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REMARKS ON BASES OF BANACH SPACES

Joan Bagaria, Lorenz Halbeisen' and Norbert Hungerbiihler

Abstract

We consider Hamel bases and w-bases of Banach spaces. An w-base
is essentially the same as a Galerkin base, but it is allowed to be
uncountable. Like Hamel bases, all w-bases of a Banach space share
the same cardinality. First we show that in a infinite dimensional Ba-
nach space, every Hamel base has the cardinality of the Banach space,
which is at least the cardinality of the continuum. For w-bases, this
is not necessarily the case, even when they are uncountable. For this,
we give an example of a Banach space which contains an uncount-
able w-base of cardinality less than the continuum. The construction
of an w-base in a given Banach space is not straightforward, and it
is not known, whether every Banach space has an w-base. Never-
theless, there are natural examples of Banach spaces which have an
uncountable w-base.

1 Introduction

With the aid of the axiom of choice, one can prove that every vector space
has a Hamel base (cf.[Ha] and [Hd, p.295]). Furthermore, the axiom of
choice is necessary for the existence of Hamel bases of vector spaces (cf. [La]).
The proof of the existence of a Hamel base is not constructive, but since the
axiom of choice is consistent with the other axioms of set theory (cf.[Gd]),
it 1s consistent to assume the existence of a Hamel base in every vector
space. If the continuum hypothesis (see Section 2) holds—which is by [GO]
consistent to assume—we get, as a consequence of Baire’s Category Theo-
rem, that every Hamel base of an infinite dimensional Banach space has at
least the cardinality of the continuum. But it is also consistent to assume
that the continuum hypothesis fails (cf. [Co]), and in this case, Baire’s Cat-
egory Theorem only implies that a Hamel base of an infinite dimensional
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Banach space must be uncountable. The continuum hypothesis can also
be charachterized by Hamel bases; namely, if one considers R as a Banach
space over QQ, then the continuum hypothesis is equivalent to the statement,
that R can be covered by countably many Hamel bases (see [Si] and [EK]).
These examples show, that properties of vector spaces are closely related
to the axioms of set theory and conversely, that set theory has implications
to functional analysis on a very fundamental level. In this article we in-
vestigate with set theoretical notions, like independent families and trees,
bases in complete topological vector spaces (for different notions of bases in
topological vector spaces, see [Kh]).

2 Some set theory

In this section, we summarize some set theoretical notations and defini-
tions. All the notations and definitions are standard and are in accordance

with [Je] or [Ku].

A set z is transitive if every element of z is a subset of z. A relation R
well-orders a set z, or (R, z) is a well-ordering, if (R, z) is a total ordering
and every non-empty subset of z has an R-least element. The axiom of
choice is equivalent to the statement, that every set can be well-ordered. A
set = 1s an ordinal, if z is transitive and well-ordered by €. The axiom of
choice is also equivalent to the statement, that for every set z there exists
an ordinal a and a bijection f : @ — z. The class of all ordinals is transitive
and well-ordered by €. The set of all natural numbers is equal to the set
of all finite ordinals and is denoted by w. (A natural number n is the set of
all natural numbers which are smaller than n, e.g. 0 = 0.)

For a set z, the cardinality of z, denoted by |z| is the least ordinal « for which
there exists a bijection f : o — . A set z is called finite, if |z| € w, otherwise
it is called infinite. Further it is called countable, if |z| < |w| =: Ng. For
a set z, P(z) denotes the power set of z. There exists a bijection between
R and P(w), hence |R| = [P(w)|, and we denote this cardinality by ¢. The
continuum hypothesis states ¢ = |w;| =: Ry, where w; denotes the least
ordinal which is not countable. Finaly let [z]* := {y € P(z) : |y| = Ro} and
[]<“ := {y € P(z) : |y] < Ro}. If z is infinite, then |[z]<¥| = |z|. We use
the same symbol for a set y € P(z) and for its characteristic function, i.e.
we write y(z) = 1 if z € y and y(z) = 0 otherwise.



3 The cardinality of Hamel bases of Banach
spaces

By the axiom of choice, every vector space E over a field K possesses an
algebraic base, i.e. a Hamel base. A Hamel base is hence a set H of vectors
such that

(i) H spans E, i.e. E = (H) (which denotes the set of all finite K-linear
combinations of vectors of H) and

(ii) H is finitely linearly independent over K, i.e. finitely many vectors in
H are linearly independent over K.

This is equivalent to say, that H is a minimal set with property (i) or that
H is a maximal set with property (ii).

By Baire’s Category Theorem it is easy to see that a Hamel base in an
infinite dimensional real or complex Banach space E cannot be countable.
In this section, we will show that if F is an infinite dimensional Banach
space over a field K, where QCKCC, then every Hamel base of E has the
cardinality |E|, which is at least the cardinality of the continuum. We start
by recalling the well-known

FACT 3.1 If E is an infinite dimensional vector space over a field K and
H, and Hy are two Hamel bases of E, then |Hi| = |H>|.

PROOF: For every ¢ € H; there exist hg,... ,h, € Hy and sq,...,s, €
K \ {0} with ¢ = >"7_, sih;. This defines a map @ : Hy — [H]<¥, g —
{ho,...,hn}. Now, every vector v € E can be written as a finite linear

combination of vectors in H; and hence as a finite linear combination of
vectors in H := U®(H;) C H,. Since Hj is minimal spanning, it follows
that H = H,. On the other hand, |H| < |H;| by construction. The reverse
inequality follows by exchanging the réle of H; and Hsy. 4

The next lemma summarizes a few simple facts which will be useful later.

LEMMA 3.2 (a) If E is at the same time a vector space over a field K;
and over a field KoCK, and if H; is a Hamel base of E with respect
to K; (i=1,2), then |Hq| < |H3|.

(b) If E is a Banach space over a field K containing N, then |E| > c.



(c) If E is a vector space over an infinite field K and if H is a Hamel
base of E, then |E| = max{|K]|, |H|}.

(d) If Ky and K, are two fields with NCK; CK,CC such that Ky is dense .
in K9, and if E is a Banach space over K, then there ezists a K-
linear homeomorphism from E to a Banach space E' = E over K.

PROOF: (a) The vectors in H; are finitely linearly independent with re-
spect to K1, hence also with respect to K3. Thus H; can be extended to
a Hamel base H; D H; with respect to K3. Hence, using Fact 3.1, we
conclude |H»| = |H]| > |H1l.

(b) If |[K| = ¢, we have a natural bijection between K and a one dimensional
subspace {kX : k€ K}, X € E\ {0}, hence |E| > |K| > .

If |[K| < ¢, then I := R\ K has cardinality c. We choose X € E \ {0}.
Then, for each r € I there exist ¢o,q1,... € QCK with limp 400 gn = 7,
and {¢n X }new is a Cauchy sequence in E with lim, 00 ¢gn X =: ¥(r) € E,
independent of the choice of the sequence {gn}new. Notice that

Yv:I—=E, re—y(r)
is injective, and hence |E| > |I| > c.

(c) For each Y € E there exist finitely many uniquely determined X, ...,
Xiniyy €H, ti<titi,and so,...,8n(y) € K\ {0} such that Y:ZZ(:%) 8510
and the function

p:E — [K]<Yx[H]Y
Y = ((50;---asn(Y)>><XLo>"':Xl'n(Y)»

is a bijection. Because K is an infinite set, we have |[K]<*| = |K|. If H
is infinite, then |[H]<“| = |H|, and hence we get |E| = |[K]<¥ x [H]<¥| =
max{|K|, |H|}. If H is finite, then |[H]<“| < |K|, and the formula remains
true.

(d) We define on the set E’ := E, equipped with the same additive group
and the same norm as on E, the following multiplication

(K3, E) > E, (A z)—=Az:=_lim Az
KidA;—= A

It is easy to check, that (K3, E) is a normed vector space and that ¢ :
(K1, E) = (K2, E),z — z, is a K;-linear homeomorphism. -



REMARK: The Banach spaces in Lemma 3.2(d) need not have the same
dimension. A drastic example is, that IR is an infinite dimensional Banach
space over (Q, but a one dimensional Banach space over R.

To prove the next lemma, we first have to discuss the following combinatorial
construction. Moreover we will recall a lemma of Mazur.

Let w<“ denote the set of all finite sequences o = (s, .., s,) of w. For o =
(50,...,80) €E W< let o~m := (so,...,5n,m). We say ¢ = (so,...,5n)
is an initial segment of T = (to,...,tx) and write ¢ X 7 if n < k and
Vi<n (s; =t;). Aset TCw<% is called a tree if we have VT €T (0 S 7 —
o €T). For z = (zo,21,...,%n,...), the finite sequence (zo,...,zx_1)
is denoted by z|x and Z := {z; : ¢ € w}. An infinite sequence z € w¥ is
called a branch of T if Vk € w (z|x € T'). Finally, let T'(w) be the set of all
branches of T'.

Now we define the tree ¥ as follows:

(a) Ve €T (|{m:0~m € T} = 2);
(b) (0), (1) € F;
(c) if o~n~m € ¥, then m = 2n + 2 or m = 2n + 3.

Because there is a canonical bijection between the set of all infinite 0-1-
sequences and T(w), the cardinality of the set T(w) equals c.

Let A :={Z : 2z € T(w)}, then for any two different elements z and 7 of A
we have |2 Ng| < o (this is because for any two different branches z and y
of ¥, we find an m € w such that (z \ m) N (y\ m) =0).

The following lemma is a slight generalization of [LT, Lemma1.a.6].

LEMMA 3.3 Let E be an infinite dimensional Banach space over K. Let
FCE be a finite dimensional subspace and let e > 0. Then thereisanz € E
with ||z|| = 1 so that ||y|| < (1+¢€)||ly+ Az|| for every y € F and every scalar
AeEK

PROOF: The proof carries over from [LT, Lemma 1.a.6], where the asser-

tion is proved for K =R and K = C.
.4

Now we are ready to prove



LEMMA 3.4 If KCC is a field containing N and E is a Banach space
over K such that dim(E) = oo, then every Hamel base of E has at least

cardinality c.

PROOF: We consider two cases. In the first case |K'| < ¢ and in the second
case |K| = ¢. For both cases, let H = {X, : « < kK < ¢}CE be a family (of
cardinality & < ¢) of vectors of E. We will show that H is not a Hamel base
of E.

1. case: Assume |K| < ¢ and that H is a Hamel base of £. By Lemma 3.2
we have ¢ < |E| = max{|K]|, |H|} < ¢, which is a contradiction.

2. case: Assume |K| = c and that H is a Hamel base of E. Lemma 3.3 1s usu-
ally used in order to construct a subspace of E which possesses a Schauder
base. Since we did not assume that K is complete, the construction does
not lead to a complete subspace, nevertheless, the resulting sequence is suf-
ficient for our purposes: We start with a unit vector zo € E. Then we

construct iteratively the sequence {z;}ic. such that

Iyl < (14 &n)lly + Aznl]

for all y € (zo,...,z,) and all A\ € K. Here, we choose the sequence of
positive numbers {€, }new such that []oo (1 +¢€n) < 1+ ¢ for some € > 0.
Now, we claim that Zf:;o AnZn = 0 implies that A, = 0 for all n € w. If
not, we find a first index ¢ with A; # 0. Then we have

[ Aizi]| (14 &)||Aizi + Aip1ziqa]|

(1+&)(L+ eitr)|Xizi + Aig1Tig1 + Aipazipo|

IA A

n

H(1+€k)||2/\kl‘kll

k=1

IA

Since the first factor is uniformly bounded in n and the second factor con-
verges to 0 as n — 0o, we obtain ||A;z;]| = 0 which contradicts A; # 0.

Let us consider the injective map
o0
(A= E, yg— Zg(i)?”xi.
1=0

We recall the notation (i) = 1 if ¢ € § and g(i) = 0 otherwise. Notice
that, by construction, the vectors in {¢(7) : ¥ € A} are finitely linearly
independent over K: In fact, if we take distinct g1,...,9m € A, then there



exists a number k € w such that for all & > k, if 3; (k') = 1 then g;(k') =0
for j # ¢, hence, the vectors ((%1),...,{(gm) are linearly independent over
K.

Then, the composed function p o ( : A — [K]<¥ x [H]<" is injective (¢ is
defined as in the proof of Lemma 3.2(c)). On the other hand, since |A| =¢
and |[H]<“| = |H| < ¢, we find by the pigeonhole principle (see [Je, p. 321])
a set B C A with |[B] = ¢ such that pryopo ¢ : B — [H]<“ is constant
(pr, denotes the projection pry((a,b)) :=b). So, let Hy = (pr, op o ¢(B))
denote the corresponding finite dimensional subspace. Since ( is injective,
¢(B) C Hp is a set of cardinality ¢ and consists of linearly independent
vectors which is a contradiction. o

Now we can give the the main result of this section.

THEOREM 3.5 If KCC is a field containing N and E is a Banach space
over K such that dim(E) = oo, then every Hamel base of E has cardinality
| E].

PROOF: Let E be a Banach space over K such that dim(E) = co and let
H be a Hamel base of E£. By Lemma 3.2 we have |E| = max{|K|, |H|}. By
Lemma 3.4 we have |H| > ¢, and because |K| < ¢, we get |E| = |H]|. =

REMARK: It is worth mentioning, that the previous result for F-spaces fol-
lows directly from Martin’s Axiom (the definition and some consequences
can be found in [Ku, Ch.II]): Let E be an F-space, i.e. a topological
vector space whose topology is induced by a complete invariant metric
d. If HOCHCE with |Ho| = RNo, |H| < ¢, we may consider the count-
able set A := (Hy)q, the set of all finite rational linear combinations of
vectors of Ho. Let P be the set {Bj/,(ai) : ai € A,n € w}, where
Bijn(a;) =={z € E : d(z,a;) < 1}. Let P = (P,C), then PP is a partially
ordered set in which every anti-chain is countable. A set DCP is called
dense, if for every p € P there exists a ¢ € D such that ¢Cp. For every fi-
nite dimensional K-linear subspace VCE, theset Dy := {p € P : pnV = 0}
is dense. Since |H| < ¢ we have strictly less than ¢ many dense sets of this
form and Martin’s Axion gives a descending chain in P such that for every
dense set Dy we find an element in this chain, which is contained in Dy .
Since E is a complete space, this chain converges to a point which does not
belong to any of the finite dimensional subspaces spanned by H. Hence, H
1s not a Hamel base.

As a corollary, we obtain a slightly stronger version of a theorem



in [Ja, Chapter 9]:

COROLLARY 3.6 The set EY of all linear functions E — R on an infinite
dimensional Banach space E has cardinality 2Bl

PROOF: It is easy to see that |Ef| = |¢| = 2/#], where H is a Hamel
base of E, and therefore |Ef| = 281, =

4 w-bases of subspaces of £~

It was a long standing question, whether every separable Banach space has
a Schauder base. Enflo solved this problem in [En] in the negative. It is a
natural question, whether the answer could be positive for a weaker notion
of base, e.g. if one allows the set of base vectors to be uncountable. In this

section we want to make some steps towards this problem.

;From now on, let E be a Banach space over R. For TCE, (T)) continues to
denote the vector space which is generated by the set T and T is the closure

of T in the norm-topology.

A set SCE is called w-spanning in E iff _<S> = FE and it is called w-
independent, iff Y € S implies Y ¢ (S\{Y}). An w-spanning set of a
Banach space E which is w-independent is called an w-base of E.

REMARK: An w-spanning set in a Banach space E which is countable, is
sometimes called a Galerkin base. In our case, an w-spanning set need not
be countable. The “w” means, that we allow countable linear combinations
(instead of finite linear combination as in Hamel bases) to represent a vector.

LEMMA 4.1 Let E be an infinite dimensional Banach space. Then the
following are equivalent:

(a) SCE is an w-base of E.
(b) S is a marimal w-independent family in E.

(c) S is minimal w-spanning in E.



PROOF: We prove (a) <= (b) ((a) <= (c) is similar): First, suppose
that S is an w-base but not maximal w-independent. Thus there exists
Y € E such that T = S U {Y} is still w-independent. In particular, ¥ &
(T'\ {Y'}) = (S). But this contradicts the fact that S is w-spanning.

Second, suppose that S is maximal w-independent but not an w-base, 1.e.

not w-spanning. Then there exists Y € E with Y ¢ (S). But then SU{Y'}
would be w-independent contradicting the fact that S was maximal with
this property. .

REMARK: Although the previous characterisation is similar to that of a
Hamel base, we cannot conclude that every Banach space possesses an w-
base in the same way as in the case of a Hamel base.

FACT 4.2 IfS; and Sy are two w-bases of an infinite dimensional Banach
space E, then |S1| = |S2|. Therefore, all w-bases of E have the same cardi-
nality.

PROOF: Because S; is an w-base of E, for every ¥ € S; and every
n € wwe find Xo,...,Xx. € Sy and rg,...,r%. € R such that ||Y —

n

Yi<k, TiXil| < % So, to approximate the vector Y € S;, we need only
countably many elements of Sy, say {X¥, Xy, ...}. Let

g: S5 — 5%
Yy — {X$,X%,...}.

Then S’ = (J{g(Y) : Y € 51}CS, has the same cardinality as S; (this
is because |w X k| = |&|, for any infinite cardinal k). ;From the fact that

(S1) = E it easily follows that (S) = E. Hence, by Lemma 4.1, we have
S' = Sy and hence |S1| = |S2]. 4

Let R denote the set of all infinite sequences (rg,71,...) of R. For 7 =
(Poy ... yTny...) ERY let #(n) :=ry.

Let £ be the set of all sequences 7 = (rg,71,...,7s,...) of R such that
sup{|r;] : 1 € w} =:||F|]| < co. This set is a complete normed vector space,
hence a Banach space.

We will show that there is always an w-independent family in £%° of cardi-
nality c.

Let ZC[w]¥, then Z is called an independent family (i.f.) iff whenever m,n €



w and zo,...,Zm, Yo, ... ,Yn are distinct members of Z, then
lZoN- NzmN(w\yo) NN (w\yn)| =Ro.

Notice that this is equivalent to

) 2\ U wil = o

i<m j<n

There is always an i.f. of cardinality ¢ (cf. [Ku, Ex. A6]) which can be con-
structed even without using the axiom of choice. Now we fix an i.f. IC[w]"
of cardinality c. For z € I, we let {(z) = (aog,...,an,...) be such that

o 1 ifz€x,
"7 10 otherwise.
Note that [(z) € €. Let J = {I(z) : z € I}.

THEOREM 4.3 The set JCL® constructed above is an w-independent fam-
ity of £*° of cardinality c. '

PROOF: It is sufficient to show that for any Y € J, for every finite set
{XO; Xl: cee

Xn-1}CJ \ {Y}, and for every finite sequence (ro,...rn—1) of R, we find
a k € w such that |Y(k) = > ;. r:Xi(k)| = 1, which implies that ||Y —
2icn TiXill 2 1.

For X;, let z; € I be such that I(z;) = X; and let y € I be such that
[(y) =Y. Because [ is an i.f., for every finite 0-1-sequence (ao, ..., ax), we
have

Hnew:n¢yAVi<k(ne€z o a =1)} =
{new:neyAVi<k(n€ziai=1)} =No. (%)

To see this, let Ay := {i < k :a; = 1} and Ao := {i < k : a; = 0} and

consider the sets
(yn () =)\ U =

1€A; 1€Ao
and
ﬂ Tq \ (yU U xi):
1€EA 1€Ao

10



which are both infinite.

Now we can find a k € w such that Y (k) = 1 and X;(k) =0 (for all ¢ < n),
which completes the proof. =

As a corollary we get

COROLLARY 4.4 For every k < ¢ there exists a Banach space ECL>® and
a set JCL® of cardinality k such that J is an w-base of E.

PROOF: Let F := (J) where J is constructed as in the proof of Theo-
rem 4.3 from an 1.f. of cardinality «.

_.I
Using the axiom of choice one can show that every set SCE with (SY=E
contains a subset S'CS such that S’ is finitely linearly independent and

(S") = E. If we replace “finitely linearly independent” by “w-independent”,
this is no longer true, even if F is separable, as the following example shows.

Let {z; : i € w}C[w]* be an i.f. and let f : [w]<* — w be an injective
function. With the function f we define the set

I = {zf(s) S E [w]<“’} ;

where [w]<“ is the set of strictly increasing, finite sequences of w. For a

non-empty, strictly increasing, finite sequence s = (ao, ... ,an) € [W]<¥, let
X, (k) := Z 27%2¢((ao,... ) (K) -
i<n

Now let X, := (X,(0), Xs(1),...), then for every s € [w]<¥, X, € £°.

With similar arguments as above it follows that J := {X; : s € [w]<“} is
finitely linearly independent, but J is obviously not w-independent. More-
over, for E; := (J) we have the following proposition, which makes clear
why it is more difficult to construct an w-base than to find a Hamel base.
In fact, it is not known whether every Banach space has an w-base.

PROPOSITION 4.5 There is a Banach E space which has an w-spanning
subset S such that no subset of S is an w-base of E.

PROOF: Let £ := Ej; and S := J and notice that for every s = (ao,...,
an) € [w]<¥, the vector z;(,) belongs to E; (this is because zf((q4,,...,a,)) =

11



297 (X(ao,...,an) = X(ao,...,an-1)). If S'CS is w-independent and X, € 5,

then we find an € > 0 such that for every finite sequence (X,,,...,X;,)
of S\ {X,} and every finite sequence (rg,...,r,) of R we have || X, —
> i<n TiXs;|| > €. Let k be such that 2~% < ¢, then no vector X;—where
t =({ag,...,an,ns1,...,a) and ap41 > k—isin S’ because || X; — X¢|| <

e. Let us choose t = s~(k+1) and X,, € S'\{X;},¢=0,...,m. Weclaim,
that ||)\X,+Z:r;0 AiXo,—Xi|| > 2~ (k+1) for every choice of A, \; € R: To see
this, we first rewrite AX;+3 ieo MiXo, = ZjeA /\3- z; for a finite index set A.
Assume that z; = z;() fora j € A, then there exists a o; such that o; = t~¢'.
But this is impossible, since otherwise we would have ||X; — X,,|| < ¢,
which is not true for vectors X,, € S’ \ {Xs}. Now, since I is an i.f. we
find an h € w such that z;)(h) = 1 and z;(h) = 0 for all j € A. Then

AKX + oo AiXo, = Xell 2 [MX (B) + o120 MiXoy (h) — Xi(h)] = 27 (41,

Therefore, we have that E; 3 X; ¢ (S’), which completes the proof. =

We conclude this section by giving an example of an w-base S of a proper
subspace of £ (k) (where & is a cardinal) such that |S| = 2.

The set £ (k) is the set of all k-sequences 7 = (rg,...,Tq,...), of R such
that sup{|rs|: @ € k} < co. With the supremum norm, £*° (k) is a Banach

space.

Now we can prove the following

PROPOSITION 4.6 In £ (k) we find an w-independent set S of cardinality

27, such that {3) % £2(K).

PROOF: The proof is similar to the proof of Theorem 4.3, starting with
an 1.f. of cardinality 2* (see [Ku, Ex. A6]). | -

Note that if ¢ = N, and 2% = g, then the S constructed above (with
x = Ni) has cardinality Nz > c.

5 w-bases of (k)

In this section we will show that there exist natural examples of Banach
spaces containing an w-base. For this, we fix a real p € [1, 00[.

For a cardinal number «, let £ (k) be the set of all k-sequences 7 = (ro, .. .,

12



Pay---), of R, such that 3", |ralP < co. With (3, Iro,|P)l/P as the
norm, (k) is a Banach space, and for p = 2 even a Hilbert space.

An easy counting argument shows that if 7 = (rg,r1,...), € #(k), then the
support of 7, denoted by spt(7) := {a < k : 7o # 0}, must be countable.

We can now prove the following

PROPOSITION 5.1 For every cardinal number k, the Banach space {F (k)
contains an w-base of cardinality k.

PROOF: Let eq = (ro,...), € £P(k) be such that spt(eq) = {a} and
ro = 1. Further let S := {e, : @ < k}. It clear that S has cardinality « and
it is easy to see that S forms an w-base of 7 (k). =

Unlike in the case of Hamel bases, it is possible that ¢ (k) contains an w-base
S of cardinality less than |€P(&)|, even if ¢ < |S]|.

THEOREM 5.2 Let k be an infinite cardinal and let S be an w-base of &7 (k);
* then each of the following two cases are possible (this means, both cases are

consistent with ZFC):
L |S| <[&(x)| =,

2. c< |S]| < |€P(k)|.

PROOF: For both cases let « := Ry, where R, = (J, ¢, ¥n-

For the case 1 assume ¢ > R, (e.g.c = Ny4+1). Then by the properties of
the gimel function (cf. [Je, p.51]) we get |[Ry,]¥| == R¥eo = .

For the case 2 assume ¢ < X,,. Again by the properties of the gimel function
we get R¥o > R, -

REMARK: For any infinite cardinal number « we have £ (k)* = £°° (k) and
therefore [£(x)*| = 2% (the star * denotes the dual of a vector space). In
fact, |[€%° (k)| = [¢*| = 2*. In particular, if K = R; = ¢, then |£}(k)*| =
|61(k)/| = 2% and if k = N, and the generalized continuum hypothesis
holds, then (by the properties of the gimel function) we have R¥e =R, .; =
2%« which implies that |} (k)*| = 2%« = R, 11 < 2Re+r = R, 15 = |62 (k)/].
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6 Some problems and suggestions for further
research

In order to define a “topological basis” SCV in a vector space V, one
basically has to define in which way approximating sequences are allowed
to be built and to fix the topology. More precisely, one has to give a rule in
form of a subset R of allowed sequences in V. Examples are:

The Galerkin rule:

n

( ) = {{xn}new Tn = Zrz Xu"'z ) & ]R,{Xi}iew (S Sw}

The Schauder rule:

Rs(S) == {{Zn}new : #n = D 1iXi, {ri}icw € R, {Xi}icw € 5}

1=0
The Hamel rule:
Bu(S) =
N
{{zn}new 1 =D miXi, N €w, {riticny €R {Xi}icn € S}
1=0

Further examples occur if only absolutely or unconditionally convergent
series are allowed, or if one only allows to choose the vectors X; in a certain

given order.

Typical examples for the topology are the norm-topology 7, in normed
spaces, or the weak topology 7, or weak™ topology Ty-.

One can define that S is (R, 7)-spanning, if V = {r-limz, : {zn}new €
R} and that S is (R, 7)-independent, if for all X € S there holds X ¢
{r-limz, : {zn}new € R(S\ {X})}. Then, S is an (R, 7)-base if S is
(R, 7)-spanning and (R, 7)-independent. In this terminology, our w-bases
are (Rg, m,)-bases. The w-bases of £P (k) introduced in Section 5 are actually

(Rs, T )-bases.

As an example, we consider the space £ (k) with 1 < p < co and kK = Rg. As
we have seen, the set S = {es : @ < k} (see Section 5) is an (Rsg, 7,)-base.
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It is easy to see, that the dual set, i.e. §* = {pq : @ < k} defined by
Pa(eg) = bap, is an (Rs, . )-base of (¢2(x))* = ¢*' (k) (where p’ denotes
the conjugate exponent, i.e. %+ pl—, = 1). Of course, 7, = 7+ if p > 1. Note
however, that S* is only (Rs, 7+ )-independent in Zpl(/c) if kK > Ry, but no
longer (Rs, 7+ )-spanning, and that therefore an (Rs, Tw- )-base has to have
a cardinality strictly larger than «.

The general problems are:

e Decide, whether a given vector space has a certein (R, 7)-basec.
e Characterize vector spaces, which have a certain (R, 7)-base.

e Investigate, whether all (R, 7)-bases of a given vector space have the
same cardinality, and if so to compute this cardinality.

Of particular interest would be to investigate whether the answer to any of
these questions can be proved with the usual axioms of set theory (ZFC),
and if the axiom of choice is essential; or whether the answer can be proved
to be independent of ZFC. In the latter case, it might be possible to find
new cardinal invariants in form of the cardinality of certain bases (cf. [Va)).

AKNOWLEDGEMENT: We like to thank Stephanie Gloor and Jordi Lépez
for fruitful remarks and inspiring discussions.
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