
constructed with a nice sequence, these two rows have one of the following three forms:

1. a = 1_vi_− vj and b = 1_vj_− vt with 0 ≤ i, j, t ≤ k, i &= j, t &= j and there are no 
other rows in MGi+1 which contain vj or −vj . In this case we apply Lemma 17.

2. a = 1_vi_− vi and b = 1_vj_− vt with 0 ≤ i, j, t ≤ k, t &= j and there are no other 
rows in MGi+1 which contain vi, vj , −vi or −vj . In this case we apply Lemma 18.

3. a = 1_vi_− vi and b = 1_vt_− vj with 0 ≤ i, j, t ≤ k, t &= j and there are no other 
rows in MGi+1 which contain vi, vj , −vi or −vj . In this case we apply Lemma 19.

So, we see that det(MGi+1) &≡ 0, which concludes the proof of the proposition. ✷

3.3. Graphs and matrices of type 2n

Let

f(x) = a0 + a1x + a2x
2 + · · · + anx

n

and

g(x) = b0 + b1x + b2x
2 + · · · + bnx

n
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be two polynomials and assume that the graph Gf,g contains at least n + 1 obviously 
different loops and cycles C0, C1, . . . , Cn. For all 1 ≤ i ≤ n + 1 we have that

∑

x∈VCi

(f − g)(x) = 0.

The matrix belonging to this system of linear equations is given by





|VC0 |
∑

x∈VC0
x

∑
x∈VC0

x2 . . .
∑

x∈VC0
xn

|VC1 |
∑

x∈VC1
x

∑
x∈VC1

x2 . . .
∑

x∈VC1
xn

...
...

... . . . ...
|VCn |

∑
x∈VCn

x
∑

x∈VCn
x2 . . .

∑
x∈VCn

xn





︸ ︷︷ ︸
=:MGf,g

(x0,...xk)





a0 − b0
a1 − b1

...
an − bn



 =





0
0
...
0



 .

Our goal is to show that det
(
C(x0, . . . , xk)

)
&≡ 0 (i.e., det(C(x0, . . . , xk)), depending on 

x0, . . . , xk, is not the zero-function). Without loss of generality we can assume that for 
all 0 ≤ i ≤ n we have that xi ∈ VCi and

xi /∈




n⋃

j=0
VCj



 \ VCi .

Then we have that

det(C(x0, x1, . . . ,xn, 0, . . . , 0)) = det





|VC0 | x0 x2
0 . . . xn

0
|VC1 | x1 x2

1 . . . xn
1

...
...

... . . . ...
|VCn | xn x2

n . . . xn
n





=
n∑

l=0
(−1)l+2|VCl |det





x0 x2
0 . . . xn

0
x1 x2

1 . . . xn
1

...
... . . . ...

xl−1 x2
l−1 . . . xn

l−1
xl+1 x2

l+1 . . . xn
l+1

xl+2 x2
l+2 . . . xn

l+2
...

... . . . ...
xn x2

n . . . xn
n





=
n∑

l=0
(−1)l|VCl |

∏

0≤i<j≤n
i,j '=l

(xj − xi) &≡ 0.
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Therefore, det(MGf,g(x0, . . . , xk)) &≡ 0. So, for every open set U ⊆ Rk+1 in the 
box topology there is an open set UGf,g ⊆ U in the box topology such that for all 
(x0, . . . , xk) ∈ UGf,g

det(MGf,g(x0, . . . , xk)) &= 0.

4. There are no SRUs of size 2n for Pn

In this section we will show that for every n ∈ N, whenever S is a set of cardinality 
2n, then there are two polynomials f, g ∈ Pn with f &= g and f [S] = g[S]. In other 
words, there are no SRUs for Pn of size 2n.

Let S = {x1, x2, . . . , x2n} ⊆ R be a set with 2n pairwise different points. Without loss 
of generality we can assume that 0 < x1 < x2 < · · · < x2n−1 < x2n. Our goal is to find 
two polynomials f, g ∈ Pn with f &= g and

f [S] = g[S].

In fact, these two polynomials will have the form

g(x) =
n∑

j=1
bjx

j with bj ∈ R for j = 1, . . . , n,

and

f(x) = 1 − g(x).

Moreover, they will even satisfy the equations

f(x2i) = g(x2i−1) and f(x2i−1) = g(x2i) (4)

for all 1 ≤ i < n. In order to prove that such polynomials f and g exist, we have to show 
that the following linear equation is solvable:





x1 + x2 x2
1 + x2

2 . . . xn
1 + xn

2
x3 + x4 x2

3 + x2
4 . . . xn

3 + xn
4

...
... . . . ...

x2n−1 + x2n x2
2n−1 + x2

2n . . . xn
2n−1 + xn

2n





︸ ︷︷ ︸
=:An=An(x1,x2,...,x2n−1,x2n)





b1
b2
...
bn



 =





1
1
...
1



 .

To see this, we will show that det (An) > 0 for every n ∈ N∗.

Definition 21. For every n ∈ N∗ let πn be the family of all permutations of {1, 2, . . . , n}. 
For each σ ∈ πn, let sgn(σ) be the signum of the permutation σ.
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Definition 22. For every n ∈ N∗ we define

Y n :=
{
(y1, y2, . . . , yn) ∈ Rn | yi ∈ {x2i−1, x2i} for all 1 ≤ i ≤ n

}
.

Lemma 23. For every n ∈ N∗ we have that

det(An) =
∑

(y1,y2,...,yn)∈Y n

∑

σ∈πn

(−1)sgn(σ)yσ(1)
1 yσ(2)

2 . . . yσ(n)
n .

Proof. The prove is by induction on n.
n = 1: We have that det(A1) = x1 + x2.
n 1→ n + 1: We do a Laplace expansion of An+1 = An+1(x1, x2, . . . , x2n+2) along the 
(n + 1)-th column. So, we obtain

det(An+1) =
n+1∑

i=1
(−1)n+1+i(xn+1

2i−1 + xn+1
2i ) det

(
An(x1, . . . , x2i−2, x2i+1, . . . , x2n+2)

)
.

Note that the number of inversions x2i−1 causes (or analogously x2i causes) is equal 
to n +1 − i (e.g., if n = 3 and i = 2, then the number of inversions x3 causes in the term 
x2

2x
4
3x

1
6x

3
8 is equal to 2). So, with the induction hypothesis we get that

det(An+1) =
∑

(y1,y2,...,yn+1)∈Y n+1

∑

σ∈πn+1

(−1)sgn(σ)yσ(1)
1 . . . yσ(n+1)

n+1 . ✷

Lemma 24. For every n ∈ N∗ and all y1, y2, . . . , yn ∈ R let

Vn(y1, y2, . . . , yn) :=





y1 y2
1 . . . yn1

y2 y2
2 . . . yn2

...
... . . . ...

yn y2
n . . . ynn



 .

This is a Vandermonde matrix which satisfies

det(Vn(y1, . . . , yn)) =
∑

σ∈πn

(−1)sgn(σ)yσ(1)
1 yσ(2)

2 . . . yσ(n)
n . (5)

Proof. It is well-known that

det
(
Vn(y1, . . . , yn)

)
=

(
n∏

k=1
yk

)


∏

1≤i<j≤n

(yj − yi)





and by expanding the right hand side we obtain (5). ✷
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Corollary 25. For all n ∈ N∗ we have

det(An(x1, x2, . . . , x2n)) > 0.

Proof. By combining Lemma 23 and Lemma 24 we get that

det (An(x1, x2, . . . , x2n)) =
∑

(y1,y2,...,yn)∈Y n

det (Vn(y1, . . . , yn)) . (6)

Finally, since

det
(
Vn(y1, . . . , yn)

)
=




∏

1≤i<j≤n

(yj − yi)




(

n∏

k=1
yk

)
> 0

we obtain

det(An(x1, x2, . . . , x2n)) > 0

which completes the proof. ✷

Remark 26. Note that (6) provides a formula for the determinant of the sum of two arbi-
trary Vandermonde matrices. Note also that the assumption 0 < x0 < x1 < . . . , x2n−1 <

x2n is not necessary to derive this formula.

Example 27. Let S :=
{3

5 ,
11
10 ,

3
2 ,

23
10 , 5,

26
5 , 63

10 , 9
}
. The following picture shows the graphs 

of two polynomials f and g of degree 4 with f [S] = g[S] but f &= g. These polynomials 
indicate that S is not an SRU for P4.

Example 28. By definition each SRU for Pn is an MSRU for Pn. In Section 4 equation 
(4) we saw that for every set S = {x1, . . . , x2n} of size 2n there are polynomials f, g ∈ Pn

with f(x2i) = g(x2i−1), which implies that the size of an MSRU for Pn is at least 2n +1. 
Observe that the set S = {0, 1, 4, 9, 16} is an MSRU but not an SRU for quadratic 
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polynomials: Indeed, for f(x) = x2 − 16x and g(x) = −x2 + 16x − 63 we have f [S] =
g[S] = {0, −15, −48, −63} (f takes the value 0 twice, g takes the value −63 twice). Hence, 
in general, not every MSRU is an SRU for polynomials of bounded degree. Incidentally, 
the set S = {1, 4, 9, 16, 25} is an SRU for quadratic polynomials.

5. Open questions

1. Is there a simple way to characterise SRUs and MSRUs for the set Pn?
2. A set M ⊆ R is called a magic set for Pn if for all non-constant polynomials f, g ∈ Pn, 

f [M ] ⊆ g[M ] =⇒ f = g. The question is now: Is there a magic set for Pn of size 
2n + 1? Note that since there is no SRU for Pn of size 2n, there is no magic set for 
Pn of size 2n.
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