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On Periodic Billiard Trajectories
in Obtuse Triangles∗

Lorenz Halbeisen†

Norbert Hungerbühler‡

Abstract. In 1775, J. F. de Tuschis a Fagnano observed that in every acute triangle, the orthoptic
triangle represents a periodic billiard trajectory, but to the present day it is not known
whether or not in every obtuse triangle a periodic billiard trajectory exists. The limiting
case of right triangles was settled in 1993 by F. Holt, who proved that all right triangles
possess periodic trajectories. The same result had appeared independently in the Russian
literature in 1991, namely in the work of G.A. Gal’perin, A.M. Stepin, and Y.B. Vorobets.
The latter authors discovered in 1992 a class of obtuse triangles which contain particular
periodic billiard paths. In this article, we review the above-mentioned results and some
of the techniques used in the proofs and at the same time show for an extended class of
obtuse triangles that they contain periodic billiard trajectories.
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1. Introduction. The investigation of billiard trajectories in a plane domain Q
with boundary ∂Q consisting of finitely many smooth curves has a long history and
touches upon questions of geometry, partial differential equations, physics, and ergodic
theory (see, e.g., [1], [3], [5], [6], [8], [10], [14], [15]). One of the first results concerning
the existence of periodic trajectories was obtained by Birkhoff in 1927 for the case
when Q is smooth and convex: by applying a theorem of Poincaré he showed that
in that case, for any k > 0 and w < k

2 such that k and w are relatively prime,
there exist at least two periodic reflecting paths in Q with k reflections and winding
number w (see [2] and Figure 1). For nonsmooth boundary curves the situation is
drastically more difficult. Using Teichmüller theory, Masur recently proved for the
case of polygons that in every rational polygon there exist infinitely many periodic
billiard trajectories (see [11]). Here, a polygon is called rational if all its angles αi are
rational with respect to π, i.e., αiπ ∈ Q.

In this paper, we investigate periodic trajectories in triangles. Let us recall the
case when the triangle is acute: the simplest periodic trajectory in it is given by the
orthoptic triangle, where the trajectory has three links and its reflection points are
the bases of the altitudes in the triangle (see Figure 2). A nice proof of this fact is
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658 LORENZ HALBEISEN AND NORBERT HUNGERBÜHLER

∂

γ
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Q

Fig. 1 A periodic billiard trajectory γ in Q with nine reflections and winding number 2.
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Fig. 2 Orthoptic triangle.

based upon the variational property of this trajectory, namely, that it is the shortest
closed path through the triangle that touches all three sides. This idea goes back to
K. H. A. Schwarz (1843–1921); see [12, Vol. 2, p. 344]. In [13, Vol. 2, p. 728] this proof
was falsely attributed to Jacob Steiner (1796–1863). The first proof for the orthoptic
triangle, however, goes back to the year 1775 and the Italian ordained priest and
mathematician J. F. de Tuschis a Fagnano (see [4]). For right triangles the existence
of periodic trajectories was proved by Holt in [9]. But the same result appeared
earlier and independently in the Russian literature (see [7], [8]). Gal’perin, Stepin,
and Vorobets discovered in [8] a class of obtuse triangles that contain stable periodic
trajectories (see section 2). However, it is unknown whether periodic paths exist in
every obtuse triangle. The aim of this article is to improve the results of Gal’perin,
Stepin, and Vorobets using some new techniques for analyzing the structure of periodic
orbits.

D
ow

nl
oa

de
d 

03
/1

8/
25

 to
 1

29
.1

32
.2

1.
16

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



PERIODIC BILLIARD TRAJECTORIES IN OBTUSE TRIANGLES 659

α β
 1 

 3  2 

Fig. 3 Angles and sides in an obtuse triangle.
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Fig. 4 Periodic billiard path corresponding to the code (1, 3, 2, 1, 2, 1, 2, 1, 3, 1, 2).
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Fig. 5 Straightened billiard trajectory.

In order to describe our results, we parametrize the set of obtuse triangles as
follows: starting with the long side of such a triangle we number the sides as 1, 2,
and 3 proceeding clockwise. The angle between the sides 1 and 2 will be denoted
by α, the other acute angle by β (see Figure 3). In this way the set of obtuse
triangles modulo similarity is in one-to-one correspondence with the parameter set
{(α, β) : 0 < α, 0 < β, α + β < π

2 }. We equip the set of triangles with the topology
and measure inherited from the Euclidean topology and the Lebesgue measure on the
parameter plane.

If we denote by Ωn := {1, 2, 3}{1,2,...,n} the set of 123-sequences of length n and
by ωn := Ωn/Dn the set Ωn modulo the dihedral group Dn, then we may associate
with each periodic trajectory of length n a unique element in ωn (called the code of
the trajectory) by considering the numbers of the sides in the order in which they are
visited by the reflecting path (see Figure 4).

2. Stable Trajectories. First we need to describe the method of straightening
a billiard trajectory (see also [8]). We fix a periodic trajectory Γ with n reflections
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660 LORENZ HALBEISEN AND NORBERT HUNGERBÜHLER

in a polygon Q and consider the polygons Q0 = Q, Q1, Q2, . . . , Qn′ (where n′ = n if
n is even and n′ = 2n if n is odd) obtained by successive reflections of Q in those
sides i1, i2, . . . , in′ in which the billiard particle moving along Γ is reflected. Since
n′ is even, Qn′ has the same orientation as Q0 and hence is obtained from Q0 by a
translation (see Figure 5). The straightened trajectory Γ̃ joins “identical” points A
and A′ in Q0 and Qn′ , respectively. Hence, every line parallel to Γ̃ with a distance
smaller than some positive ε from Γ̃ gives raise to a periodic trajectory in Q of length
n if n is even, and of length 2n if n is odd. The set of those trajectories is called the
pencil of parallel periodic trajectories.

A natural way to classify periodic trajectories in a polygon is to consider the
stability of the path with respect to small deformations of the polygon (see also [8]).

DEFINITION 1. A periodic trajectory in a polygon Q is called stable if it is not
destroyed by any small deformation of Q, and it is called odd (even) if it has an odd
(even) number of links.

Now we want to describe how one can determine whether for a given triangle
(α, β) a periodic trajectory with code (a1, . . . , an)/Dn ∈ ωn exists. The reflection
with respect to the side j ∈ {1, 2, 3} is given by an affine mapping Fj : R2 → R2, x �→
Ajx+cj , where Aj ∈ O(2,R) has determinant det(Aj) = −1. For i = 1, . . . , n consider
the affine transformation

Gi(x) := Fai ◦ · · · ◦ Fan ◦ Fa1 ◦ · · · ◦ Fai−1(x) = Bix + di

with Bi ∈ O(2,R). Gi induces a mapping G̃i on the set of straight lines of the
plane. Let us calculate the fixed point set of G̃i: each line g may be described by
g = {x ∈ R2 : n · x + d = 0} for a unit vector n ∈ R2. Then g is fixed under G̃i if in
addition there holds n ·(Bix+di)+d = 0, i.e., if Bt

in ·x+n ·di+d = 0. Both equations
n ·x + d = 0 and Bt

in ·x + n · di + d = 0 hold simultaneously if (Bt
in, n · di + d)‖(n, d),

i.e., if n is an eigenvector of Bt
i (and thus of Bi). If λ 
= 1 is an eigenvalue of Bt

i for
the eigenvector n of Bt

i , we obtain that d = 1
λ−1 n · di and we get a unique fixed line

g. It follows that real fixed lines only exist if the spectrum of Bi is real and therefore
a subset of {−1, 1}. Hence, we have the following three cases.

Case l. spec Bi = {1}. It follows that Bi = id and the (infinite) set of fixed lines
is {n · x + d = 0 : d ∈ R arbitrary, n 
= 0 with n · di = 0}.

Case 2. spec Bi = {−1}. It follows that Bi = − id and the (infinite) set of fixed
lines is {n · x + d = 0 : n an arbitrary unit vector, d = − 1

2 n · di}.
Case 3. spec Bi = {−1, 1}. It follows that Bi describes a reflection with respect

to a line. Then G̃i has at least the fixed line.
Case 3a. {n · x + d = 0 : n an eigenvector of Bi to eigenvalue −1, d = − 1

2 n · di}.
Case 3b. If n′ · di = 0 for the eigenvector n′ to eigenvalue 1, then the (infinite)

family {n′ · x− d = 0, d ∈ R} consists of fixed lines.
Note, that, simultaneously for each i = 1, . . . , n, we have one of the cases 1, 2, 3a,

or 3b.
The following theorem gives a sufficient condition for a trajectory to be stable

(for a necessary and sufficient condition, see [8]).
Theorem 1. Every odd trajectory is stable.
Proof. We carry out the proof only for an obtuse triangle (for arbitrary polygons

it is analogous). Let Γ be a periodic path with an odd number n of reflections and
with code word (a1, . . . , an). Let us assume that the Euclidean coordinates are chosen
such that side 1 of the obtuse triangle Q is the line segment with end points (0, 0),
(1, 0) and such that the triangle lies in the upper half-plane. We consider the situation
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Fig. 6 Perpendicular trajectories.

by straightening out Γ to Γ̃i as described above by reflecting the triangle first with
respect to side ai. Observe that Γ̃i is a fixed line of the associated affine mapping
Bix + di. Since det Bi = −1, we are in Case 3 above. Γ̃i joins corresponding points
A and A′′ of Q and Qn such that the angles between Γ̃i and the corresponding sides
are equal. Q and Qn have different orientation, and hence every line parallel to Γ̃i
violates the condition to join corresponding points. Hence we are in Case 3a (3b
does not occur). Now, observe that the associated affine mapping Bix + di depends
continuously on the angles α and β. The same is true for the eigenvectors of Bi and
hence for the fixed line n · x − 1

2 n · di = 0. Now, every reflection point lies in the
interior of the sides 1, 2, or 3 of the triangle Q. Since the coordinates of the top of
Q also depend continuously on α and β, this translates to a set of strict inequalities
with both sides depending continuously on α and β, and the assertion follows.

3. Perpendicular Trajectories. In [8] it was proved that every rational n-gon
contains at least n

2 pencils of periodic perpendicular trajectories, i.e., trajectories
having the property that two of the reflection angles are right angles. Here, we consider
one-dimensional families of obtuse triangles which contain perpendicular trajectories.

Theorem 2. Every triangle whose angles α and β satisfy kα + nβ = π, for some
k, n ∈ N, contains a pencil of perpendicular periodic trajectories with 2(n + k − 1)
reflections, provided that the following holds:

π

2k

(
1− 1

n− 1

)
< α <

π

2k

(
1 +

1
k − 1

)
,

with the convention 1
0 =∞.

Remark 1. For n = k = 2, we recover Holt’s result [9], and for n = 2 and k even,
we recover the results in [8, section 4B]. If n = 1 or k = 1, then the triangles are
acute; otherwise they are obtuse. The set of obtuse triangles that satisfy the above
condition is indicated in Figure 6. For a discussion of perpendicular trajectories in
the triangles with kα = nβ < π

2 , see [8].
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662 LORENZ HALBEISEN AND NORBERT HUNGERBÜHLER

A B
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α kα β

h

 nβ

Fig. 7 Perpendicular trajectories.

Proof. From Figure 7 it is clear that in a triangle ABC whose angles α and β
satisfy the equation

kα + nβ = π,(3.1)

the line h generates a perpendicular periodic trajectory if either
(i) kα ≤ π

2 and π
2 − kα < β or

(ii) kα > π
2 and π

2 − nβ < α.
Using (3.1) we find that π

2 − kα < β is equivalent to (n − 2)π < 2kα(n − 1)
and that π

2 − nβ < α is equivalent to (k − 2)π < 2nβ(k − 1), which completes the
proof.

4. Generators of Stable Trajectories. First we define the notion of a generator.
DEFINITION 2. An infinite subset of

⋃
n∈N ωn is called a generator if every word

of this subset is the code of a stable periodic orbit in an obtuse triangle.
The first and only generator known up to now was discovered in [8].
Theorem 3.

{
132(12)k−1(13)l−1 : k, l ∈ N, k + l > 2

}
is a generator.

Here, (a1a2 . . . ai)n denotes the concatenation of n copies of the word a1a2 . . . ai.
Since the proof of this theorem is instructive, we give the main idea for the reader’s
convenience.

Proof. Since every word of the specified form has odd length, according to The-
orem 1 it suffices to show for each pair k, l the existence of a triangle that contains
a reflection path with the corresponding code. Such a triangle ABC is shown in Fig-
ure 8. The angles α and β are chosen such that (k + 1

2 )α = (l + 1
2 )β = π

2 . It is easy
to see that each side in the orthoptic triangle HaHbHc of the “supertriangle” ABN
intersects the sides AC and BC. Hence, by reflecting back the orthoptic triangle, we
get a reflection path in ABC with the required code.

Remark 2. The crucial condition that the line HaHb lies below the point C
(and hence that the triangle ABC contains a periodic reflection path with code
132(12)k−1(13)l−1) can be expressed algebraically by the following inequality (see [8]):(

1− cot(kα) tan α
)(

1− cot(lβ) tan β
)

> 1− tan α tan β.(4.1)

The set of triangles satisfying this condition is indicated in the parameter plane in
Figure 9.

4.1. Generating Generators. The idea of the method to construct new genera-
tors is to start with a degenerate situation and to show that a suitable and suitably
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Fig. 8 Generator 132(12)k−1(13)l−1.
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Fig. 9 Generator 132(12)k−1(13)l−1.

small perturbation of the angles α and β leads to a stable trajectory. We consider
two cases.

First we send a billiard particle along the basis AB (see Figure 10) of the obtuse
triangle (gray in Figure 10) to the right. Instead of reflecting the particle at the sides
of the triangle, we reflect the triangle and in this way straighten the trajectory. This
leads to the situation shown in Figure 10. We assume (for the moment) that the
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664 LORENZ HALBEISEN AND NORBERT HUNGERBÜHLER

A B
PQ

Fig. 10 Degenerate path along the basis.

particle does not pass through edges of reflected triangles (except for the point B)
and that after a certain number of reflections, the following reflection would occur
perpendicular to the path. At this point P we reflect the particle (no longer the
triangle) such that it now moves back on its path in the opposite direction. Eventually
the particle reaches the basis of the original triangle, now moving to the left, and we
straighten the path now to the left, again assuming that the particle does not hit any
of the edges (except for the point A) and that after a certain number of reflections the
following reflection would be perpendicular to the path. At this point Q we reflect
the particle such that we finally obtain a closed degenerate reflection path. In the
example in Figure 10, the sequence of reflections to the right is

3, 1, 3, 1, 3︸ ︷︷ ︸
N1=5

, 2, 1, 2, 1, 2, 1︸ ︷︷ ︸
N2=6

, 3, 1, 3, 1︸ ︷︷ ︸
N3=4

, 2, 1, 2︸ ︷︷ ︸
N4=3

and the sequence of reflections to the left is

2, 1, 2, 1, 2, 1, 2, 1︸ ︷︷ ︸
n1=8

, 3, 1, 3, 1︸ ︷︷ ︸
n2=4

, 2, 1︸︷︷︸
n3=2

.

The situation is fully described by the numbers Ni and nj . In general, we formally
write the code word 〈nk, nk−1, . . . , n2, n1|B|N1, N2, . . . , Nl〉 to describe the configura-
tion; “B” means that we started moving along the “basis.”

Second, we start with a particle moving along side 2 in the “northeast” direction
(see Figure 11). Again we assume that the particle does not hit edges of the reflected
triangle except for the point C and that after a certain number of reflections the
particle is reflected perpendicular to its path (in point P in Figure 11) such that it
moves now in the opposite direction and eventually passes along the side 2 of the
original triangle in the “southwest” direction. Now we again reflect the triangle by
straightening the path until we meet another perpendicular reflection (in point Q
in Figure 11) such that the path is finally closed. In the example in Figure 11 the
sequence of reflections on the path from A to P is

3, 1︸︷︷︸
N1=2

, 2, 1︸︷︷︸
N2=2

, 3, 1︸︷︷︸
N3=2

, 2︸︷︷︸
N4=1

and the sequence of reflections from C to Q is

1, 2, 1, 2, 1, 2, 1︸ ︷︷ ︸
n1=7

, 3︸︷︷︸
n2=1
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A

C

P

Q

Fig. 11 Degenerate path along side 2.

The code for this situation is 〈nk, nk−1, . . . , n2, n1|L|N1, N2, . . . , Nl〉; “L” means
that we have a path which is degenerate with respect to a “leg.” Because of the symme-
try there is no need to consider degenerate paths with respect to side 3, and notice also
that 〈nk, nk−1, . . . , n2, n1|B|N1, N2, . . . , Nl〉 and 〈Nl, , . . . , N2, N1|B|n1, n2, . . . , nk〉 are
symmetric.

By a systematic analysis of some of these degenerate situations we obtain the
following theorem.

Theorem 4. The following sets are generators.
(a) Corresponding to 〈n1|B|2N1, N2〉:

{
132(12)k−1(13)m(12)n(13)m−1 : m, n, k ∈ N,

n < k ≤ n 2m+1
2m−1 , 2m+n

2m−1 ≤ k
}

.

(b) Corresponding to 〈n1|B|2N1 + 1, N2〉:
{

132(12)k−1(13)m2(12)n−13(13)m−2 : m, n, k ∈ N,

2 ≤ n ≤ k, 2 ≤ m < 3k−n
2(k−n)

}
.

(c) Corresponding to 〈n2, 2n1|B|2N1, N2〉:
{

132(12)l−1(13)k(12)l(13)m(12)n(13)m−1 : k, l, m, n ∈ N, n < 2l,

max
(
k+n+2l+kn

4l−2 , k(l+n)
2l , nk

2l−n
)

< m < min
(k(l+n+ 1

2 )
2l−1 ,

n(k+ 1
2 )+l

2l−n
)}

.

(c) Corresponding to 〈n2, 2n1|B|2N1 + 1, N2〉:
{

132(12)l−1(13)k(12)l(13)m2(12)n−13(13)m−2 : k, l, m, n ∈ N, n < 2l,

max
(k(3l−n)

2l , kn
2l−n , 3k+6l−n−kn

4l−2

)
< m < min

(k(3l+ 3
2−n)

2l−1 ,
kn+3l−n2

2l−n
)}

.

D
ow

nl
oa

de
d 

03
/1

8/
25

 to
 1

29
.1

32
.2

1.
16

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



666 LORENZ HALBEISEN AND NORBERT HUNGERBÜHLER

(e) Corresponding to 〈n2, 2n1 + 1|B|2N1 + 1, N2〉:
{

132(12)l−13(13)k−12(12)l−1(13)m2(12)n−13(13)m−2 : k, l, m, n ∈ N,

3
(
l − 1

2

)
< 4lm−kn

2m−k < 3l, 3
(
m− 1

2

)
< 4lm−kn

2n−l < 3m
}

.

(f) Corresponding to 〈n1|L|2N1, N2〉:
{

132(12)k(13)m(12)n+1(13)m−1 : k, m, n ∈ N,

2 + n < k(2k − n), 2km(2k + 2) < (k + 1)(m + 1)(2k + 2 + n)
}

.

(g) Corresponding to 〈n2, 2n1 + 1|L|N1〉:{
132(12)k(13)l(12)k(13)m−1 : k, l, m ∈ N, max

(
2m, 2k(l −m)

)
< l + m

}
.

(h) Corresponding to 〈n2, 2n1|L|N1〉:
{

132(12)k3(13)l−12(12)k−1(13)m−1 : k, l, m ∈ N,

m < l < 3m, 2k(l −m) < l + m
}

.

(i) Corresponding to 〈n2, 2n1 + 1|L|2N1, N2〉:
{

132(12)k(13)l(12)k(13)m(12)n+1(13)m−1 : k, l, m, n ∈ N,

(m + l)(n + 1) < 2km < l(k + 1 + n), 2k < (n+1)(l+m+1)
m−1 ,

max
(
l(2k + 1 + 2n), ln

)
< 2m(2k + 1)

}
.

(j) Corresponding to 〈n2, 2n1|L|2N1, N2〉:
{

132(12)k3(13)l−12(12)k−1(13)m(12)n+1(13)m−1 : k, l, m, n ∈ N,

l < 6m, 2m(k − 1) < l(k + n), l(2k + 1 + 2n) < 2m(2k + 1),

m(3n + 5− 2k) < l(n + 1) < m(3n + 5− 2k) + 2k + 1 + 3n
}

.

Remark 3. Notice that 〈n1|B|N1〉 as well as 〈n1|L|N1〉 leads to the generator
described in Theorem 3.

Proof. As a prototype we prove (a). The remaining cases are proved similarly.
In order to simplify the calculation, we define k := n1 + 1 ≥ 1, n := N2 + 1 ≥ 1,

m := N1 ≥ 1. For the angles ε1, ε2 in Figure 12, we have

ε1 = kα,

ε2 = 2mβ − nα.

If we choose α0 = π
2k and β0 = π

4km (k + n), we get ε1 = ε2 = π
2 . Since

det
(

k 0
−n 2m

)
= 2km > 0,
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A = Q B
P

l

h

ε 1 ε 2 

Fig. 12 〈n1|B|2N1, N2〉.

A B

P

l

h

ε1 ε1

Q

R

Fig. 13 Orthoptic triangle PQR.

A B

h

l

Xg

kε 

2mδ – nε

(2m + l)δ

Fig. 14 Limiting situation.

the Jacobian of the mapping (α, β) �→ (ε1, ε2) is regular. Therefore, a suitable per-
turbation of the values α0 and β0 allows one to obtain any prescribed value of ε1 and
ε2 near π

2 . Observe that
(1) n < k =⇒ 2mβ0 < π,
(2) n(2m + 1) ≥ k(2m− 1) =⇒ (2m + 1)β0 ≥ π,
(3) k(2m− 1) ≥ 2m + n =⇒ α0 + β0 ≤ π

2 .
If we assume for the moment that we have “>” in (2) and (3) above, then we

can choose (α, β) near (α0, β0) such that ε1 and ε2 are simultaneously slightly smaller
than π

2 , α + β < π
2 , and the orthoptic triangle PQR in the supertriangle with sides

AB, h, and l is contained in the reflected triangles in such a way that the point R is
between A and B (see Figure 13). Hence, the orthoptic triangle generates a periodic
reflection path in the original triangle.

Now, we allow an “=” in (2). Figure 14 shows the reflected triangles with the
critical values (α0, β0). By choosing β = β0−δ and α = α0−ε (with ε, δ > 0 sufficiently
small), we also obtain a situation in which the orthoptic triangle generates a periodic
orbit and α + β < π

2 . In fact, if we choose ε and δ such that (m− 1
2 )δ > nε, we have

2mδ − nε > 1
2 (2m + 1)δ, and hence the critical point X (in the perturbed situation,

gray in Figure 14) lies below the perpendicular line g from A to l. (The case “=” in
(3) is handled similarly.)

Thus, the conditions (1)–(3) imply that in the neighborhood of the corresponding
degenerate situation, there is a nondegenerate periodic orbit in an obtuse triangle.
This completes the proof of (a).
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Fig. 15 Parameter set of generator (a).
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Fig. 16 Parameter set of generator (b).
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Fig. 17 Parameter set of generator (c).
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Fig. 18 Parameter set of generator (f).

The parameter sets of triangles which contain a periodic reflection path corre-
sponding to some of the generators are indicated in Figures 15–20. The fat dots
represent some of the points (α0, β0) where the paths degenerate.

4.2. Obtuse Triangles with Periodic Trajectories. In addition to the generators
presented in the previous section, we checked systematically for all code words in ωn
of length n less than or equal to 25, whether or not they generate a reflection path
in some obtuse triangle. Figure 21 shows the open parameter set of all triangles
that we found by this method and by using the generators of the previous section.
Numerically, this adds up to about 50% of all obtuse triangles. Sharp estimates are, of
course, very hard to derive. However, the hope would be to detect enough generators
to fill the whole parameter set.
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Fig. 19 Parameter set of generator (g).
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Fig. 20 Parameter set of generator (h).
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Fig. 21 Parameter set.
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