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We define a generalization of the winding number of a piecewise𝐶1 cycle in the complex plane which has a geometric meaning also
for points which lie on the cycle.The computation of this winding number relies on the Cauchyprincipal value but is also possible in
a real version via an integral with bounded integrand.The new winding number allows to establish a generalized residue theorem
which covers also the situation where singularities lie on the cycle. This residue theorem can be used to calculate the value of
improper integrals for which the standard technique with the classical residue theorem does not apply.

1. Introduction

One of the most prominent tools in complex analysis is
Cauchy’s Residue Theorem. To state the classical version of
this theorem (see, e.g., [1] or [2, Theorem 1, p. 75]) we briefly
recall the following notions: A chain is a finite formal linear
combination,

Γ = 𝑘∑
ℓ=1

𝑚ℓ𝛾ℓ, 𝑚ℓ ∈ Z, (1)

of continuous curves 𝛾ℓ : [0, 1] 󳨀→ C. A cycle 𝐶 is a chain,
where every point 𝑎 ∈ C is, counted with the corresponding
multiplicity 𝑚ℓ, as often a starting point of a curve 𝛾ℓ as it
is an endpoint. A cycle 𝐶 is null-homologous in 𝐷 ⊂ C, if its
winding number for all points inC\𝐷 vanishes. Equivalently,𝐶 is null-homologous in 𝐷, if it can be written as a linear
combination of closed curves which are contractible in 𝐷.
Then the residue theorem can be expressed as follows:

Theorem 1 (Classical Residue Theorem). Let 𝑈 ⊂ C be an
open set and let 𝑆 ⊂ 𝑈 be a set without accumulation points in𝑈 such that 𝑓 : 𝑈 \ 𝑆 󳨀→ C is holomorphic. Furthermore, let𝐶 be a null-homologous cycle in 𝑈 \ 𝑆. Then there holds

12𝜋i ∮𝐶
𝑓 (𝑧) d𝑧 = ∑

𝑠∈𝑆

𝑛𝑠 (𝐶) res𝑠𝑓 (𝑧) , (2)

where 𝑛𝑠(𝐶) denotes the winding number of 𝐶 with respect to𝑠.
Henrici considers in [3, Theorem 4.8f] a version of the

residue theorem where 𝐶 is the boundary of a semicircle in
the upper half-plane with diameter [−𝑅, 𝑅] and where 𝑓 is
allowed to have poles on (−𝑅, 𝑅) which involve odd powers
only. The result is basically a version of the classical formula
(2), but with winding number 1/2 for the singularities on the
real axis and where the integral on the left-hand side of (2) is
interpreted as a Cauchy principal value. Another very recent
version of the residue theorem, where poles of order 1 on the
piecewise 𝐶1 boundary curve 𝛾 of an open set are allowed,
is discussed in [4, Theorem 1]. There, if a pole is sitting on
a corner of 𝛾, the winding number is replaced by the angle
formed by 𝛾 in this point, divided by 2𝜋. In [5] a version of
the residue theorem for functions 𝑓 with finitely many poles
is presented where singularities in points 𝑧0 on a closed curveΓ are allowed provided |𝑓(𝑧)| = 𝑂(|𝑧 − 𝑧0|𝜇) near 𝑧0, with−1 < 𝜇 ≤ 0. Further versions of generalizations of the residue
theoremare described in [6, 7]: there, versions for unbounded
multiply connected regions of the second class are applied to
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higher-order singular integrals and transcendental singular
integrals.

In the present article, we introduce a generalized, non-
integer winding number for piecewise 𝐶1 cycles 𝐶 and a
general version of the residue theorem which covers all cases
of singularities on 𝐶. We will assume throughout the article
that all curves are continuous. In particular, a piecewise 𝐶1

curve is a continuous curve which is piecewise𝐶1. Recall that
a closed piecewise 𝐶1 immersion Λ : [𝑎, 𝑏] 󳨀→ C is a closed
continuous curve such that there is a partition 𝑎 = 𝑎0 < 𝑎1 <. . . < 𝑎𝑛 = 𝑏 such that Λ|[𝑎𝑘 ,𝑎𝑘+1] is of class 𝐶1 and such thatΛ̇|[𝑎𝑘 ,𝑎𝑘+1] ̸= 0 for all 𝑘 = 0, . . . , 𝑛−1. If Λ̇|[𝑎𝑘 ,𝑎𝑘+1] is furthermore
a Lipschitz function for all 𝑘 = 0, . . . , 𝑛 − 1, then Λ is called a
closed piecewise 𝐶1,1 immersion.

2. A Generalized Winding Number

Theaim of this section is to generalize the winding number to
piecewise 𝐶1 cycles with respect to points sitting on the cycle
itself.

The usual standard situation is the following:Thewinding
number of a closed piecewise 𝐶1 curve 𝛾 : [𝑎, 𝑏] 󳨀→ C \ {0}
around 𝑧 = 0 is given by

𝑛0 (𝛾) = 12𝜋i ∮𝛾

d𝑧𝑧 ∈ Z. (3)

See, for example, [2, p. 70] or [8, p. 75]. More generally, one
can replace the curve𝛾 by a piecewise𝐶1 cycle𝐶 = ∑𝑘

ℓ=1𝑚ℓ𝛾ℓ.
An integral over the cycle is then

∮
𝐶
𝑓 (𝑧) d𝑧 fl 𝑘∑

ℓ=1

𝑚ℓ∮
𝛾ℓ

𝑓 (𝑧) d𝑧. (4)

In order to make sense of the winding number also for points
on the curve, we use the Cauchy Principal Value:

Definition 2. Thewinding number of a piecewise𝐶1 cycle 𝐶 :[𝑎, 𝑏] 󳨀→ C with respect to 𝑧0 ∈ 𝐶 is

𝑛𝑧0
(𝐶) fl PV 12𝜋i ∮𝐶

d𝑧𝑧 − 𝑧0

= lim
𝜀↘0

12𝜋i ∫|𝐶−𝑧0|>𝜀

d𝑧𝑧 − 𝑧0

. (5)

It is not a priori clear whether this limit exists and what its
geometric meaning is. So, we start by looking at the following
model case: Using the Cauchy principal value we can easily
compute the winding number with respect to 𝑧 = 0 of the
model sector-curve 𝛾 = 𝛾1 + 𝛾2 + 𝛾3, where

𝛾1 : [0, 𝑟] 󳨀→ C, 𝑡 󳨃󳨀→ 𝑡, 𝛾󸀠
1 (𝑡) = 1

𝛾2 : [0, 𝛼] 󳨀→ C, 𝑡 󳨃󳨀→ 𝑟ei𝑡, 𝛾󸀠
2 (𝑡) = 𝑟iei𝑡

𝛾3 : [0, 𝑟] 󳨀→ C, 𝑡 󳨃󳨀→ (𝑟 − 𝑡) ei𝛼, 𝛾󸀠
3 (𝑡) = −ei𝛼

(6)
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Figure 1: The model sector-curve 𝛾 = 𝛾1 + 𝛾2 + 𝛾3.
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Figure 2: Winding number with respect to the origin sitting on the
curve Γ.
for 𝛼 ∈ [0, 2𝜋] (see Figure 1). Since

PV∮
𝛾

d𝑧𝑧
= lim

𝜀↘0
(∫𝑟

𝜀

d𝑡𝑡 + ∫
𝛼

0

𝑟iei𝑡𝑟ei𝑡 d𝑡 + ∫
𝑟−𝜀

0

−ei𝛼(𝑟 − 𝑡) ei𝛼 d𝑡)
= lim

𝜀↘0
(ln 𝑟 − ln 𝜀 + i𝛼 + ln 𝜀 − ln 𝑟) = i𝛼,

(7)

we obtain

𝑛0 (𝛾) = PV 12𝜋i ∮𝛾

d𝑧𝑧 = 𝛼2𝜋 (8)

with a meaningful geometrical interpretation.

Consider now a closed piecewise 𝐶1 immersion Γ :[𝑎, 𝑏] 󳨀→ C starting and ending in 0 but such that Γ(𝑡) ̸= 0
for all 𝑡 ̸= 𝑎, 𝑏 and such that the (positively oriented) angle
between lim𝑡↘𝑎Γ̇(𝑡) and −lim𝑡↗𝑏Γ̇(𝑡) equals 𝛼 ∈ [0, 2𝜋]. By a
suitable rotation we may assume, without loss of generality,
that lim𝑡↘𝑎Γ̇(𝑡) is a positive real number (see Figure 2). We
assume that Γ is homotopic to a model sector-curve 𝛾 with
the same angle 𝛼 in the following sense:There is a continuous
function𝐻 : [𝑎, 𝑏] × [0, 1] 󳨀→ C such that

𝐻(𝑡, 0) = Γ (𝑡) ∀𝑡 ∈ [𝑎, 𝑏] ,
𝐻 (𝑡, 1) = 𝛾 (𝑡) ∀𝑡 ∈ [𝑎, 𝑏] ,

0 = 𝐻 (𝑎, 𝑠) = 𝐻 (𝑏, 𝑠) ∀𝑠 ∈ [0, 1] ,
𝐻 (𝑡, 𝑠) ̸= 0 ∀𝑡 ∈ (𝑎, 𝑏) , 𝑠 ∈ [0, 1] .

(9)

Then we claim that

lim
𝜀↘0
∫

|Γ|>𝜀

d𝑧𝑧 = lim
𝜀↘0
∫

|𝛾|>𝜀

d𝑧𝑧 . (10)
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Figure 3: The curves Γ and 𝛾.

For 0 < 𝜀 < 𝑟 small enough we have (see Figure 3 for the
definition of 𝛽)

∫
|Γ|>𝜀

d𝑧𝑧 = ∫
𝛽

d𝑧𝑧 (11)

by Cauchy’s integral theorem, and hence

∫
|Γ|>𝜀

d𝑧𝑧 − ∫|𝛾|>𝜀

d𝑧𝑧 = ∫
𝛽

d𝑧𝑧 − ∫|𝛾|>𝜀

d𝑧𝑧
= ∫

𝛽

d𝑧𝑧 − ∫|𝛾|>𝜀

d𝑧𝑧
+ ∫

(|𝛾|>𝜀)+𝛼1−𝛽+𝛼2

d𝑧𝑧
= ∫

𝛼1+𝛼2

d𝑧𝑧 .

(12)

Since󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝛼1+𝛼2

d𝑧𝑧
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤

1𝜀Length (𝛼1 + 𝛼2)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝑜(𝜀)

󳨀→ 0 for 𝜀 ↘ 0, (13)

the claim (10) follows. Thus we get the geometrically rea-
sonable result that the winding number of the curve Γ with
respect to 𝑧 = 0 is, as we have just seen, the angle 𝛼 divided
by 2𝜋:

𝑛0 (Γ) = PV 12𝜋i ∮Γ

d𝑧𝑧 = 𝛼2𝜋 . (14)

Next, we consider a closed piecewise 𝐶1 immersion Λ :[𝑎, 𝑏] 󳨀→ C with one zero 𝑥1 and a positively oriented angle𝛼 ∈ [0, 2𝜋] between lim𝑡↘𝑥1
Λ̇(𝑡) and −lim𝑡↗𝑥1

Λ̇(𝑡). Let Γ =Γ1 + Γ2 + Γ3 be a closed piecewise 𝐶1 curve which coincides
with Λ in a neighborhood of 𝑥1 and which is homotopic in
the sense of (9) to a model sector-curve with the same angle𝛼 (see Figure 4).Then, we decompose Λ byΛ = Λ̃+Γ. By (14)
we get

𝑛0 (Λ) = PV 12𝜋i ∮Λ

d𝑧𝑧 = 𝑛0 (Λ̃) + 𝛼2𝜋 . (15)

Finally, if Λ has more than one zero, we obtain in the same
way the following proposition:

Proposition 3. Let Λ : [𝑎, 𝑏] 󳨀→ C be a closed piecewise𝐶1 immersion and 𝑧0 ∈ C. Then there exist at most finitely
many points 𝑥1, . . . , 𝑥𝑛 ∈ [𝑎, 𝑏] such that Λ(𝑥ℓ) = 𝑧0. Consider
a decomposition Λ = Λ̃ + Γ1 + . . . + Γ𝑛, where Λ̃ coincides
with Λ outside of small neighborhoods of the points 𝑥ℓ and
avoids the point 𝑧0 by driving around it on small circular arcs
in clockwise direction. The closed curves Γℓ are homotopic in
the sense of (9) to a model sector-curve with oriented angle 𝛼ℓ

between lim𝑡↘𝑥ℓ
Λ̇(𝑡) and−lim𝑡↗𝑥ℓ

Λ̇(𝑡) (see Figure 5).Then, the
winding number of Λ with respect to 𝑧0 is

𝑛𝑧0
(Λ) = PV 12𝜋i ∮Λ

d𝑧𝑧 − 𝑧0

= 𝑛𝑧0
(Λ̃) + 𝑛∑

ℓ=1

𝛼ℓ2𝜋 . (16)

Proof. First we show that, for only finitely many points 𝑥ℓ,
we have Λ(𝑥ℓ) = 𝑧0. It suffices to consider a 𝐶1 curve Λ :[𝑎, 𝑏] 󳨀→ R2 parametrized by arc length, and 𝑧0 = (0, 0).
Assume by contradiction that Λ has infinitely many zeros𝑥ℓ. Then there is a subsequence, again denoted by 𝑥ℓ, which
converges to a point 𝑥 ∈ [𝑎, 𝑏], and we may assume that𝑥ℓ is increasing. Then, by Rolle’s Theorem, since Λ 1(𝑥ℓ) =Λ 2(𝑥ℓ) = 0, there are points 𝑢ℓ, Vℓ ∈ (𝑥ℓ, 𝑥ℓ+1) such thatΛ󸀠

1(𝑢ℓ) = Λ󸀠
2(Vℓ) = 0. But then, Λ󸀠

1(Vℓ) = Λ󸀠
2(𝑢ℓ) = 1. Hence,Λ󸀠 cannot be continuous.

For the rest of the proof, observe that Λ̃ avoids the point𝑧0. Thus, we have

𝑛𝑧0
(Λ) = PV 12𝜋i ∮Λ

𝑑𝑧𝑧 − 𝑧0

= 12𝜋i ∮̃Λ

d𝑧𝑧 − 𝑧0

+ 𝑛∑
ℓ=1

PV 12𝜋i ∮Γℓ

d𝑧𝑧 − 𝑧0

= 𝑛𝑧0
(Λ̃) + 𝑛∑

ℓ=1

𝛼ℓ2𝜋,
(17)

where we have used (14) in the last step. This completes the
proof.

Proposition 3 generalizes immediately from curves to
cycles. Definition 2 of a generalized winding number turns
out to be useful as it allows to generalize the residue theorem
(see Theorem 8 below). But before we turn our attention to
this subject, let us briefly reformulate the formula (5) for
the generalized winding number as an integral in the real
plane. Interestingly, while the winding number as a complex
integral requires an interpretation as a principal value, the
real counterpart turns out to have a bounded integrand.

If Λ = 𝑥+ i𝑦 : [𝑎, 𝑏] 󳨀→ C is a closed piecewise 𝐶1 curve,
then d𝑧/𝑧 decomposes as

d𝑧𝑧 = 𝑥 ̇𝑥 + 𝑦 ̇𝑦𝑥2 + 𝑦2
d𝑡 + i𝑥 ̇𝑦 − 𝑦𝑥̇𝑥2 + 𝑦2

d𝑡. (18)

The considerations above imply that ifΛ is a closed piecewise𝐶1 immersion, then
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Figure 4: Winding number of Λ.
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Λ

Figure 5: Decomposition of Λ = Λ̃ + Γ1 + Γ2.

PV∮
Λ

𝑥 d𝑥 + 𝑦 d𝑦𝑥2 + 𝑦2
= 0. (19)

Hence only the imaginary part of d𝑧/𝑧 is relevant for com-
puting 𝑛0(Λ). We have the following proposition regarding
its regularity:

Proposition 4. Let Λ = 𝑥 + i𝑦 : [𝑎, 𝑏] 󳨀→ C be a closed
piecewise 𝐶1,1 immersion. Then

𝑛0 (Λ) = 12𝜋 ∫
𝑏

𝑎

𝑥 (𝑡) 𝑦̇ (𝑡) − 𝑦 (𝑡) 𝑥̇ (𝑡)𝑥 (𝑡)2 + 𝑦 (𝑡)2 d𝑡 (20)

and the corresponding integrand is bounded. If Λ is 𝐶2 in a
neighbourhood of a point 𝑡̃ ∈ (𝑎, 𝑏) with Λ(𝑡̃) = 0, then

lim
𝑡󳨀→𝑡̃

𝑥 (𝑡) ̇𝑦 (𝑡) − 𝑦 (𝑡) ̇𝑥 (𝑡)𝑥 (𝑡)2 + 𝑦 (𝑡)2 = 12𝑘Λ (𝑡̃) 󵄨󵄨󵄨󵄨󵄨Λ̇ (𝑡̃)󵄨󵄨󵄨󵄨󵄨 , (21)

where

𝑘Λ (𝑡̃) = 𝑥̇ (𝑡̃) ̈𝑦 (𝑡̃) − ̇𝑦 (𝑡̃) ̈𝑥 (𝑡̃)
(𝑥̇ (𝑡̃)2 + 𝑦̇ (𝑡̃)2)3/2 (22)

is the signed curvature of Λ in 𝑡̃.

Proof. LetΛ be a closed piecewise𝐶1,1 immersion. IfΛ avoids
the origin, then the integrand is obviously bounded. On the
other hand, as in the proof of Proposition 3, it follows that Λ
can have at most finitely many zeros, say 𝑎 < 𝑡0 < 𝑡1 < . . . <𝑡𝑛 < 𝑏. It suffices to concentrate on one of the zeros 𝑡ℓ of Λ
and to simplify the notationwe assume 𝑡̃ = 0 for the rest of the
proof. We first show that the integrand is bounded providedΛ is 𝐶1,1 in a neighbourhood 𝑈 = (−𝜀, 𝜀) of 0. In this case, 𝑥̇
and ̇𝑦 are Lipschitz functions on 𝑈 and

󵄨󵄨󵄨󵄨𝑥 (𝑡) 𝑦̇ (𝑡) − 𝑦 (𝑡) 𝑥̇ (𝑡)󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫

𝑡

0
𝑥̇ (𝑠) d𝑠𝑦̇ (𝑡) − ∫𝑡

0
𝑦̇ (𝑠) d𝑠𝑥̇ (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫𝑡

0

󵄨󵄨󵄨󵄨(𝑥̇ (𝑠) − 𝑥̇ (𝑡)) 𝑦̇ (𝑡) + 𝑥̇ (𝑡) ( ̇𝑦 (𝑡) − ̇𝑦 (𝑠))󵄨󵄨󵄨󵄨 d𝑠
≤ 𝐶∫𝑡

0
(|𝑠 − 𝑡| 󵄨󵄨󵄨󵄨𝑦̇ (𝑡)󵄨󵄨󵄨󵄨 + |𝑥̇ (𝑡)| |𝑠 − 𝑡|) d𝑠 = 𝑂 (𝑡2) .

(23)

On the other hand

𝑥 (𝑡)2 + 𝑦 (𝑡)2 = (𝑡𝑥̇ (0) + 𝑜 (𝑡))2 + (𝑡 ̇𝑦 (0) + 𝑜 (𝑡))2
= 𝑡2 (𝑥̇ (0)2 + ̇𝑦 (0)2) + 𝑜 (𝑡2) . (24)
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Together, (23) and (24) imply that the integrand in Proposi-
tion 4 is bounded in 𝑈.

If Λ is only 𝐶1,1 on 𝑈− = (−𝜀, 0] and 𝑈+ = [0, 𝜀), the
claim follows in the same way by considering the unilateral
intervals left and right of the zero.

Now we assume that Λ is 𝐶2 in a neighbourhood 𝑈 =(−𝜀, 𝜀) of the zero 𝑡̃ = 0. It remains to show that the limit

lim
𝑡󳨀→0

𝑥 (𝑡) 𝑦̇ (𝑡) − 𝑦 (𝑡) 𝑥̇ (𝑡)𝑥 (𝑡)2 + 𝑦 (𝑡)2 (25)

has the geometrical interpretation stated in the proposition.
In fact, if Λ(0) = 0 we find
𝑥 (𝑡) 𝑦̇ (𝑡)
= (𝑡𝑥̇ (0) + 𝑡22 𝑥̈ (0) + 𝑜 (𝑡2)) ( ̇𝑦 (0) + 𝑡 ̈𝑦 (0) + 𝑜 (𝑡))
= 𝑡 ̇𝑥 (0) ̇𝑦 (0) + 𝑡2 (𝑥̇ (0) 𝑦̈ (0) + 12 ̈𝑥 (0) ̇𝑦 (0))
+ 𝑜 (𝑡2)

(26)

and hence

𝑥 (𝑡) ̇𝑦 (𝑡) − 𝑥̇ (𝑡) 𝑦 (𝑡) = 𝑡2 ( ̇𝑥 (0) 𝑦̈ (0) − 𝑦̇ (0) 𝑥̈ (0)
+ 12 (𝑥̈ (0) ̇𝑦 (0) − ̈𝑦 (0) 𝑥̇ (0))) + 𝑜 (𝑡2)
= 𝑡22 (𝑥̇ (0) ̈𝑦 (0) − ̇𝑦 (0) ̈𝑥 (0)) + 𝑜 (𝑡2) .

(27)

On the other hand

𝑥2 (𝑡) + 𝑦2 (𝑡) = (𝑡𝑥̇ (0) + 𝑡22 𝑥̈ (0) + 𝑜 (𝑡2))
2

+ (𝑡 ̇𝑦 (0) + 𝑡22 ̈𝑦 (0) + 𝑜 (𝑡2))2

= 𝑡2 (𝑥̇ (0)2 + ̇𝑦 (0)2)
+ 𝑡3 (𝑥̇ (0) 𝑥̈ (0) + ̇𝑦 (0) ̈𝑦 (0))
+ 𝑜 (𝑡3) .

(28)

From (27) and (28) we deduce

lim
𝑡󳨀→𝑡̃

𝑥 (𝑡) ̇𝑦 (𝑡) − 𝑦 (𝑡) 𝑥̇ (𝑡)𝑥 (𝑡)2 + 𝑦 (𝑡)2 = 12𝑘Λ (𝑡̃) 󵄨󵄨󵄨󵄨󵄨Λ̇ (𝑡̃)󵄨󵄨󵄨󵄨󵄨 . (29)

This completes the proof.

It is worth noticing that Proposition 4 is more than just
a technical remark. We will see in Section 3.1 an application
of the observation that the imaginary part of the integrand is
bounded.

The geometrical meaning of the winding number can
be used to characterize the topological phases in one-
dimensional chiral non-Hermitian systems. Chiral symmetry

x

y

Figure 6: The (solid) curve from Example 5 has winding number3/2 with respect to the origin, and the dashed and dotted ones have
winding numbers 2 and 1, respectively.

ensures that the winding numbers of Hermitian systems are
integers, but non-Hermitian systems can take half integer
values: see [9] for the corresponding physical interpretation
of Proposition 4.

Example 5. Consider the curve Λ : [0, 2𝜋] 󳨀→ C given by

Λ (𝑡) = 𝑥 (𝑡) + i𝑦 (𝑡) fl cos (𝑡) + cos (2𝑡) + i sin (2𝑡) (30)

which passes through the origin at 𝑡 = 𝜋 (see Figure 6).
According to Proposition 4,

𝑛0 (Λ) = 12𝜋 ∫
𝑏

𝑎

𝑥 (𝑡) 𝑦̇ (𝑡) − 𝑦 (𝑡) 𝑥̇ (𝑡)𝑥 (𝑡)2 + 𝑦 (𝑡)2 d𝑡 = 32 (31)

and the corresponding integrand is continuous.

3. A Generalized Residue Theorem

Let 𝑈 ⊂ C be an open neighborhood of zero and let 𝑓 be a
holomorphic function on𝑈\ {0}. Then there exists a Laurent
series which represents 𝑓 in a punctured neighborhood {𝑧 ∈
C : 0 < |𝑧| < 𝑅} of zero:

𝑓 (𝑧) = . . . + 𝑎−1𝑧⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝑔(𝑧)

+ 𝑎0 + 𝑎1𝑧 + . . .⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=ℎ(𝑧)

. (32)

For a closed piecewise 𝐶1 curve 𝛾 with |𝛾| < 𝑅, we have
PV∮

𝛾
𝑓 (𝑧) d𝑧 = PV∮

𝛾
(𝑔 (𝑧) + ℎ (𝑧)) d𝑧

= PV∮
𝛾
𝑔 (𝑧) d𝑧 (33)

by the Cauchy integral theorem, provided the principal value
exists. If 𝑓 has only a pole of first order in 0, then the
discussion in Section 2 shows that the principal value indeed
exists. The general case however is more delicate: let us first
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6 Journal of Mathematics

consider a model sector curve 𝛾 with angle 𝛼 ∈ [0, 2𝜋], and
let 𝑛 > 1. Then we have

PV∮
𝛾

d𝑧𝑧𝑛
= lim

𝜀↘0
(∫𝑟

𝜀

d𝑡𝑡𝑛 + ∫
𝛼

0

𝑟ie𝑖𝑡

𝑟𝑛ei𝑛𝑡
d𝑡

+ ∫𝑟−𝜀

0

−e𝑖𝛼

(𝑟 − 𝑡)𝑛 ei𝑛𝛼
d𝑡) = lim

𝜀↘0
( 𝑟𝑛𝜀 − 𝑟𝜀𝑛(𝑟𝜀)𝑛 (𝑛 − 1)

− e−𝛼(𝑛−1)i − 1𝑟𝑛−1 (𝑛 − 1) + 𝑟𝜀𝑛 − 𝑟𝑛𝜀(𝑟𝜀)𝑛 (𝑛 − 1)e−𝛼(𝑛−1)i)
= lim

𝜀↘0

1 − e−i(𝑛−1)𝛼

(𝑛 − 1) 𝜀𝑛−1

= {{{
0 if 𝛼 (𝑛 − 1)2𝜋 ∈ Z,
complex infinity otherwise.

(34)

On an intuitive level it is clear that an angle condition
decides whether the limit exists or not: Indeed, in order to
compensate the purely real values on 𝛾1 (see Figure 1), the
integral along 𝛾3 cannot have a nonreal singular part. Hence,
the principal value in (34) exists (and is actually 0) if and only
if

𝛼 = 2𝑘𝜋𝑛 − 1 (35)

for some 𝑘 ∈ Z. Stated differently, if 𝛼 = (𝑝/𝑞)𝜋 for some𝑝, 𝑞 ∈ N, 𝑞 ̸= 0, then
PV∮

𝛾

d𝑧𝑧𝑛
= 0 (36)

if 𝑛 = 2𝑘𝑞/𝑝 + 1 for an integer 𝑘 ≥ 0; otherwise the principal
value (36) is infinite. Therefore we obtain the following:

Lemma 6. Let 𝛼 = (𝑝/𝑞)𝜋 for some 𝑝, 𝑞 ∈ N, 𝑞 ̸= 0. If the
Laurent series of 𝑓 only contains terms 𝑎𝑛/𝑧𝑛 for indices of the
form 𝑛 = 2𝑘𝑞/𝑝 + 1 for integers 𝑘 ≥ 0 and if 𝛾 is a model
sector-curve with angle 𝛼 and radius smaller than the radius of
convergence of the Laurent series, then there holds

PV 12𝜋i ∮𝛾
𝑓 (𝑧) d𝑧 = 𝑛0 (𝛾) res0𝑓 (𝑧) . (37)

Proof. If𝑓 has a pole in 0, then (37) follows directly from (36).
If 0 is an essential singularity of 𝑓 = ∑𝑘∈Z 𝑎𝑘𝑧𝑘, we observe
that the Laurent series 𝑓𝑛(𝑧) = ∑∞

𝑘=−𝑛 𝑎𝑘𝑧𝑘 converges locally
uniformly to 𝑓(𝑧). Then we have for 𝜀 > 0

12𝜋i ∫|𝛾|>𝜀
𝑓 (𝑧) d𝑧

= 12𝜋i ∫|𝛾|>𝜀
(𝑓 (𝑧) − 𝑓𝑛 (𝑧))d𝑧

+ ( 12𝜋i ∫|𝛾|>𝜀
𝑓𝑛 (𝑧) d𝑧 − 𝑛0 (𝛾) res0𝑓 (𝑧))

+ 𝑛0 (𝛾) res0𝑓 (𝑧) š 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼.

(38)

P−(Γ(x))

t−
Γ

Γ(x)

Γ(x)
z1

t+

P+(Γ(x))

Figure 7: Γ is flat of order 𝑛 in 𝑥1.

Now, for 𝛿 > 0, we choose 𝜀 > 0 small enough, such that the
absolute value of the second term 𝐼𝐼 on the right is smaller
than 𝛿. Note that by (34) this choice does not depend on 𝑛.
Then we can choose 𝑛, depending on 𝜀, large enough such
that the absolute value of the first term 𝐼 is also smaller than𝛿, and the claim follows.

For a more general curve than a model sector curve, we
need the following definition:

Definition 7. Let Γ : (𝑎, 𝑏) 󳨀→ C be a piecewise 𝐶1 curve andΓ(𝑥1) š 𝑧1. Let 𝑡+ and 𝑡− be the tangents in 𝑧1 in the direction
lim𝑥↘𝑥1

Γ̇(𝑥) and −lim𝑥↗𝑥1
Γ̇(𝑥), respectively. We say that Γ is

flat of order 𝑛 in 𝑥1, if

󵄨󵄨󵄨󵄨Γ (𝑥) − 𝑃+ (Γ (𝑥))󵄨󵄨󵄨󵄨 = 𝑜 (󵄨󵄨󵄨󵄨Γ (𝑥) − 𝑧1
󵄨󵄨󵄨󵄨𝑛) for 𝑥 ↘ 𝑥1,󵄨󵄨󵄨󵄨Γ (𝑥) − 𝑃− (Γ (𝑥))󵄨󵄨󵄨󵄨 = 𝑜 (󵄨󵄨󵄨󵄨Γ (𝑥) − 𝑧1
󵄨󵄨󵄨󵄨𝑛) for 𝑥 ↗ 𝑥1

(39)

where 𝑃+ and 𝑃− denote the orthogonal projection to 𝑡+ and𝑡−, respectively (see Figure 7).
Notice that a piecewise 𝐶1 curve is always flat of order 1

in all of its points.
Now, let us consider a closed piecewise 𝐶1 immersion Γ :[𝑎, 𝑏] 󳨀→ C starting and ending in 0 but such that Γ(𝑡) ̸= 0

for all 𝑡 ̸= 𝑎, 𝑏 and such that the (positively oriented) angle
between lim𝑡↘𝑎Γ̇(𝑡) and −lim𝑡↗𝑏Γ̇(𝑡) equals 𝛼 ∈ [0, 2𝜋]. We
assume that, after a suitable rotation, lim𝑡↘𝑎Γ̇(𝑡) is a positive
real number and that Γ is homotopic in the sense of (9) to a
model sector-curve 𝛾 with the same angle 𝛼. Moreover, we
assume that Γ is flat of order 𝑛 in 0. Then, as in Section 2 (see
Figure 3), we have for 𝑛 > 1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫|Γ|>𝜀

d𝑧𝑧𝑛
− ∫

|𝛾|>𝜀

d𝑧𝑧𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝛽

d𝑧𝑧𝑛
− ∫

|𝛾|>𝜀

d𝑧𝑧𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝛼1+𝛼2

d𝑧𝑧𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤
1𝜀𝑛 Length (𝛼1 + 𝛼2)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑜(𝜀𝑛)

󳨀→ 0
for 𝜀 ↘ 0.

(40)
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Journal of Mathematics 7

Hence, we only have a finite principal value if 𝛼 = (𝑝/𝑞)𝜋 for
some 𝑝, 𝑞 ∈ N, 𝑞 ̸= 0, and

PV∮
Γ

d𝑧𝑧𝑛
= 0 (41)

if 𝑛 = 2𝑘𝑞/𝑝 + 1 for an integer 𝑘 ≥ 0; otherwise the principal
value is infinite. This leads to the main theorem:

Theorem 8. Let 𝑈 ⊂ C be an open set, and let 𝑆 ={𝑧1, 𝑧2, . . .} ⊂ 𝑈 be a set without accumulation points in𝑈 such
that 𝑓 : 𝑈 \ 𝑆 󳨀→ C is holomorphic. Moreover, let 𝐶 be a null-
homologous immersed piecewise 𝐶1 cycle in𝑈 such that 𝐶 only
contains singularities of 𝑓 which are poles of order 1. Then

PV 12𝜋i ∮𝐶
𝑓 (𝑧) d𝑧 = ∑

ℓ

𝑛𝑧ℓ
(𝐶) res𝑧ℓ

𝑓 (𝑧) . (42)

The formula remains correct for poles of higher order on 𝐶 if
the following two conditions hold:

(A) If 𝑧0 is a pole on𝐶 of order 𝑛, then 𝐶 is flat of order 𝑛 in𝑧0, or, if 𝑧0 is an essential singularity, 𝐶 coincides near𝑧0 locally with the tangents 𝑡+ and 𝑡− in 𝑧0.
(B) If 𝑧0 is a singularity of𝑓 on𝐶 and𝛼 is the angle between

the tangents 𝑡+ and 𝑡− in 𝑧0, then 𝛼 = (𝑝/𝑞)𝜋, 𝑝, 𝑞 ∈
N, 𝑞 ̸= 0, and the Laurent series of𝑓 in 𝑧0 contains only
terms 𝑎𝑛/(𝑧 − 𝑧0)𝑛 with 𝑎𝑛 ̸= 0 for indices of the form𝑛 = 2𝑘𝑞/𝑝 + 1, 𝑘 ≥ 0 an integer.

Proof. Let 𝐶 = ∑𝑘
ℓ=1𝑚ℓ𝛾ℓ with 𝑚ℓ ∈ Z and where 𝛾ℓ :[0, 1] 󳨀→ C are closed piecewise 𝐶1 immersions. Then,

there are at most finitely many points 𝑥ℓ1, . . . , 𝑥ℓ𝑘ℓ
such that𝛾ℓ(𝑥ℓ𝑗) = 𝑧ℓ𝑗 ∈ 𝑆. For each ℓ consider a decomposition 𝛾ℓ =𝛾ℓ+Γℓ1 + . . .+Γℓ𝑘ℓ

, where 𝛾ℓ coincides with 𝛾ℓ outside of small
neighborhoods of the points 𝑥ℓ𝑗 and avoids the singularity at𝛾ℓ(𝑥ℓ𝑗) by driving around it on small circular arcs in clockwise
direction. The closed curves Γℓ𝑗 are homotopic in the sense of
(9) to a model sector-curve with oriented angle 𝛼ℓ𝑗 between
the tangents lim𝑡↘𝑥ℓ𝑗

̇𝛾ℓ and −lim𝑡↗𝑥ℓ𝑗
̇𝛾ℓ. The circular arcs are

chosen small enough such that no singularity lies in the
interior of the sectors whose boundaries are the curves Γℓ𝑗
and such that these sectors are contained in 𝑈. Observe that
the cycle 𝐶 fl ∑𝑘

ℓ=1𝑚ℓ𝛾ℓ avoids the singularities of 𝑓 and is
null-homologous in𝑈. Hence, in the sequel wemay apply the
classical residue theorem to 𝐶.

Now, suppose that the two conditions (A) and (B) hold.
This covers in particular the case when only poles of first
order lie on𝐶.Then, we have, by the classical residue theorem
applied with 𝐶, by Lemma 6, and (41)

PV 12𝜋i ∮𝐶
𝑓 (𝑧) d𝑧

= PV 12𝜋i ∮𝐶̃
𝑓 (𝑧) d𝑧

+ 𝑘∑
ℓ=1

𝑚ℓ

𝑘ℓ∑
𝑗=1

PV 12𝜋i ∮Γℓ𝑗

𝑓 (𝑧) d𝑧

= ∑
𝑧∈𝑆

𝑛𝑧 (𝐶) res𝑧𝑓 (𝑧)

+ 𝑘∑
ℓ=1

𝑚ℓ

𝑘ℓ∑
𝑗=1

𝑛𝑧ℓ𝑗
(Γℓ𝑗) res𝑧ℓ𝑗𝑓 (𝑧) .

(43)

The first sum in (43) runs over

(I) the singularities which are not lying on 𝐶, with
winding number ̸= 0,

(II) the singularities on 𝐶.
Thus, the summands in (I) appear exactly also in the sum in
(42) since for singularities 𝑧 not on𝐶we have 𝑛𝑧(𝐶) = 𝑛𝑧(𝐶).
The summands in (II) coming from a singularity 𝑧ℓ𝑗 on 𝐶
together with the corresponding terms in the double sum in
(43) give

(𝑛𝑧ℓ𝑗
(𝐶) + 𝑘∑

ℓ=1

𝑚ℓ

𝑘ℓ∑
𝑗=1

𝑛𝑧ℓ𝑗
(Γℓ𝑗)) res𝑧ℓ𝑗𝑓 (𝑧)

= 𝑛𝑧ℓ𝑗
(𝐶) res𝑧ℓ𝑗

𝑓 (𝑧)
(44)

and we are done.

As corollaries of Theorem 8 we obtain the residue theo-
rems [4, Theorem 1] and [3, Theorem 4.8f].

3.1. Application. In [4], the version of the residue theorem is
used to calculate principal values of integrals. At first sight
it seems that this is the only advantage of Theorem 8 over
the classical residue theorem. After all, poles on the curve𝛾 necessarily mean that one is forced to consider principal
values. However, Proposition 4 shows that it is possible to use
Theorem 8 to compute integrals with bounded integrand.

Example 9. We want to compute the integral

∫∞

0

sinc (𝑡) sinh (𝑡)
cos (𝑡) + cosh (𝑡)d𝑡. (45)

The current computer algebra systems give up on this integral
after giving it some thought. To determine the integral we
interpret the integrand as follows:

sinc (𝑡) sinh (𝑡)
cos (𝑡) + cosh (𝑡) = im𝑓 (𝛾3 (𝑡)) ̇𝛾3 (𝑡) (46)

for

𝑓 (𝑧) = − cos (𝑧/2)𝑧 cosh (𝑧/2) (47)

and 𝛾 = 𝛾1 + 𝛾2 − 𝛾3, where

𝛾1 : [0, 𝑟] 󳨀→ C, 𝑡 󳨃󳨀→ 𝑡 − i𝑡,
𝛾2 : [−𝜋4 , 𝜋4 ] 󳨀→ C, 𝑡 󳨃󳨀→ √2𝑟ei𝑡,

𝛾3 : [0, 𝑟] 󳨀→ C, 𝑡 󳨃󳨀→ 𝑡 + i𝑡.
(48)
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Note that 𝑓 has a pole of order 1 in 𝑧 = 0 on 𝛾 with residue−1. The winding number of 𝛾 with respect to 𝑧 = 0 is 1/4. By
Theorem 8 we get

im∮
𝛾
𝑓 (𝑧) d𝑧

= im(∫
𝛾1

𝑓 (𝑧) d𝑧 + ∫
𝛾2

𝑓 (𝑧) d𝑧 − ∫
𝛾3

𝑓 (𝑧) d𝑧)
= im (14 ⋅ (−1) ⋅ 2𝜋i) = −𝜋2 .

(49)

The integral along 𝛾2 converges to 0 as 𝑟 tends to infinity, and
im∫

𝛾1

𝑓 (𝑧) d𝑧 = −im∫
𝛾3

𝑓 (𝑧) d𝑧
= −∫𝑟

0

sinc (𝑡) sinh (𝑡)
cos (𝑡) + cosh (𝑡)d𝑡.

(50)

Hence, we find the value of this improper integral:

∫∞

0

sinc (𝑡) sinh (𝑡)
cos (𝑡) + cosh (𝑡)d𝑡 = 𝜋4 . (51)

3.2. Connection to the Sokhotskĭı-Plemelj Theorem. In this
section, we want to briefly show that the above-mentioned
version of the residue theorem in [4, Theorem 1] can be
obtained as a corollary of the Sokhotskĭı-Plemelj Theorem.

Let 𝑈 ⊂ C be an open set, let 𝑆 = {𝑧1, . . .} ⊂ 𝑈 be a
set without accumulation points, and let 𝑓 : 𝑈 \ 𝑆 󳨀→ C

be a holomorphic function. Let furthermore𝐷 be a bounded
domain with piecewise 𝐶1-boundary 𝐶, consisting of finitely
many components, such that𝐷 ⊂ 𝑈. As usual, we assume that𝐶 is oriented such that𝐷 lies always on the left with respect to
the direction of the parametrization. If 𝑓 only has first order
poles on 𝐶, we may use a decomposition

𝑓 = 𝑔 + 𝑚∑
𝑘=1

𝑓𝑘, (52)

where 𝑓𝑘 is holomorphic away from a single first order pole𝑧𝑘 ∈ 𝐶 and 𝑔 has only singularities in 𝑧𝑚+1, 𝑧𝑚+2, . . . ∉ 𝐶.
Then 𝜑𝑘(𝑧) fl 𝑓𝑘(𝑧)(𝑧 − 𝑧𝑘) is holomorphic. Let

𝐹𝑘 (𝑧) fl 12𝜋i ∫𝐶

𝜑𝑘 (𝜉)𝜉 − 𝑧 d𝜉. (53)

By Cauchy’s integral formula we have 𝐹𝑘(𝑧) = 𝜑𝑘(𝑧) provided𝑧 ∈ 𝐷. Furthermore

𝐹+
𝑘 (𝑧𝑘) fl lim

𝐷∋𝑧󳨀→𝑧𝑘
𝐹𝑘 (𝑧) = lim

𝐷∋𝑧󳨀→𝑧𝑘
𝜑𝑘 (𝑧)

= lim
𝐷∋𝑧󳨀→𝑧𝑘

𝑓𝑘 (𝑧) (𝑧 − 𝑧𝑘) = res𝑧𝑘𝑓𝑘 (𝑧)
= res𝑧𝑘

𝑓 (𝑧)
(54)

and

𝐹𝑘 (𝑧𝑘) = PV 12𝜋i ∫𝐶

𝜑𝑘 (𝜉)𝜉 − 𝑧𝑘

d𝜉 = PV 12𝜋i ∫𝐶
𝑓𝑘 (𝜉) d𝜉. (55)

According to the Sokhotskĭı-Plemelj formula (see [10, p. 385,
(3)] or [11, Chapter 3]) we find

𝐹+
𝑘 (𝑧𝑘) = 𝐹𝑘 (𝑧𝑘) + (1 − 𝛼𝑘2𝜋) 𝜑𝑘 (𝑧𝑘) , (56)

where 𝛼𝑘 is the interior angle of 𝐶 in 𝑧𝑘 and hence

res𝑧𝑘
𝑓 (𝑧) = PV 12𝜋i ∫𝐶

𝑓𝑘 (𝜉) d𝜉
+ (1 − 𝛼𝑘2𝜋) res𝑧𝑘

𝑓 (𝑧) (57)

and after rearranging

PV 12𝜋i ∫𝐶
𝑓𝑘 (𝜉) d𝜉 = 𝛼𝑘2𝜋 res𝑧𝑘𝑓 (𝑧) . (58)

Therefore we find

PV 12𝜋i ∫𝐶
𝑓 (𝜉) d𝜉

= PV 12𝜋i ∫𝐶
(𝑔 (𝜉) + 𝑚∑

𝑘=1

𝑓𝑘 (𝜉)) d𝜉
= ∑

𝑘⩾𝑚+1

res𝑧𝑘
𝑓 (𝑧) + 𝑚∑

𝑘=1

𝛼𝑘2𝜋 res𝑧𝑘𝑓 (𝑧)
= ∑

𝑘⩾1

𝑛𝑧𝑘
(𝐶) res𝑧𝑘

𝑓 (𝑧) .

(59)
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