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PAPPUS PORISMS ON A SET OF LINES

NORBERT HUNGERBÜHLER

ABSTRACT. The Theorem of Pappus and the Scissors Theorem can be interpreted as
porisms on two lines. We are concerned with the question whether corresponding closing
figures can also be realized for more than two lines and any number of reversion points.
It turns out that this is indeed the case, both for concurrent and for non-concurrent lines.
We explicitly determine which conditions the reversion points must satisfy. All resulting
porisms can be constructed with ruler alone. Along the way we show that the Theorem
of Pappus and the Scissors Theorem are equivalent.

1. INTRODUCTION AND NOTATION

Let P be a point in the projective plane and `1, `2 be two lines not incident with P. We
will always denote the intersection of `1 and `2 as O. We consider the reversion map
`1 ! `2, Q 7! R, where P, Q, R are collinear (see Figure 1). P is called reversion point.

`1

`2

P

Q

RO

Figure 1. The reversion map.

Throughout this paper we will use the notation

Q P
`1 `2

// R

for the situation shown in Figure 1. If it is clear from the context which lines are involved,
we will omit them in the notation. For completeness we remark that the reversion map
from `1 to `2 through the point P can be extended to an involutive projective map of the
whole plane with fixed point P and a fixed point line `, where (`1, `2, OP, `) is a harmonic
pencil of lines.
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PAPPUS PORISMS ON A SET OF LINES

The Hexagon Theorem of Pappus can be formulated as a porism in the projective plane:

Theorem 1 (Pappus Porism). Let A1, A2, . . . , A6 be a Pappus hexagon on the lines `1, `2 with
intersection points P1, P2, P3 on the Pappus line `, noted as

A1
P1�! A2

P2�! A3
P3�! A4

P1�! A5
P2�! A6

P3�! A1

(see Figure 2). Then there exists a Pappus hexagon A0
1, A0

2, . . . , A0
6 on `1, `2 with the same inter-

section points P1, P2, P3 for any point A0
1 on `1:

A0
1

P1�! A0
2

P2�! A0
3

P3�! A0
4

P1�! A0
5

P2�! A0
6

P3�! A0
1. (1.1)

The cases when A0
1 is the intersection of `1 with ` or `2 are considered as degenerate

situations.

Note that we can also make the hexagon start at a point A0
1 on `2 instead of `1, and it

closes in the same way as indicated in (1.1): Indeed, if A0
1, . . . , A0

6 is a closing hexagon
with starting point A0

1 on `1, we can renumber the points A0
i cyclically by taking A0

4 as
new starting point A0

1 on `2.

Proof of Theorem 1. By the Theorem of Pappus, applied to the hexagon A1, . . . , A6, the
points P1, P2, P3 are collinear. Then the Braikenridge-Maclaurin Theorem for degenerate
conics (see, e.g., [2, p. 76]) applied to the points A0

1, A0
2, . . . , A0

5 and the points P1, P2, P3
implies that A0

6 lies on `2. ⇤

`1

`2

P1 P3
P2

A1

A2

A3

A4

A5

A6

`

A0
1

A0
2

A0
3

A0
4

A0
5

A0
6

Figure 2. Pappus hexagons A1, A2, . . . , A6 and A0
1, A0

2, . . . , A0
6.

The Scissors Theorem is also a porism:

Theorem 2 (Scissors Theorem). Let A1, A2, A3, A4 be a Scissors quadrilateral on the lines
`1, `2 with intersection points P1, P2, P3, P4 on a line `, i.e.,

A1
P1�! A2

P2�! A3
P3�! A4

P4�! A1 (1.2)
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(see Figure 3). Then there exists a Scissors quadrilateral A0
1, A0

2, A0
3, A0

4 on `1, `2 with the same
intersection points P1, P2, P3, P4 for any point A0

1 on `1 and `2:

A0
1

P1�! A0
2

P2�! A0
3

P3�! A0
4

P4�! A0
1. (1.3)

Note that, in contrast to Theorem 1, it makes a difference whether we start with A0
1 on

`1 or on `2: A closing quadrilateral A0
1, . . . , A0

4 with starting point A0
1 on `1 cannot be

renumbered cyclically with A0
2 as new A0

1 on `2 such that (1.3) results. Stated differently:
The green and blue closing quadrilaterals in Figure 3 cannot be made to coincide by
sliding the starting point.

`1

`2

A1

A2

A3

A4

P1
P4

`

P2

P3

A0
1

A0
2

A0
3

A0
4

A0
1

A0
2

A0
3

A0
4

Figure 3. Scissors quadrilaterals A1, A2, . . . , A4 and A0
1, A0

2, . . . , A0
4.

Also here, the cases when A0
1 is the intersection of `1 with ` or `2 are included in the

theorem as degenerate situations. The Hexagon Theorem of Pappus and the Scissors
Theorem are closely related. In fact we have:

Proposition 3. The Scissors Theorem is equivalent to the Hexagon Theorem of Pappus.

Proof. Let ABCDEF be a hexagon with A, C, E on a line g and B, D, F on a line h (see
Figure 4). Let P be the intersection of AB and DE, Q the intersection of BC and EF,
and R the intersection of CD and PQ. Finally, let S be the intersection of PQ and AD.
Consider the quadrilateral ABCD which has the intersection points P, Q, R, S with the
line PQ:

A P�! B Q�! C R�! D S�! A.

Hence, according to Theorem 2, we have the closing quadrilateral DEFA:

D P�! E Q�! F R�! A S�! D.

In particular, all pairs of opposite sides (AB and DE, BC and EF, CD and FA) in the
hexagon ABCDEF meet on PQ.
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g

h

A

B

C

D

E

F

P R
`

Q
S

Figure 4. The Scissors Theorem implies the Theorem of Pappus.

g

h

A

B

C

D

P
R

` S Q

A0

B0

C0

D0

T

Figure 5. The Theorem of Pappus implies the Scissors Theorem.

For the reverse implication, consider the quadrilateral ABCD with A, C on a line g and
B, D on a line h. Its intersection points with a line ` are denoted by P, Q, R, S (see Fig-
ure 5):

A P�! B Q�! C R�! D S�! A.

Let A0B0C0D0 be another quadrilateral with A0, C0 on h and B0D0 on g such that A0B0

passes through P, B0C0 passes through Q and C0D0 passes through R. We want to show
that D0A0 passes through S. To see this, we apply the Theorem of Pappus to the hexagon
ABCA0B0C0 and find that the intersection point T of A0C and AC0 belongs to `. Then, by
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applying the Theorem of Pappus to the hexagon ADCA0D0C0 it follows that, indeed, S
belongs to D0A0. We conclude that every quadrilateral A0B0C0D0 through P, Q, R, S and
starting point A0 on h closes:

A0 P�! B0 Q�! C0 R�! D0 S�! A0.

By exchanging the role of ABCD and A0B0C0D0 we find that also every quadrilateral
ABCD with starting point A on g closes in the same way. ⇤

The purpose of this paper is to investigate whether porisms like Pappus’s or the Scissors
Theorem are also possible for an arbitrary number of reversion points in a position as
general as possible, and whether variants with more than two support lines also exist.

In the next section we will show that the position of the points Pi in the Theorems 1
and 2 can be characterised and expressed by the cross ratio. At the same time we will
generalise the porisms to an arbitrary number of points. We should add here, that the
porisms which we will develop are also inspired by the Butterfly porism and its relatives
on conics: See [4, 6, 7, 8, 9, 5] and recent generalisations in [3].

2. GENERALIZATION AND QUANTIFICATION FOR TWO LINES

In the following, we denote by (A, B, C, D) the cross ratio of collinear points A, B, C, D.

Theorem 4. Let `1, `2 be two lines and ` a third line intersecting `1 in S1 and `2 in S2 6= S1.
Let A1, A2, . . . , A2n be points that lie alternately on `1 and `2 with intersection points Pi of ` and
Ai Ai+1 (indices read cyclically, see Figure 6). Then we have

n

’
i=1

(S1, S2, P2i, P2i+1) = 1. (2.1)

Vice versa, if (2.1) is valid for points S1, S2, P1, . . . , P2n and `1 is a line through S1 and `2 a line
through S2 6= S1, then the porism

A1
P1
// A2

P2
// A3

P3
// . . .

P2n�2
// A2n�1

P2n�1
// A2n

P2n
// A1 (2.2)

is valid for every A1 on `1 and on `2.

Proof. Let O denote the intersection of `1 and `2 (see Figure 7). We define d(X, Y) :=
log(O, S2, X, Y) as a signed projective distance on `2 with the properties

d(X, Y) = �d(Y, X) and d(X, Y) + d(Y, Z) = d(X, Z).

Observe that (O, S2, X, Y) = (S1, S2, X0, Y0) for an arbitrary point P /2 {O, S1} on `1.

It follows that

log
n

’
i=1

(S1, S2, P2i, P2i+1) =
n

Â
i=1

d(A2i, A2i+2) = 0

which proves (2.1).

On the other hand, suppose that (2.1) holds. Then there is a closing 2n-gon

A1
P1
// A2

P2
// A3

P3
// . . .

P2n�2
// A2n�1

P2n�1
// A2n

P̄2n
// A1
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O
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Figure 6. Illustration for Theorem 4 with n = 3.

O

`2

`1

S2
S1`

P

X0 Y0

X

Y

Figure 7. Projective distance on `2.

for which (2.1) holds with a point P̄2n on ` in place of P2n. It follows that P̄2n = P2n and
we are done. ⇤

Remark 5. Notice that condition (2.1) is automatic for n = 2k + 1 if Pi = Pi+n for i =
1, . . . , n. In particular, the original Pappus porism 1 follows immediately with n = 3.

Now we address the case when `, `1 and `2 are concurrent.

Theorem 6. Let `, `1, `2 be lines through a point S. Let A1, A2, . . . , A2n be points that lie
alternately on `1 and `2 with intersection points Pi of ` and Ai Ai+1 (indices read cyclically).
Then we have

2n

Â
i=1

(�1)i

OPi
= 0, (2.3)
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where OPi denotes the oriented euclidean distance between O and Pi. Vice versa, if (2.3) is valid
for points S, P1, . . . , P2n and `1, `2 are lines through S then the porism

A1
P1
// A2

P2
// A3

P3
// . . .

P2n�2
// A2n�1

P2n�1
// A2n

P2n
// A1 (2.4)

is valid for every A1 on `1 and on `2.

Proof. Using a projective map we may assume that in projective coordinates O = (0, 0, 1),
A2i+1 = (c2i+1, c2i+1, 1), A2i = (c2i,�c2i, 1), and ` = (0, 1, 0). It is then easy to compute
Pi = ( 2cici+1

ci+ci+1
, 0, 1) and (2.3) follows immediately. Observe that condition (2.3) is invariant

under projective transformation and hence the claim follows. ⇤
Remark 7. Notice that condition (2.3) is automatic for n = 2k + 1 if Pi = Pi+n for i =
1, . . . , n. In particular, also in this case the original Pappus porism 1 follows with n = 3.

3. GENERALIZATION TO NON-COLLINEAR REVERSION POINTS

It turns out that Pappus-like porisms also exist for points Pi which are not collinear.

Theorem 8. Let `1, `2 be lines and P1, . . . , P2n�1 points not incident with `1 and `2. Then there
exists a unique point P2n such that the porism

A1
P1
// A2

P2
// A3

P3
// . . .

P2n�2
// A2n�1

P2n�1
// A2n

P2n
// A1 (3.1)

is valid for every A1 on `1.

Proof. Consider three points A1, A0
1, A00

1 on `1 and their cross ratio with the intesection
point O of `1 and `2. Then we define the points

Ai
Pi
// Ai+1, A0

i
Pi
// A0

i+1, A00
i

Pi
// A00

i+1

for i = 1, 2, . . . , 2n � 1. Observe that

(O, A1, A0
1, A00

1 ) = (O, A2, A0
2, A00

2 ) = . . . = (O, A2n, A0
2n, A00

2n).

Hence the lines A1A2n, A0
1 A0

2n and A00
1 A00

2n are concurrent in a point P2n. Since this point
does not depend on the position of A00

1 , we are done. ⇤

Observe that the proof shows how the point P2n can easily be constructed with ruler
alone. In particular, we have a second formulation of Theorem 8:

Corollary 9. Let `1, `2 be two lines. If

A1
P1
// A2

P2
// A3

P3
// . . .

P2n�2
// A2n�1

P2n�1
// A2n

P2n
// A1 (3.2)

holds for two different points A1 and A0
1 on `1, then this porism holds for all A1 on `1.

Notice, that the chain in (3.2) will not close in general if we start with a point A1 on `2
instead on `1.

We now want to give a quantitative version of Theorem 8:
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Theorem 10. Let `1, `2 be lines intersecting in O, and P1, . . . , P2n be points not incident with
`1 and `2 such that the porism

A1
P1
// A2

P2
// A3

P3
// . . .

P2n�2
// A2n�1

P2n�1
// A2n

P2n
// A1 (3.3)

is valid for every A1 on `1. Then, for the lines gi = OPi we have
n

’
i=1

(`1, `2, g2i�1, g2i) = 1. (3.4)

Proof. We start with the case n = 2: Choose A1 as intersection of the lines P1P2 and P3P4,
and A0

1 as intersection of P1P4 and `1: See Figure 8. Then the points P1, P2, P3, P4, A1, A0
2

form a complete quadrilateral. We consider the pairs g1, g3 and g2, g4 as pairs of conju-
gate lines. This defines a line involution with respect to which `1 = OA1 and `2 = OA0

2
are conjugate lines (see Chasles [1, Note X, § 34, (28), p. 317]). In particular, we have

(`1, `2, g1, g2) = (`2, `1, g3, g4)

which implies (`1, `2, g1, g2)(`1, `2, g3, g4) = 1.

O

`1

`2

P1

P2

P3
P4

g1

g2

g3

g4

A1 = A3

A2

A4

A0
1

A0
3

A0
2=A0

4

Figure 8. Illustration for Theorem 10 with four reversion points.

Now we proceed by induction: Assume that (3.4) is established for n � 1. According to
Theorem 8, there exists a point P̃2n�2 such that the porism

A1
P1
// A2

P2
// A3

P3
// . . .

P2n�2
// A2n�3

P2n�3
// A2n�2

P̃2n�2
// A1

is valid. Denote g̃2n�2 = OP̃2n�2. By the induction hypothesis, we have

(`1, `2, g1, g2)(`1, `2, g3, g4) . . . (`1, `2, g2n�3, g̃2n�2) = 1. (3.5)

On the other hand we have

A1
P̃2n�2

// A2n�2
P2n�2

// A2n�1
P2n�1

// A2n
P2n
// A1
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with
(`1, `2, g̃2n�2, g2n�2)(`1, `2, g2n�1, g2n) = 1 (3.6)

from the base case. In the product of (3.5) and (3.6) the terms involving g̃2n�2 cancel out
and we obtain (3.4). ⇤

For later use we retain the following consequence of Theorem 10:

Remark 11. If the porism

A1
P1
// A2

P2
// A3

P3
// . . .

P2n�2
// A2n�1

P2n�1
// A2n

P(1)
2n
// A1

is valid for all points A1 on `1, and if the porism

A0
1

P1
// A0

2
P2
// A0

3
P3
// . . .

P2n�2
// A0

2n�1
P2n�1

// A0
2n

P(2)
2n
// A0

1

is valid for all points A0
1 on `2 then the points O, P(1)

2n and P(2)
2n are collinear.

The next theorem explains, in which situation the porism in (3.1) is valid for A1 on `1 and
on `2. The first two cases, (I) and (II), are degenerate cases, the interesting generic case
is (III):

Theorem 12. Let P1, . . . , P2n�2 be given points not incident with two lines `1, `2. Then the
following is true:

(I) If P1, . . . , Pn�2 have the closing property

A1
P1
// A2

P2
// A3

P3
// . . .

P2n�4
// A2n�3

P2n�3
// A2n�2

P2n�2
// A1 (3.7)

for all A1 on `1 and on `2, then P1, . . . , P2n�2, P2n�1, P2n have the closing property

A1
P1
// A2

P2
// A3

P3
// . . .

P2n�2
// A2n�1

P2n�1
// A2n

P2n
// A1 (3.8)

for all A1 on `1 and on `2 if and only if P2n�1 = P2n is an arbitrary point in the plane not
incident with `1 and `2.

(II) If P1, . . . , P2n�2 have the closing property (3.7) for all A1 on `1 but not for all A1 on `2,
then the porism (3.8) cannot hold for all A1 on `2.

(III) If P1, . . . , P2n�2 do not have the closing property (3.7) both for A1 on `2 and for A1 on `2,
then there is a line ` with the property that for an arbitrary point P2n�1 on ` not incident
with `1 and `2 there is a unique point P2n on ` such that P1, . . . , P2n�2, P2n�1, P2n have
the closing property (3.8) for all A1 on `1 and on `2. No other choice for P2n�1 and P2n is
possible.

Proof. (I) Clearly, if (3.7) holds for all A1 on `1, then (3.8) holds for all A1 on `1 if and only
if P2n�1 = P2n. And the same is true for `2 in place of `1.

(II): As in case (I), if (3.7) holds for all A1 on `1, then (3.8) holds for all A1 on `1 if and only
if P2n�1 = P2n. But if P2n�1 = P2n, then (3.8) cannot hold for an A1 on `2 for which (3.7)
fails.
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(III): Suppose first that the porism (3.8) is valid for all A1 on `1 and `2. Consider three
2n-gons A1, . . . , A2n, A0

1, . . . , A0
2n, and A00

1 , . . . , A00
2n as in Figure 9. Then, by the Pappus

Theorem applied to the hexagons

H1 = A1A0
2n�1A0

2n A0
1A2n�1A2n and H2 = A1A00

2n�1A00
2n A00

2n�1A2n

it follows that P2n�1 and P2n must lie on the common Pappus line ` of the two hexagons.
The lines A1A0

2n�1 and A0
1 A2n�1 determine the point X on `, and the lines A1A00

2n�1 and
A00

1 A2n�1 determine the point Y 6= X on `. Thus, ` is determined by P1, . . . , P2n�2 by
the construction above. Hence P2n�1 must be chosen on ` and once P2n�1 is fixed, the
location of P2n on ` follows.

`1

`2

P2n
P2n�1

`

A1

A2n

A2n�1

A0
1

A0
2n

A0
2n�1

X

A00
2n�1

A00
2n

A00
1

Y

Figure 9. The blue line ` is determined by the points P1, . . . , P2n�2.

Now the converse: Let us first choose an arbitrary point A1 on `1 for which (3.7) does not
close. Then, we choose two different points A0

1, A00
1 on `2 for which (3.7) does not close

either. This defines the polygonal chains

A1
P1
// A2

P2
// A3

P3
// . . .

P2n�3
// A2n�2

P2n�2
// A2n�1

A0
1

P1
// A0

2
P2
// A0

3
P3
// . . .

P2n�3
// A0

2n�2
P2n�2

// A0
2n�1

A00
1

P1
// A00

2
P2
// A00

3
P3
// . . .

P2n�3
// A00

2n�2
P2n�2

// A00
2n�1

Then the intersection X of the lines A1A0
2n�1 with the line A0

1A2n�1 and the intersection Y
of the lines A1 A00

2n�1 with the line A00
1 A2n�1 are different and define a line ` (see Figure 9).

Choose a point P2n�1 on ` such that the line A2n�1P2n�1 intersects `2 in a point A2n. The

line A2n A1 then intersects ` in a point P2n. Hence, A2n�1
P2n�1

// A2n and A2n
P2n
// A1.
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Now we consider the intersection A0
2n of the lines A0

2n�1P2n�1 and A0
1P2n and the inter-

section A00
2n of the lines A00

2n�1P2n�1 and A00
1 P2n. By the Braikenridge-Maclaurin Theorem

applied to the hexagon H1 = A1A0
2n�1A0

2n A0
1A2n�1A2n it follows that A0

2n 2 `1. Simi-
larly, by considering the hexagon H2 = A1A00

2n�1A00
2n A00

1 A2n�1A2n it follows that A00
2n 2 `1.

Hence, the porism

A0
1

P1
// A0

2
P2
// A0

3
P3
// . . .

P2n�2
// A0

2n�1
P2n�1

// A0
2n

P2n
// A0

1

is valid for the initial points A0
1 and A00

1 on `2, and hence by Corollary 9 for all initial
points on `2. On the other hand, we know from Theorem 8 that a unique point P̃2n exists
with the property that

A1
P1
// A2

P2
// A3

P3
// . . .

P2n�2
// A2n�1

P2n�1
// A2n

P̃2n
// A1

holds for all A1 on `1. But P2n has this property for the original initial point A1 we
started with. Hence, P2n, P̃2n and A1 are collinear. In view of Remark 11 this implies that
P2n = P̃2n and we are done. ⇤

Notice that the proof gives a concrete and simple construction for the points P2n�1 and
P2n.

At the end of this section we considered the question whether porisms with more than
two concurrent support lines are also possible. Indeed, the proof of Theorem 8 carries
over to an arbitrary number of concurrent lines `1, . . . , `k, k � 2:

Theorem 13. Let `1, . . . , `k be lines (not necessarily distinct, but `k 6= `1) and P1, . . . , Pk�1
points not incidents with the given lines. Then there exists a point Pk such that the porism

A1
P1

`1 `2

// A2
P2

`2 `3

// A3
P3

`3 `4

// . . .
Pk�1

`k�1 `k

// Ak
Pk

`k `1

// A1

is valid for every A1 on `1.

An example is shown in Figure 10.

O

`1 = `3

`4

`2

P1

P2 P3

P4

Figure 10. Illustration for Theorem 13: P1, P2, P3 determine P4.
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The next theorem shows that one can construct a porism also by adding a suitable sup-
port line instead of a reversion point.

Theorem 14. Let `1, `2 be lines which intersect in O and P1, P2, P3 three collinear points not
incident with `1 and `2. Then there exists a line `3 such that the porism

A1
P1

`1 `2

// A2
P2

`2 `3

// A3
P3

`3 `1

// A1

is valid for all A1 on `1.

Proof. Choose A1 on `1 and consider the point A1
P1

`1 `2

// A2. Denote the intersection

of the lines A1P3 and A2P2 by A3. Then the points P1, A2, A3, P3, A1, P2 form a complete
quadrilateral (see Figure 11). In particular, if we consider the lines OP2, `1 as conjugate

O

`2

`1

P1

P2

A1

P3

A2

A3

`3

Figure 11. Proof of Theorem 14.

lines and also `2, OP3, then these four lines define a line involution with respect to which
the lines OA3 is the conjugate line of OP1. Hence, the line `3 = OA3 is determined by the
lines OP1, OP2, OP3, `1, `2, and the porism must close on this line. ⇤

Notice that the previous theorem is not valid if P1, P2, P3 are not collinear. However, it
generalizes easily to an arbitrary number of lines and reversion points:

Theorem 15. Let `1, . . . , `n be concurrent lines and P1, . . . , Pn reversion points not incident
with the given lines. Then there exists a line ` with the following property: For any point Pn+1
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on `, not incident with the lines `1, . . . , `n, there is a line `n+1 such that the porism

A1
P1

`1 `2

// A2
P2

`2 `3

// . . .
Pn�1

`n�1 `n

// An
Pn

`n `n+1

// An+1
Pn+1

`n+1 `1

// A1

is valid for every A1 on `1.

Proof. Consider three points A1, A0
1, A00

1 on `1 and the points

A1
P1

`1 `2

// A2
P2

`2 `3

// . . .
Pn�1

`n�1 `n

// An

A0
1

P1

`1 `2

// A0
2

P2

`2 `3

// . . .
Pn�1

`n�1 `n

// A0
n

A00
1

P1

`1 `2

// A00
2

P2

`2 `3

// . . .
Pn�1

`n�1 `n

// A00
n

Then we have for the cross ratios (O, A1, A0
1, A00

1 ) = (O, An, A0
n, A00

n). Thus the points
A1 An, A0

1 A0
n and A00

1 A00
n are concurrent in a point P. Now we are in the situation of

Theorem 14: We can choose an arbitrary point Pn+1 on the line ` through the points P
and Pn and construct the line `n+1 by a line inversion such that the porism closes. ⇤

4. NON-COLLINEAR LINES

In this section we consider lines `1, . . . , `n which are not collinear. Also in this case one
can construct reversion porisms:

Theorem 16. Let `1, . . . , `n be lines, `1 6= `n, `2, and P1, . . . , Pn�2 be points not on these lines.
Then there exists a line ` such that one can choose an arbitrary point Pn�1 on ` which then
determines a point Pn such that the porism

A1
P1

`1 `2

// A2
P2

`2 `3

// . . .
Pn�2

`n�2 `n�1

// An�1
Pn�1

`n�1 `n

// An
Pn

`n `1

// A1

is valid for every A1 on `1.

Proof. Let O1 be the intersection of `1 and `2, and A1, A0
1, A00

1 points on `1 (see Figure 12).
Consider the points

A1
P1

`1 `2

// A2
P2

`2 `3

// . . .
Pn�2

`n�2 `n�1

// An�1

A0
1

P1

`1 `2

// A0
2

P2

`2 `3

// . . .
Pn�2

`n�2 `n�1

// A0
n�1

A00
1

P1

`1 `2

// A00
2

P2

`2 `3

// . . .
Pn�2

`n�2 `n�1

// A00
n�1

O1
P1

`1 `2

// O2
P2

`2 `3

// . . .
Pn�2

`n�2 `n�1

// On�1
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`n�1

`1

`n

An�1

A0
n�1

A00
n�1

A1
A0

1

A00
1

O1

X

On�1

X̃

`

Pn�1

An

A00
n

A0
n

On

Pn

Figure 12. Proof of Theorem 16.

and observe that (O1, A1, A0
1, A00

1 ) = (On�1, An�1, A0
n�1, A00

n�1). Let X denote the inter-
section of `1 and `n. Then there is a unique point X̃ on `n�1 with the property

(X, A1, A0
1, A00

1 ) = (X̃, An�1, A0
n�1, A00

n�1).

Now let ` be the line joining X and X̃ and choose Pn�1 on `, not incident with `1 and

`n�1. In particular, we have X̃
Pn�1

`n�1 `n

// X. Consider the points

An�1
Pn�1

`n�1 `n

// An, A0
n�1

Pn�1

`n�1 `n

// A0
n, A00

n�1
Pn�1

`n�1 `n

// A00
n ,

and On�1
Pn�1

`n�1 `n

// On.

The cross ratio of four of the points An�1, A0
n�1, A00

n�1, On�1, X̃ equals the cross ratio of the
four corresponding image points An, A0

n, A00
n , On, X. In particular, the lines A1An, A0

1A0
n,

A00
1 A00

n , O1On are concurrent in a point Pn. ⇤

An Example is shown in Figure 13.

We remark that a particularly simple case occurs if `n passes through O1: Then X̃ is the
point On�1.
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O1

`1

`2

`3

`4

P1

P2

X

X̃

`

P3

P4

Figure 13. Theorem 16 for n = 4: The lines `1, . . . , `4 and the reversion points P1, P2 are
given and determine the line `. Then the point P3 can be freely chosen on ` and P4 is
uniquely determined thereafter.
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