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ABSTRACT. We deal with the concept of packings in graphs,
which may be regarded as a generalization of the theory of
graph design. In particular we construct a vertex- and edge-
disjoint packing of K (where 3 mod 4 equals 0 or 1) with
edges of different cyclic length. Moreover we consider edge-
disjoint packings in complete graphs with uniform linear forests
(and the resulting packings have special additional properties).
Further we give a relationship between finite geometries and
certain packings which suggests interesting questions.

1 Introduction

In geometry the concept of packing may be described as follows: Given a
closed set A C R™ and a family {B;}:ea of closed subsets of 4, e.g. A =R?
and B, = {y € R%: |z —y| < 7}, (z,7) € R x R,. A packing in A
by the family {B;}:ea is an almost disjoint subset {B;}iex C {Bi}iea, i
B; N Bj is a zero-set in R™ for 4,5 € A, i # j. The density o, of a packing
is defined by o) = F(lﬂ Yiex #(Bs) if A has finite volume p(A) and else
ox = limj 3y 35 #(B; N A;), where the family {4;};en of subsets of
A of finite measure is exhausting A in a regular way. The typical question
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is to ask for the densest packing under eventual some restrictions on the
admissible subset {B;}icx: e.g. the densest packing in the plane R? by
circles of radius 1 (see [9]) or the densest packing in the unit square by ten
circles of equal radius (see [7]).

It is known, that the concept of geometric packing has discrete analogues
(see [10]). Here we deal with packings in (finite) graphs: Given a (finite)
graph G = (V, E), V the set of vertices and E the set of edges, and a
family {B;}ica of partial subgraphs B; = (V;, E;) of G. A packing in G
by the family {B;}ica is a subset {B;}iea C {B;}ica such that either the
condition

BinB;CVfori,je i#j (C1)
or the condition
BiNBj=0fori,jeX i#j (C2)

holds. If, in the (C1)-case, the packing {B;}iea in (V, E) has the additional
property that there exists an m € N such that every pair z;, z\ of distinct
vertices of V occurs for m or m+1 indices 7 € A in a connected component
of B;, then we call it homogeneous (C1)*-packing. So, homogeneous (C1)*-
packings are particularly regular or “well-balanced” (C1)-packings. This
will become more clear in the examples we consider below. There is always
a good chance to find in the set of (C1)-packings of maximal cardinality a
(C1)*-representative. The number m is determined by a diophantic equa-
tion and also the number of pairs of vertices occurring m + 1 times in a
connected component of B; (this number may happen to be zero).

Now we may ask for the optimal packing in the sense that the density
o\ = % is maximal under eventual some restrictions on the
admissible subset {B;}iea.

In the words of graph design we have the following:

A (C1)-packing of a complete graph with density oy = 1 such that all the
B;’s are isomorphic to a given graph G is a G-design. A (C1)-packing of a
complete graph with density o, = 1 such that all the B;’s are isomorphic to
a complete graph may be regarded as a balanced incomplete block design.
Further a (C2)-packing with o = 1 such that all the B;’s are isomorphic
to a complete graph on 2 vertices is a 1-factor. (For the definitions see [6].)
In this sense, our concept of packings is more general than graph design.

2 Notations and definitions

We use the standard notation of [1].

Let K,, denote the complete, simple graph on n vertices.
A tree T is called a linear tree, if each vertex of T has degree 1 or 2.
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The length of a linear tree T = (Vr, Er) is the cardinality of Vr.

A linear forest is a set of linear trees satisfying condition (C2).

A uniform forest F is a linear forest such that all linear trees of F" have the
same length, the height of the forest.

The size of a forest F is the cardinality of F'

Given a complete graph K, = (Va, Ey) and h > 1 a divisor of n. Let
B, » denote the family

By s i={Bi=(V;, Ei): B; a uniform forest of height k and size %} 1)

of subgraphs of K,,. We are interested in packings An s C Bn,» in Kn by the
family B, » such that condition (C1) or (C1)* (as in Section 4) or condition
(C2) and some additional restrictions hold (as in Section 3). In the language
of graph design, a (C1)-packing An s C Ban in Ky, with density oy =11is
a resolvable, balanced path design (cf. [6]). In the (Cl)-case it is easy to
see that for a packing of K, by By » there holds

n(n —1)/2

and because card()) is an integer we get

card(}) < [%J @)

(where |z| is the nearest integer less or equal than z).

On the other hand if we consider packings which respect (C2) we trivially
have card()) < 1: So here the question is whether a packing ezists or not.

3 Packings in complete graphs by edges of different length
Let K, be the complete graph with vertices {z;}1<i<n. We define the cyclic
length of an edge [z, z;) joining z; and z; as

U([z4, z5]) := min{|i — jl,n — |i — 5]}
See also Figure 1 for the geometric meaning of the cyclic length. Then
there holds

Theorem 1. If n is even then there exists a (C2)-packing in K, by the
family B, » such that only edges of different cyclic length occur, if and only
if 3 mod 4 equals 0 or 1.

Remark 1: If n is odd the corresponding problem is trivial.
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Figure 1
(C2)-packings in Kz by edges such that every cyclic length occurs

Proof: (i) Consider a (C2)-packing in Kam by Bam2 such that every
cyclic length 1,2,...,m occurs. Let P := {z;: i odd} C Vo, and Q :=
{z;: i even} C V. If an edge of the packing has odd cyclic length it
is joining the sets P and Q, else it is joining two vertices of P or of Q.
Hence the number of edges of the packing having even cyclic length must
be even. Now, if m is even the even cyclic lengths occurring in the packing
are {2,4,...,m} and this set is even if and only if m = 0 (mod 4). If on
the other hand m is odd the even cyclic lengths occurring in the packing
are {2,4,...,m — 1} and this set is even if and only if m =1 (mod 4).
(ii) For the other direction we consider two cases.

Case 1. m =0 (mod 4):
If m = 4 then As2 = {[z1,s], [z2, z5), [zs, 7], [r4, z6]} is a packing in
Kom such that every cyclic length 1,2, ..., m occurs (see Figure 1).

If m = 4k (k > 1) then it is easy to check that

Am2 = {[3:1. Zok), [Z2,Tak+1)s [T7k42) Trkt1), {[Z6, Tk 1-i] br<i<2ks
{[:, zsk+2-i] }or<i<ar, {[=:, -'1-'8k+3—i]}35i5k}

is a packing in Ko, with the desired properties. Figure 2 shows the resulting
packing for n = 32.
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X11 Xs
X12 X4
x13 ‘ .x3
X X
14 Q 2
X1s b
X16 X32
X17 X31
xls / x30
X19 B X29
x’ZO 28
Xa1 X, Xa7
Figure 2

(C2)-packing in K32 by edges such that every cyclic length occurs

Case 2. m=1 (mod 4):
If m = 1 then A := {[z1, 73]} is a packing in Kpr, such that the cyclic

length 1 occurs.

If m = 5 then AIO,Z = {[21,.’32], [.'1:3,:!:9], [34;27]1 [z5t$10], [xﬁaxS]} is a
packing in Kom such that every cyclic length 1,2,...,m occurs (see Fig-
ure 3).

Figure 3
(C2)-packing in Kjo by edges such that every cyclic length occurs
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If m = 4k +1 (k > 1) then it is easy to check that
Agm,2 1= {[3"1, Zarr1)s [B2ksTant2), [(X7kr2, Trea), {24, Toks2—i]bera<i<ok,
{[z:, zok+3—i] Y 2k<i<ar, {[zi, 3"8k+4—i]}25i5k+1}
is a packing in Koy, with the desired properties. Figure 4 shows the resulting

packing for n =34
X0 X9 X3 X7

o6 X

Figure 4
(C2)-packing in K34 by edges such that every cyclic length occurs

Remark 2: Although it was quite hard to find a packing in a complete
graph by edges of different cyclic length, there exist in fact many solutions
for large m:

Ks: 1 solution

Kg: 1 solution -

Kio: 2 solutions

K6 128 solutions

Of course, congruent solutions are identified.

Remark 3: These packings are in fact very special 1-factorizations of Ko,,.
Note that in general 1-factorizations of Ky, always exist (cf. [4] p. 85).

4 High, large and balanced forests

In this section we will consider (C1) and (Ci) *.packings in K, by the family
By,n. We are interested in the cases h = n (hence the corresponding forests
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are of maximal possible height), 2k = n (the corresponding forests contain
exactly two trees), h = 2 (the corresponding forests are as large as possible)
and h2 = n (the corresponding forests are as large as high). We show in
most of the mentioned cases that estimate (2) is sharp.

Notation: If o is a permutation of the set {1,...,n} and H = (Vy, Ex)
a partial subgraph of K,, then o[H] = (V,(), E;(n)) Where Vo =
{Zog): zi € Vu} and Eyqmy == {[Zo¢:), Zo(5)): [x4,25] € En} (see also Fig-
ure 5). Further let 0¥ be the identity and o™t! := o(o™).

4.1 High forests: h=n

For h = n > 1 we obtain by estimate (2) that a maximal packing is of
cardinality less or equal than [3]|. And indeed we find:

Theorem 2. In K, there exists a (C1)*-packing A, n by Bnn of cardi-
nality |%].

Proof: Let

A= {[x1,:cn], (21, Zn-1), [z2, Tn—1], [22, Tn-2], ..., [fBL;,'-J»z[-',‘-Hl]}

_f{1 2 3 ... i ... n
7T\2 3 4 ... i+l ... 1)
Then A, := {B;: B; =d*[A],1 <i < |%]} is a (Cl1)-packing of cardinal-
ity | %] (see Figure 5).

and

Figure 5
Generation of a maximal (C1)-packing in K3 by trees of length 13
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Because all pairs of vertices zx,z; belong to every B; € Ay, and since
every B; is connected, the packing is trivially (C1)*. m}

In fact Theorem 2 follows also from [4] p. 89.
Remark 4: If n is even, the density of the packing constructed above is 1.
Hence, it can be regarded as a path design (in contrast to the case n odd).

At this stage we get, as a byproduct which will be useful afterwards, also
an optimal (C1)*-packing in K, by cycles of length n+1: Just introduce
a new point z,.; and close every tree constructed above by joining both
ends with z,; (see Figure 6).

Figure 6
Generation of 2 maximal (C1)-packing in K14 by cycles of length 14

The cardinality of this packing is | %], thus it is optimal. If n is even its
density is 1 and hence we get a 2-factorization of K11 (see [4] p. 89).

If n = 2k and if we consider each linear forest occurring in the packing
An,n (constructed in the proof of Theorem 2) as a row of a matrix, we get
a k x n-matrix which yields in an natural way a horizontally complete k x n
Latin rectangle (cf. [3]).

4.2 The case 2h=n

The second highest forests appear if 2h =n > 2. In this case estimate (2)
says, that a maximal packing is of cardinality less or equal than I_hzz;:‘--zl J
which is h (= %) for A > 2. We find:
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Theorem 2. In K,, (with n = 2h) there exists a (C1)-packing A2znn by

Bon . of cardinality [%J (and hence this packing is optimal), whereas

a (C1)*-packing of this cardinality only exist for h = 2.

Proof: The case h = 2 is trivial, so let us assume h > 2. By Section 4.1 we
can find a packing for ' = n (= 2h) of cardinality 4 (= k). Canceling an
edge of each linear tree of this packing such that both parts are of length
h we get a packing Agp s of cardinality h. Thus (2) is sharp also in case
2h =n.

To see that for h > 2 no (C1)*-packing of the mentioned cardinality exists
we proceed by contradiction. Suppose there is such a packing Aznn =
{B; € Bopp:i =1,...,h}. Consider the sets S; = {j: z; and zz;, are in
the same connected component of B;} fori=1,...,2h — 1. Since Ao is
a (C1)*-packing the sets S; are all of “almost equal size” or more precisely
there exists m € N such that every set S; has cardinality m or m + 1, say
|Si| = -+ = |Sz| = m and |Sz41]| = -+ = [S2n—1] = m + 1. By counting
edges we obtain:

-1 ifheven _J%  ifheven
m =9 h=1 =131

ey

if h odd if h odd

wl

To continue we have to distinguish the four casesh =. mod 4,:.=0,1,2,3.
We only carry out ¢ = 1 (the other cases are similar). For kh = 4k + 1 we
obtain that |S1 N S;| = k for j = 2,...,z. It follows that z; and z;,
7 =2,...,z, are m + 1 times in the same connected component of a V;.
But since z —1 = 32-1 _1 > A=l — 9h — 1z this is impossible. (If . = 3,
consider S; and S; for j=z+1,...,2h - 1.)

An alternative proof is based upon the observation that the (C1)*-packing
considered above would induce a partition of the set {1,..., k} into z sub-
sets S; of cardinality m having the property that their intersection is of
cardinality k. It is quite easy to see that there is no such partition. O

4.3 Large forests: h=2

If h = 2, then because h is a divisor of n, n has to be even and of the form
n = 2m (for an m > 0). Estimate (2) says, that in this case a maximal
packing is of cardinality less or equal than 2'2‘:: =n —1. In fact there
holds:

Theorem 4. If n is even then there exists a (C1)*-packing A, 2 in K, of
cardinality n — 1.

Proof: Let n = 2m. We consider two cases.
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Case 1. m is odd, hence of the form m = 2k + 1:

Let
Al = {[31,172], [23, 24]1 ey [Zn_l,l'n]} ’
(24 ... 2% .. o2m
91=\4 6 ... 26+2 ... 2 )’
Az :={[z1, za]}V{[22, Tn—2], [£3, Tn—1], [Z4, Zn—a], [£5, Zn-3), - - -, [Tm) Tm+2]}
and
_f1 2 ... t ... n—-1n=n
9213 4 ... i+2 ... 1 2)°
Then

An == {B;: Bi=0{"'[Aj] for 1 <i < 2k and
B; = 0§~ 2%~1[A] for 2k <i < n}

is a (C1)-packing of cardinality n — 1.

Case 2. m is even, hence of the form m = 2k. Here we give the proof

by induction on k. Let P := {z;: iis odd} and Q := {xz;: i is even}. By

induction there are packings A%, = {AF:1 < i < m} and .A?c'?,c,2 =

{A,-Q: m < i <n-—1}in P (respectively Q) both of cardinality m — 1.
Then with the graph A := {[z1,z3], [z3,%4], ..., [£n—1,2n]} and the per-

2 4 ... 2i Zk),deﬁne

mutatlona:=(4 6 ... 242 ... 2

Azm 2 i={B;: B; = 0*[A] for 0 < i < m and
Bi=APUAR form<i<n—1}

which is a (C1)-packing of cardinality n — 1.
In both cases, the packing is trivially (C1)* since every pair of vertices
is exactly once in the same connected component of a forest. (]

Remark 5: In fact we proved that if n is even, then K, has a 1-factorization
(cf. [4] Theorem 9.1).

4.4 Balanced forests: h2=n

For h? = n the estimate (2) says, that a maximal packing is of cardinality
less or equal than (*31).

Lemma. If h is odd and n = h?, then there is a (C1)-packing Anp in Ky,
of cardinality 25%.

Proof: Use the Remark 4 to construct in K, "T‘l many pairwise edge
disjoint cycles of length n. By canceling suitable edges in each cycle, we
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get a set of umform edge disjoint forests of height A, thus a (C1)- packmg
of cardinality 2 —

Note that the difference between —'*'— (the upper bound for the cardi-
nality of a (C1)-packing which is glven by estimate (2)) and 23= is only
J’— hence a (C1)-packing in K, of cardinality ";1 looks almost optimal.
However the next Theorem shows, that there are always (C1)-packings,
such that estimate (2) is sharp and that in some cases we can even find a
(C1)*-packing of density 1.

Theorem 5. For any h > 1 there exists a (C1)-packing Ann in K, of
cardinality (*}") and hence of density 1. Moreover, if h is of the form
h = p™ (where p is a prime number and m € N), there exists a (C1)*
packing Ay p, in K, of the same cardinality and density.

Proof: The first part of the theorem, namely that there exist (C1)-packings
Ap  in K, of cardinality of density 1 follows quite easily from the results of
[5], [6] and [2] (see also the interpretation of the packing as solution of the
well-known “handcuffed prisoner problem”). Nevertheless, the packings
constructed in the cited papers are not (C1)* as one easily checks (two
prisoners may walk quite often in the same row whereas others only once).
So, we have to show that for h being a power of a prime, a (C1)*-packing
(and hence a particularly regular solution of the problem) of density 1
exists.

For even h we can give a shorter construction of a (C1)-packing than in
the mentioned papers, so let us start with
Case 1. h is an even number, hence of the form h = 2k.
First we take the (C2)-packing Ay of cardinality "72 constructed in the
proof of Theorem 2. Now if we cancel in each linear tree all edges of cyclic
length 0 (mod k), we get a (C2)-packing Ay, » of the same cardinality.

The canceled edges form h disjoint complete graphs {K}}1<i<n. Again
by Theorem 2 we find a (C2)-packing Aj, , of cardinality k in each such
graph. Choosing one linear tree (of length k) in each .A;',, » We get a uniform
forest of height h and size h. We repeat this procedure k times and end up
with the k missing uniform forests: % + k = (*}?).
Case 2. h is of the form h = p™, where p is a prime number and m € N.
We will give the proof of this case in three steps.

1st step: We identify the vertices of K, with the points (,5), 4,5 €
F, of the plane of the coordinate geometry over a Galois field F' with
h = p™ elements (as a general reference for finite geometry see [8]). In
this plane we are given k + 1 bundles of parallels, each bundle consisting
of h nonintersecting straight lines. One bundle is consisting of the lines
looi = {(3,7)}jer, the other bundles are l,; = {(j, 87 +1%)}jer (Where s € F).
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Each bundle of parallels may be considered as a partition of V;,, the vertices
of K,..

2nd step: It is easy to see that for any two partitions P; = {'u,lc: 1<k<
h} and P, = {v:1 < k < h} constmcted in step 1 there is a (h x h)-
matrix A = a;; such that {a;j: i = k} = v} and {ai;: j =k} = vk With
the k + 1 partitions constructed in step 1 we obtain in this way —‘1'— many
(h x h)-matrices.

3rd step: Now we take a matrix A = a;; constructed in step 2 and show
that it yields a packing in K, of cardinality A. Combining the h packings
given by each of the Ezf,i matrices we obtain a packing in K, of cardinality
A(ht+1) _ (h-zl-l).

(a) First consider the h linear trees [aj, Git1,i, Bit1,i—1)Bi42,i—15--+
ai+£;l“._£;l], where all indices are taken modulo hand i =1,...,h. Those
trees form a uniform forest F in K,, of height h and size .

(b) According to Theorem 2 it is — after a suitable rearrangement of
the vertices — possible to construct 27! linear trees of length k in each
row or column such that all these trees are pairwise edge-disjoint and also
edge-disjoint with each linear tree belonging to the forest F'. Therefore we
get "7"1- uniform forests of height ~ and size A coming from the rows of
A and the same number coming from the columns. Altogether we obtain
14 % + % = h uniform forests of height h and size A which are by
construction edge-disjoint.

Thus we get a (C1)-packing A, 5 in K, of cardinality 2(:t1) """1 ("“)
which is by construction even a (Cl)*—packmg

Example: To illustrate the construction above we consider the case h = 3.

1st step: Figure 7 shows the coordinateplane F' x F for the finite field
F = F53 = {0, 1,2} and the bundles of parallels. We identify z; =1 = (0, 2),
zp =2=(1,2) etc.

2nd step: The partitions given by the bundles of parallels of step 1 give
rise to the following 2 matrices having the property that each bundle occurs
in exactly one of the matrices either in the rows or in the columns:

1 23 3 57
4 5 6 and 8 1 6
7 89 4 9 2

The first matrix is built of Iz and Iy, the second of i1 and Iz (other
choices are also possible).
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9rd step: By each of the two matrices of step 2 we construct packings in
Ky of cardinality 3. The combination gives the packing of cardinality 6.

(a) By the construction given in the proof we first get the two uniform
forests {[1, 4, 6), [5,8, 7], [9, 3,2]} and {[3,8,6],[1,9,4], 2,7, 5]}

(b) At least we get the four uniform forests {[2,1,3],[4,5,6], (7,9, 8]},
{[1,7,4),5,2,8),[3,6,9]}, {[5,3,7],(8,1,6],[4,2,9]} and {[3,4,8],[1,5,9],
[7,6,2]}, where the first two come from the first matrix and the last two
from the second matrix.

Remark 6: P. Hell and A. Rosa have shown in [5] that a (C1)-packing
Apap of Kpa with density o) = 1 always exists. The difference between
our solution and the solution given in [5] for k = p™ (where p is a prime
number) is, that our solution is homogeneous, i.e. if we take two arbitrary
distinct vertices of Kj2, then they appear in the same tree exactly Lm.{-l
or % times if p is odd and %m times if p = 2. The solution given in
[5] is far away from being (C1)*. In the language of graph design we may
summarize the results as follows.

Summary: If n = k2, then there exists a resolvable balanced path design
of type (n, h, 1). Furthermore, if b = 2¥, then we can choose this resolvable
balanced path design such that it is at the same time a balanced incomplete
block design (the blocks being the vertices of the trees) with every pair of
vertices occurring 2¥~! times in a block. If h = p™, p an odd prime number,
then for diophantic reasons, there is no m such that every pair of vertices
occurs exactly m times in the same tree. Therefore, in this case, the (C1)*-
packing we constructed is the most balanced solution one can think of.

We close with the following question.
Does a (C1)*-packing of K3g by Bas,¢ with density ox = 1 exist?
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