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A pair (a, b) of positive integers is a pythagorean pair if 
a2 + b2 = ! (i.e., a2 + b2 is a square). A pythagorean pair 
(a, b) is called a double-pythapotent pair if there is another 
pythagorean pair (k, l) such that (ak, bl) is a pythagorean pair, 
and it is called a quadratic pythapotent pair if there is another 
pythagorean pair (k, l) which is not a multiple of (a, b), such 
that (a2k, b2l) is a pythagorean pair. To each pythagorean 
pair (a, b) we assign an elliptic curve Γa,b with torsion group 
Z/2Z ×Z/4Z, such that Γa,b has positive rank over Q if and 
only if (a, b) is a double-pythapotent pair. Similarly, to each 
pythagorean pair (a, b) we assign an elliptic curve Γa2,b2 with 
torsion group Z/2Z × Z/8Z, such that Γa2,b2 has positive 
rank over Q if and only if (a, b) is a quadratic pythapotent 
pair. Moreover, in the later case we obtain that every elliptic 
curve Γ with torsion group Z/2Z × Z/8Z is isomorphic to a 
curve of the form Γa2,b2 , where (a, b) is a pythagorean pair. As 
a side-result we get that if (a, b) is a double-pythapotent pair, 
then there are infinitely many pythagorean pairs (k, l), not 
multiples of each other, such that (ak, bl) is a pythagorean 
pair; the analogous result holds for quadratic pythapotent 
pairs.
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1. Introduction

A pair (a, b) of positive integers is a pythagorean pair if a2 + b2 is a square, denoted 
a2 + b2 = !. A pythagorean pair (a, b) is called a double-pythapotent pair if there is 
another pythagorean pair (k, l) such that (ak, bl) is a pythagorean pair, i.e.,

a2 + b2 = ! , k2 + l2 = ! , and (ak)2 + (bl)2 = ! .

Notice that for positive integers a, b, the sum a4 + b4 is never a square (see [7, Oeuvres, 
I, p. 327; III, p. 264], and hence (a2, b2) is never a pythagorean pair. Furthermore, a 
pythagorean pair (a, b) is called a quadratic pythapotent pair if there is another pytha-
gorean pair (k, l) which is not a multiple of (a, b), such that (a2k, b2l) is a pythagorean 
pair, i.e.,

a2 + b2 = ! , k2 + l2 = ! , and (a2k)2 + (b2l)2 = ! .

To each pythagorean pair (a, b) we assign the elliptic curve

Γa,b : y2 = x3 + (a2 + b2)x2 + a2b2x

and show that the curve Γa,b has torsion group isomorphic to Z/2Z × Z/4Z and that 
(a, b) is a double-pythapotent pair if and only if Γa,b has positive rank over Q. With the 
points of infinite order on the curve Γa,b, we can generate infinitely many pythagorean 
pairs (k, l), not multiples of each other, such that (ak, bl) are pythagorean pairs.

Similarly, for each pythagorean pair (a, b), the elliptic curve

Γa2,b2 : y2 = x3 + (a4 + b4)x2 + a4b4x

has torsion group isomorphic to Z/2Z ×Z/8Z and (a, b) is a quadratic pythapotent pair 
if and only if Γa2,b2 has positive rank over Q. Moreover, we can show that every elliptic 
curve Γ with torsion group Z/2Z ×Z/8Z is isomorphic to a curve of the form Γa2,b2 for 
some pythagorean pair (a, b). Similar as above, with the points of infinite order on the 
curve Γa2,b2 , we can generate infinitely many pythagorean pairs (k, l), not multiples of 
each other, such that (a2k, b2l) are pythagorean pairs.

Remark 1. In a landmark article, Heegner [6] discovered the deep and far-reaching con-
nection between congruent numbers and elliptic curves: A given number is congruent 
if and only if a certain elliptic curve has positive rank over Q. More precisely, to any 
positive integer A, the elliptic curve

ΓA : y2 = x3 −A2x

with torsion group isomorphic to Z/2Z × Z/2Z is associated, and A is a congruent 
number if and only if ΓA has positive rank over Q. Moreover, with the points of infinite 



L. Halbeisen, N. Hungerbühler / Journal of Number Theory 233 (2022) 467–480 469

order on the curve ΓA, one can generate infinitely many rational triples (r, s, t) such that 
r2 + s2 = t2 and rs2 = A (an elementary proof of this result is given in [2]). It became 
a common theme to relate properties of pythagorean or heronian triples with elliptic 
curves and to use their arithmetic to gain insight in the diophantine solutions of the 
problem (see also [3]). Since the pair of squares (a2, b2) of a pythagorean pair (a, b) is 
never a pythagorean pair, it was natural to ask whether the Hadamard-Schur products 
(ak, bl) or (a2k, b2l) of two pairs (a, b), (k, l) of pythagorean pairs can be a pythagorean 
pair or not. These questions lead, indeed, again in a natural way to associated elliptic 
curves of positive rank over Q.

Examples. We give some examples of double-pythapotent pairs and of quadratic pytha-
potent pairs.

1. For m = 5 and n = 2, let a = m2 − n2 and b = 2mn. Then (a, b) = (21, 20) is a 
pythagorean pair. Furthermore, let k = 96 and let l = 110. Then 962 + 1102 = 1462

and

(21 · 96)2 + (20 · 110)2 = 29842

which shows that (21, 20) is a double-pythapotent pair.
2. Let a, b as above and let k = 805 and l = 6588. Then 8052 + 65882 = 66372 and

(212 · 805)2 + (202 · 6588)2 = 26590052

which shows that (21, 20) is also a quadratic pythapotent pair. However, as the 
following examples show, it is not the case that double-pythapotent pairs are also 
quadratic pythapotent pairs, or vice versa.

3. For m = 4 and n = 3, let a = m2 − n2 and b = 2mn. Then (a, b) = (7, 24) is a 
pythagorean pair. Furthermore, let k = 320 and l = 462. Then 3202 + 4622 = 5622

and

(7 · 320)2 + (24 · 462)2 = 113122

which shows that (7, 24) is a double-pythapotent pair. On the other hand, since the 
rank of the elliptic curve Γ72,242 is 0, (7, 24) is not a quadratic pythapotent pair.

4. For m = 4 and n = 1, let a = m2 − n2 and b = 2mn. Then (a, b) = (15, 8) is a 
pythagorean pair. Furthermore, let k = 608 and l = 594. Then 6082 + 5942 = 8502

and

(152 · 608)2 + (82 · 594)2 = 1419842

which shows that (15, 8) is a quadratic pythapotent pair. On the other hand, since 
the rank of the elliptic curve Γ15,8 is 0, (15, 8) is not a double-pythapotent pair.
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Remark 2. We obtained our parametrization Γa2,b2 for elliptic curves with torsion group 
Z/2Z × Z/8Z, where (a, b) is a pythagorean pair, by Schroeter’s construction of cubic 
curves with line involutions (see [4]). Other new parametrizations obtained by Schroeter’s 
construction for elliptic curves with torsion groups Z/10Z, Z/12Z, and Z/14Z can be 
found in [5]. Furthermore, the curves Γa,b, where (a, b) is a pythagorean pair, were 
obtained by replacing the 4th powers in the parametrization Γa2,b2 by squares.

2. Quadratic pythapotent pairs

In this section we consider quadratic pythapotent pairs — this case is slightly easier 
than the case with double-pythapotent pairs. First we show that the curve Γa2,b2 has 
torsion group isomorphic to Z/2Z ×Z/8Z, and then we show how we obtain pythagorean 
pairs (k, l) from a point on Γa2,b2 whose x-coordinate is a square such that (a2k, b2l) is 
a pythagorean pair.

Proposition 1. If (a, b) is a pythagorean pair, then the elliptic curve Γa2,b2 has torsion 
group Z/2Z ×Z/8Z. Vice versa, if an elliptic curve Γ has torsion group Z/2Z ×Z/8Z, 
then there exists a pythagorean pair (a, b) such that Γ is isomorphic to Γa2,b2 .

Proof. Kubert [8, p. 217] gives the following parametrization for elliptic curves with 
torsion group Z/2Z ×Z/8Z (see also Rabarison [9, 3.14]):

y2 + (1 − c)xy − ey = x3 − ex2

for

τ = m̃

ñ
, d = τ(8τ + 2)

8τ2 − 1 , c = (2d− 1)(d− 1)
d

, e = (2d− 1)(d− 1) .

After a rational transformation we obtain the curve

y2 = x3 + ãx2 + b̃x

with

ã = 256m̃4(2m̃ + ñ)4 + (4m̃2 − (2m̃ + ñ)2)4 and b̃ = 256m̃4ñ4(2m̃ + ñ)4(4m̃ + ñ)4 .

Let m := m̃ and n := 2m̃+ñ
2 . Then we obtain the curve

y2 = x3 + 28((2mn)4 + (m2 − n2)4)
)
x2 + 216((2mn)4 · (m2 − n2)4

)
x ,

which is, for a := m2 − n2 and b := 2mn, equivalent to the curve

Γa2,b2 : y2 = x3 + (a4 + b4)x2 + a4b4x .
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Notice that by definition of a and b, (a, b) is a pythagorean pair.
For the other direction, recall that for every pythagorean pair (a, b) we find positive in-

tegers λ, m, n such that m and n are relatively prime and {a, b} =
{
λ(m2−n2), λ(2mn)

}
. 

So, by the substitutions m̃ := m and ñ := 2(n −m), we see that every elliptic curve Γ
with torsion group Z/2Z × Z/8Z is isomorphic to a curve of the form Γa2,b2 for some 
pythagorean pair (a, b). !

Remark 3. Let a := m2 − n2 and b := 2mn. If we replace m and n by m̄ := m + n and 
n̄ := m − n, respectively, even though we obtain another pythagorean pair (ā, ̄b), the 
corresponding elliptic curves Γa2,b2 and Γā2,b̄2 are equivalent.

Theorem 2. The pythagorean pair (a, b) is a quadratic pythapotent pair if and only if the 
elliptic curve Γa2,b2 has positive rank over Q.

In order to prove Theorem 2, we first transform the curve Γa2,b2 to a another curve 
on which we carry out our calculations.

Lemma 3. If x2 is the x-coordinate of a rational point on Γa2,b2 , then

x0 := a2b2

x2

is the x-coordinate of a rational point on the curve

y2x = a2b2 + (a4 + b4)x + a2b2x2 .

Proof. We work with homogeneous coordinates (x, y, z). Consider the following trans-
formation:

(
x
y
z

)
:=




0 0 1
0 1 0
1

a2b2
0 0




(
X
Y
Z

)

The point (x, y, z) belongs to the homogenized curve Γa2,b2 if and only if the point 
(X, Y, Z) belongs to the curve Y 2X = a2b2Z3 + (a4 + b4)XZ2 + a2b2X2Z. Hence, by 
dehomogenizing, we obtain the curve y2x = a2b2+(a4+b4)x +a2b2x2, which is equivalent 
to Γa2,b2 , where the rational point (x2, y2) belongs to Γa2,b2 if and only if there is a 
rational y′ such that (x0, y′) belongs to y2x = a2b2 + (a4 + b4)x + a2b2x2. !

Let x0 = p2

q2 be a rational square and assume that x0 is the x-coordinate of a rational 
point on y2x = a2b2 + (a4 + b4)x + a2b2x2. Then, by dividing through x0 and clearing 
square denominators we obtain

a2b2 · q4 + (a4 + b4) · p2 · q2 + a2b2 · p4 = ! ,
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and since

a2b2 · q4 + (a4 + b4) · p2 · q2 + a2b2 · p4 = (a2q2 + b2p2) · (a2p2 + b2q2) ,

this is surely the case when

a2q2 + b2p2 = ! and a2p2 + b2q2 = ! . (1)

Lemma 4. Let P = (x1, y1) be a rational point on Γa2,b2 and let x2 be the x-coordinate 
of the point 2 ∗ P . Then x0 := a2b2

x2
= p2

q2 , where p and q satisfy (1).

Proof. By Silverman and Tate [10, p.27],

x2 = (x2
1 −B)2
(2y1)2

for B := a4b4,

and therefore

x0 = a2b2

x2
= a2b2(2y1)2

(x2
1 −B)2 =

a2b2
(
4x3

1 + 4Ax2
1 + 4Bx1

)

(x2
1 −B)2 = p2

q2 for A := a4 + b4.

Now, for p and q (with a = m2 − n2 and b = 2mn) we obtain

a2q2 + b2p2 = a2(a4b4 + 2b4x1 + x2
1
)2 = !

and

a2p2 + b2q2 = b2
(
a4b4 + 2a4x1 + x2

1
)2 = !

which completes the proof. !

The next result gives a relation between rational points on Γa2,b2 with square x-
coordinates and pythagorean pairs (k, l) such that (a2k, b2l) is a pythagorean pair.

Lemma 5. Every pythagorean pair (k, l) such that (a2k, b2l) is a pythagorean pair corre-
sponds to a rational point on Γa2,b2 whose x-coordinate is a square, and vice versa.

Proof. Let x2 = ! be the x-coordinate of a rational point on Γa2,b2 . Then, by Lemma 4, 
a2b2

x2
= p2

q2 , where p and q satisfy (1), i.e., a2q2 + b2p2 = !. So, a2

b2
+ p2

q2 = ρ2 for some 
ρ ∈ Q. In other words, we have

(a
b

)2
+
(p
q

)2
= ρ2 ,

which implies that
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a

b
= 2ρt

t2 + 1 and p

q
= ρ(t2 − 1)

t2 + 1 for some t ∈ Q.

In particular, we have

ρ = a · (t2 + 1)
b · (2t) .

Now, since a2p2 + b2q2 = !, we have 
(
a
b

)2 +
( q
p

)2 = !, hence, a2

b2 + (t2+1)2
ρ2(t2−1)2 = !, which 

implies that

a4 · (t2 − 1)2 + b4 · (2t)2 = ! .

For t = r
s , we obtain

a4 · (r2 − s2)2
s4 + b4 · 4r2

s2 = ! ,

which implies that

a4 · (r2 − s2)2 + b4 · (2rs)2 = ! ,

and for k := r2 − s2, l := 2rs, we finally obtain

(a2k)2 + (b2l)2 = ! where k2 + l2 = ! ,

which shows that (a, b) is a quadratic pythapotent pair.
Assume now that we find a pythagorean pair (k, l) such that (a2k, b2l) is a pytha-

gorean pair. Without loss of generality we may assume that k and l are relatively prime. 
Thus, we find relatively prime positive integers r and s such that k = r2−s2 and l = 2rs. 
With t := r

s , a, and b, we can compute p and q, and finally obtain a rational point on 
Γa2,b2 whose x-coordinate is a square. !

We are now ready for the

Proof of Theorem 2. For every rational point P on Γa2,b2 whose x-coordinate is a square, 
let (kP , lP ) be the corresponding pythagorean pair. By Lemma 5 it is enough to show 
that (kP , lP ) is a multiple of (a, b) if and only if P is a torsion point. Notice that if P is 
a point of infinite order, then for every integer i, 2i ∗P is a rational point on Γa2,b2 with 
square x-coordinate, and not all of the corresponding pythagorean pairs (k2i∗P , l2i∗P )
can be multiples of (a, b).

Let us consider the x-coordinates of the torsion points on the curve Γa2,b2 . For sim-
plicity, we consider the 16 torsion points on the equivalent curve

y2 = a2b2

x
+ (a4 + b4) + a2b2x .
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The two torsion points at infinity are (0, 1, 0) (which is the neutral element of the group) 
and (1, 0, 0) (which is a point of order 2). The other two points of order 2 are (−a2

b2 , 0)
and (− b2

a2 , 0), and the two points of order 4 are 
(
1, ±(a2 + b2)

)
. The x-coordinates of the 

other 10 torsion points are m(m+n)
n(m−n) , n(m−n)

m(m+n) , −
m(m−n)
n(m+n , − n(m+n)

m(m−n) , and −1. Obviously, 
−1, −a2

b2 , and − b2

a2 are not squares of rational numbers. Furthermore, 0 would lead to 
p = 0, q = 1, t = 1, r = 1, s = 0, k = 1 and l = 0, and therefore, (k, l) is not a pytha-
gorean pair. If m(m+n)

n(m−n) = !, then, by multiplying with n2(m −n)2, also mn(m2−n2) = !, 
which would imply that A := mn(m2 −n2) is a congruent number with A = !. But this 
is impossible, since otherwise 1 would be a congruent number, which is not the case (see 
also [7, Oeuvres, I, p. 340] or [11, p. 163] for an annotated version of Fermat’s proof). 
Similarly, one can show that also n(m−n)

m(m+n) , −
m(m−n)
n(m+n and − n(m+n)

m(m−n) cannot be squares. 
Thus, the only value of x-coordinates of torsion points on the curve Γa2,b2 which is a 
square is x = 1. This leads to k = 2b and l = 2a, i.e., to the pythagorean pair (2b, 2a), 
which is a multiple of (a, b) — notice that for c := a2+b2, (2a2b)2+(2ab2)2 = (2abc)2. !

Corollary 6. If (a, b) is a quadratic pythapotent pair, then there are infinitely many pytha-
gorean pairs (k, l), not multiples of each other, such that (ak, bl) is a pythagorean pair.

Proof. By Theorem 2, there exists a point P on Γa2,b2 of infinite order. Now, for every 
integer i, 2i ∗ P is a rational point on Γa2,b2 with square x-coordinate, and each of the 
corresponding pythagorean pairs (k2i∗P , l2i∗P ) can be a multiple of just finitely many 
other such pythagorean pair. Thus, there are infinitely many integers j, such that the 
pythagorean pairs (k2j∗P , l2j∗P ) are not multiples of each other. !

Algorithm 1. The following algorithm describes how to construct pythagorean pairs (k, l)
from rational points on Γa2,b2 of infinite order.

• Let P be a rational point on Γa2,b2 of infinite order and let x2 be the x-coordinate 
of 2 ∗ P .

• Let p and q be relatively prime positive integers such that

q

p
=

√
x2
ab

.

• Let r and s be relatively prime positive integers such that

r

s
= bp +

√
a2q2 + b2p2

aq
.

• Let k := r2 − s2 and let l := 2rs.

Then (a2k, b2l) is a pythagorean pair.
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Example. For m = 17 and n = 1, let a = m2−n2 and b = 2mn. Then (a, b) = (288, 34) is 
a pythagorean pair. Now, the curve Γa2,b2 , with torsion group Z/2Z ×Z/8Z, has rank 2
with generators

P = (248223744, 21013140234240) and P ′ = (2105708544,−199666455920640) .

The x-coordinate of 2 ∗ P is 845105135616
543169 which leads to (k, l) = (212993, 229824) with

(2882 · 212993)2 + (342 · 229824)2 = 176684889602,

and x-coordinate of 2 ∗ P ′ is 10707037334317433880576
87206592371809 which leads to

(k′, l′) = (2698811183, 25868703744)

with

(2882 · 2698811183)2 + (342 · 25868703744)2 = 2258388189849602.

Of course, we can also start with any other rational point on Γ2882,342 , e.g., we can start 
with the point Q = P +P ′. The x-coordinate of 2 ∗Q is 40012254481826306304

79121251225 which leads 
to

(k, l) = (81291365, 1581381012)

with

(2882 · 81291365)2 + (342 · 1581381012)2 = 69860529642722.

3. Double-pythapotent pairs

Below we consider double-pythapotent pairs. As above, we first show that the curve 
Γa,b has torsion group isomorphic to Z/2Z × Z/4Z, and then we show how we obtain 
pythagorean pairs (k, l) from a point on Γa,b with square x-coordinate such that (ak, bl)
is a pythagorean pair. Since the calculations are similar, we shall omit the details.

Proposition 7. If (a, b) is a pythagorean pair, then the elliptic curve

Γa,b : y2 = x3 + (a2 + b2)x2 + a2b2x

has torsion group Z/2Z ×Z/4Z.

Proof. Kubert [8, p. 217] gives the following parametrization for elliptic curves with 
torsion group Z/2Z ×Z/4Z:
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y2 + xy − ey = x3 − ex2

for

e = v2 − 1
16 where v &= 0, ±1

4 .

After a rational transformation we obtain the curve

y2 = x3 + ãx2 + b̃x

with

ã = 2 · (16v2 + 1) and b̃ = (16v2 − 1)2 .

For v = p
q , a = m2 − n2, b = 2mn, let p := 1

8 (a − b) and q := 1
2 (a + b). Then the curve 

y2 + xy − ey = x3 − ex2 is equivalent to the curve

Γa,b : y2 = x3 + (a2 + b2)x2 + a2b2x . !

Remark 4. Notice that there are p and q which are not of the above form, which implies 
that there are curves with torsion group Z/2Z ×Z/4Z which are not equivalent to some 
curve Γa,b.

Theorem 8. The pythagorean pair (a, b) is a double-pythapotent pair if and only if the 
elliptic curve Γa,b has positive rank over Q.

In order to prove Theorem 8, we again transform the curve Γa,b to a another curve 
on which we carry out our calculations.

Lemma 9. If x2 is the x-coordinate of a rational point on Γa,b, then

x0 := ab

x2

is the x-coordinate of a rational point on the curve

y2x = ab + (a2 + b2)x + abx2 .

Proof. We can just follow the proof of Lemma 3, using the transformation



0 0 1
0 1 0
1
ab 0 0



 . !
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Let x0 = p
q be the x-coordinate of a rational point on y2x = ab + (a2 + b2)x + abx2, 

where q = q̃2 and p = ab · p̃2 for some integers q̃, p̃. Then

ab · y2 · p
q

= ab · y2 · abp̃
2

q̃2 = y2 ·
(ab · p̃

q̃

)2
= ! .

Therefore,

ab ·
(
ab + (a2 + b2) · p

q + ab · p2

q2

)
= ! ,

and by clearing square denominators we obtain

ab ·
(
aq + bp

)
·
(
ap + bq

)
= ! ,

which is surely the case when

a · (aq + bp) = ! and b · (ap + bq) = ! . (2)

Lemma 10. Let P = (x1, y1) be a rational point on Γa,b and let x2 be the x-coordinate of 
the point 2 ∗ P . Then x0 := ab

x2
= p

q , where q = q̃2 and p = ab · p̃2 for some integers q̃, p̃
and p and q satisfy (2).

Proof. By Silverman and Tate [10, p. 27],

x2 = (x2
1 −B)2
(2y1)2

for B := a4b4,

and therefore

x0 = ab

x2
=

ab
(
4x3

1 + 4Ax2
1 + 4Bx1

)

(x2
1 −B)2 = p

q
for A := a4 + b4.

So, q = ! and p = ab · p̃2 for some integer p̃.
Now, for x1 = u

v and x0 = p
q (with a = m2 − n2 and b = 2mn) we obtain

a · (aq + bp) = 1
v4

(
a2 ·

(
a2b2v2 + u(u + 2b2v)

))2
= !

and

b · (ap + bq) = 1
v4

(
b2 ·

(
a2b2v2 + u(u + 2a2v)

))2
= !

which completes the proof. !

The next result gives a relation between rational points on Γa,b with square x-
coordinate and pythagorean pairs (k, l) such that (a2k, b2l) is a pythagorean pair.
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Lemma 11. Every pythagorean pair (k, l) such that (a2k, b2l) is a pythagorean pair cor-
responds to a rational point on Γa,b whose x-coordinate is a square, and vice versa.

Proof. Let x2 = ! be the x-coordinate of a rational point on Γa,b. Then, by Lemma 10, 
ab
x2

= ab·f2

g2 , where p = ab · f2 and q = g2 satisfy (2), i.e., a2g2 + a2b2f2 = !. So, 
( g
f

)2 + b2 = ρ2 for some ρ ∈ Q and 
( g
f

)2 + a2 = !. Let gf = 2ρt
t2+1 and b = ρ(t2−1)

t2+1 . Then 

ρ = b(t2+1)
t2−1 and gf = 2bt

t2−1 , which gives us

t = bf ±
√
g2 + b2f2

g
.

Since

g2 + b2f2 = q + b2p
ab = q + bp

a ,

by multiplying with a2 we get

a2 · (g2 + b2f2) = a2 · q + ab · p = a(aq + bp) .

Hence, by Lemma 10, g2 + b2f2 = ! and therefore t is rational, say t = r
s . Finally, since 

( g
f

)2 + a2 = !, we obtain

a2 · (r2 − s2)2 + b2 · (2rs)2 = ! ,

and for k := r2 − s2, l := 2rs, we finally get

(ak)2 + (bl)2 = ! where k2 + l2 = ! ,

which shows that (a, b) is a double-pythapotent pair.
Assume now that we find a pythagorean pair (k, l) such that (ak, bl) is a pythagorean 

pair. Without loss of generality we may assume that k and l are relatively prime. Thus, 
we find relatively prime positive integers r and s such that k = r2 − s2 and l = 2rs. 
With t := r

s , a, and b, we can compute p and q, and finally obtain a rational point on 
Γa,b whose x-coordinate is a square. !

We are now ready for the

Proof of Theorem 8. For every rational point P on Γa,b with square x-coordinate let 
(kP , lP ) be the corresponding pythagorean pair. By Lemma 11 it is enough to show that 
no rational point with square x-coordinate has finite order.

Let us consider the x-coordinates of the torsion points on the curve Γa,b. For simplicity, 
we consider the 8 torsion points on the equivalent curve
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y2 = ab

x
+ (a2 + b2) + abx .

The two torsion points at infinity are (0, 1, 0) (which is the neutral element of the group) 
and (1, 0, 0) (which is a point of order 2). The other two points of order 2 are (−a

b , 0)
and (− b

a , 0), and the four points of order 4 are 
(
1, ±(a + b)

)
and 

(
−1, ±(a − b)

)
. Now, 

we have that none of the values

1
ab

,
−1
ab

,
−a

b

ab
= − 1

b2
,

− b
a

ab
= − 1

a2 ,

is a rational square. For example, if 1
ab = !, then ab = !, and since b = 2mn, this 

implies that ab = 4 ·!. So, we have ab2 = 2 ·!, which is impossible (see [1, p. 175]). Thus, 
there is no pythagorean pair (k, l) such that (ak, bl) is a pythagorean pair. !

Similar as above, we get the following

Corollary 12. If (a, b) is a double-pythapotent pair, then there are infinitely many pytha-
gorean pairs (k, l), not multiples of each other, such that (ak, bl) is a pythagorean pair.

Remark 5. Let (a, b) be a double-pythapotent pair and let (k1, l1) be a pythagorean pair 
such that (ak1, bl1) is a pythagorean pair. Then (k1, l1) is a double-pythapotent pair and 
we find a pythagorean pair (k2, l2), which is not a multiple of (a, b) such that (k1k2, l1l2) is 
a pythagorean pair, which implies that (k2, l2) is a double-pythapotent pair. Proceeding 
this way, we can construct an infinite family of double-pythapotent pairs which are not 
multiples of each other.

Algorithm 2. The following algorithm describes how to construct pythagorean pairs (k, l)
from rational points on Γa,b of infinite order.

• Let P be a rational point on Γa,b of infinite order and let x2 be the x-coordinate of 
2 ∗ P .

• Let f and g be relatively prime positive integers such that

g

f
= √

x2 .

• Let r and s be relatively prime positive integers such that

r

s
= bf +

√
g2 + b2f2

g
.

• Let k := r2 − s2 and let l := 2rs.

Then (ak, bl) is a pythagorean pair.
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Example. Let again m = 17, n = 1, a = m2 −n2, and b = 2mn, hence, (a, b) = (288, 34). 
Now, the curve Γa,b, with torsion group Z/2Z ×Z/4Z, has rank 2 with generators

P = (−81600, 2970240) and P ′ = (−58752, 9047808) .

The x-coordinate of 2 ∗ P is 5156388864
4225 which leads to (k, l) = (65, 2112) with

(288 · 65)2 + (34 · 2112)2 = 742082,

and x-coordinate of 2 ∗ P ′ is 4161600
121 which leads to (k′, l′) = (11, 60) with

(288 · 11)2 + (34 · 60)2 = 37682.
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