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Dedicated to the memory of Branko Grünbaum

We construct elliptic (3rs, sr3) configurations for all integers r → s → 1. This
solves an open problem of Branko Grünbaum. The configurations which we
build have mirror symmetry and even D3 symmetry if r is a multiple of 3. The
configurations are dynamic in the sense that the points can be moved along the
elliptic curve in such a way that all line incidences are preserved.

1. Introduction

1.1. Elliptic configurations. The study of configurations has a long and rich history.
We refer to Grünbaum [3] as a main reference, and the bibliography in [7] for an
overview of newer developments. To fix the notation, let p, l, ω, ε ↑ !. Then a
(pε, lω ) configuration is a set of p points and l lines in the projective plane such
that each point is incident to ε lines and each line is incident to ω points. If p = l

and consequently ε = ω , we just write (pε) instead of (pε, lω ).
Of particular interest are elliptic configurations, i.e., configurations whose points

lie on an elliptic curve or, more specifically, in the torsion group of an elliptic
curve. A long standing open problem is the question of Grünbaum [3, Section 4.8,
Open problem 4]: for which integers r are there elliptic (3r4, 4r3) configurations?
Notice that for r = 3, the Hesse configuration (94, 123) can be realized in the
complex projective plane as the set of inflection points of an elliptic curve, but it
has no realization with straight lines in the Euclidean or projective plane because
of the Sylvester–Gallai theorem. On the other hand, examples of elliptic (124, 163)

configurations were found by Grünbaum [3, p. 249], Coxeter [1, p. 440], and Feld [2]
(where one can find also an example of an elliptic (367, 843) configuration). For an
elliptic (246, 483) configuration, see [6]. In [11], Metelka identified eight elliptic
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(124, 163) configurations. Elliptic curves carrying Pappos, Desargues or Fano
configurations have been discussed in [10].

Recently, some progress was reported in [7], where elliptic ((p ↓ 1)3) configu-
rations are constructed for every prime p > 7. There are (3r4, 4r3) configurations
whenever 3r = p ↓ 1 for some prime p > 7, and for every k → 2 there is an elliptic
(9k4, 12k3) configuration with D3 symmetry (the symmetry group of an equilateral
triangle).

In the present article we generalize the ideas in [7] and show that elliptic (3r4, 4r3)

configurations exist for all r → 4 and that one can even construct elliptic (3rs, sr3)

configurations for any s ↑ ! and r → s. We offer constructions with D1 symmetry
(mirror symmetry), and, if r is a multiple of 3, D3 symmetry. A particularly pleasing
property is that the configurations are dynamic in the sense that one can move the
points of the configurations along the elliptic curve in such a way that all line
incidences and rotational symmetries are preserved (see [9] for recent results in this
context). Thus, Grünbaum’s question is completely answered.

1.2. Elliptic curves. Recall that an elliptic curve in Weierstrass normal form

ϑg2,g3 : y
2 = 4x

3 ↓ g2x ↓ g3

in "2 can be parametrized by the Weierstrass function ϖ (z) := ϖ (z, g2, g3) via

ϱ : " ↔ "2, z ↗↔ (ϖ (z), ϖ ↘(z)).

For real g2, g3, the Weierstrass function has a real period ς1 and an imaginary
period ς2. Then, depending on the parameters g2, g3, the curve ϑg2,g3 in #2 consists
of one or two connected components. We will call the unbounded component the

odd branch, and the bounded component the even branch. The odd branch is
parametrized by

ϱodd : (0, ς1) ↔ #2, t ↗↔ (ϖ (t), ϖ ↘(t)),

and the even branch, if it exists, by

ϱeven : [0, ς1) ↔ #2, t ↗↔
(
ϖ

(
t + 1

2ς2
)
, ϖ ↘(

t + 1
2ς2

))

(see [1, p. 441]). The projective version of the curve ϑg2,g3 carries the group opera-
tion ≃ of an elliptic curve with the neutral element O = (0, 1, 0) which corresponds
to ϱ (0). The group operation is compatible with the parametrization, i.e.,

ϱ (z1) ≃ ϱ (z2) = ϱ (z1 + z2) (1)

(see [12, Chapter VI, §3] for the general theory of elliptic curves, and [8, §3] for
the parametrization by the Weierstrass function).
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Every regular cubic curve can be brought, by a projective transformation, into
the D3 symmetric normal form

"D3 : x
3 ↓ 3xy

2 ↓ 3(b ↓ 3)(x
2 + y

2) + 4b
2(b ↓ 9) = 0

with b ↑ # \ {1} (see [7]). Depending on the parameter b, the curve "D3 consists
only of the odd branch or of both the odd and the even branch (see Section 2.1).
One of the three symmetry axes is the x-axis, and the rotational C3 symmetry is
with respect to the origin.

The configurations which we want to build will be constructed with the help of
the arithmetic structure of ϑg2,g3 and ϑD3 , respectively. Let Q := ϱ ((qς1)/n) for
some integer parameter q with (q, n) = 1. By (1), Q has order n and generates a
group Gn which is isomorphic to $/n$. To fix the notation, let

Pu := u ⇐ Q = Q ≃ · · · ≃ Q︸ ︷︷ ︸
u times

= ϱ

(
uqς1

n

)
,

and we can identify the point Pu on the curve with u ↑ $/n$. If we take, in
addition, the points P

↘
u

:= ϱ ((uqς1)/n + ς2/2), we obtain a group isomorphic
to $/2$ ⇒ $/n$: the points Pu correspond to {0} ⇒ $/n$, and the points P

↘
u

to
{1} ⇒ $/n$. In particular, we have

P
↘
u1

≃ P
↘
u2

= ϱ

(
qu1ς1

n
+ ς2

2

)
≃ ϱ

(
qu2ς1

n
+ ς2

2

)

= ϱ

(
q(u1 + u2)ς1

n
+ ς2

)
= ϱ

(
q(u1 + u2)ς1

n

)
= Pu1+u2 .

1.3. Notation. We identify points Pu on the odd branch of the curve directly with
the corresponding value (0, u) in {0}⇒$/n$, and similarly, we identify (1, u) with
points P

↘
u

on the even branch. We will also call the former odd points and the
latter even points. When speaking of any point u (without specifying the branch),
we mean a point on any component of the curve or the corresponding element in
$/2$ ⇒ $/n$. Finally, instead of writing ≃ we just write + from now on.

If the points u, v, w are collinear, then the corresponding line is denoted by
[u, v, w]. Three distinct points u, v, w on the elliptic curve are collinear if and only
if their sum (interpreted as sum on the elliptic curve or in $/2$ ⇒ $/n$) is zero,
and we just write u + v + w = 0.

Our configurations will only consist of lines that contain 3 points, and hence
are of the form [(0, u), (0, v), (0, w)] or [(0, u), (1, v), (1, w)] (where the order of
points could be changed). We call the former 0-lines and the latter 1-lines.

1.4. Operations on lines. We introduce three operations on lines: a conjugation, a
rotation, and a translation.
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If [u, v, w] is a line, then ↓[u, v, w] := [↓u, ↓v, ↓w] is the conjugate line

of [u, v, w]. In the context of a configuration on a ϑD3 curve, the line and the
conjugate line are mirror symmetric with respect to the x-axis. Hence, an elliptic
configuration on a ϑD3 curve is mirror symmetric with respect to the x-axis if each
of its conjugate lines is an element of the configuration.

Let k ↑ $. For any point u in $/2$ ⇒ $/n$ we define

ϕk(u) := u + (0, k).

If [u, v, w] is a line with points in $/2$ ⇒ $/3k$ for some positive integer k, we
can define the rotated line

ϕk([u, v, w]) := [ϕk(u), ϕk(v), ϕk(w)].
Note that this indeed yields a line, since ϕk(u)+ϕk(v)+ϕk(w)= u+v+w+(0, 3k).
In the context of a configuration on a ϑD3 curve, this rotation corresponds to a
rotation with angle 2ω/3 about the origin. So, an elliptic configuration on a ϑD3

curve has rotational C3 symmetry with respect to the origin if each of its rotated
lines is an element of the configuration.

If St = ϱodd(t) is a point on the odd branch of an elliptic curve and ↼ is an
arbitrary real number, then the translated point S

↼
t

is defined by S
↼
t

:= ϱodd(t ↓ 2↼).
Similarly, if S

↘
t
= ϱeven(t) is a point on the even branch, the translated point is

defined by S
↘
t

↼ := ϱeven(t + ↼). If the three points St1 , S
↘
t2

, S
↘
t3

form a 1-line, then the
translated 1-line is given by the points S

↼
t1

, S
↘↼
t2

, S
↘↼
t3

. Indeed these three points are on
a line, since

S
↼
t1

≃ S
↘↼
t2

≃ S
↘↼
t3

= ϱ (t1 ↓ 2↼) ≃ ϱ

(
t2 + ↼ + ς2

2

)
≃ ϱ

(
t3 + ↼ + ς2

2

)

= ϱ (t1 + t2 + t3 + ς2) = St1 ≃ S
↘
t2

≃ S
↘
t3

= 0.

2. Simple elliptic (3rs, sr3) configurations

Definition 1. Let r and s be positive integers. A simple elliptic (3rs, sr3) configu-
ration has r points on the odd branch and 2r points on the even branch.

The reason for the name “simple” is that a simple configuration only consists of
1-lines: Indeed, if there are l0 0-lines and l1 1-lines, then the number of odd points
is 3l0 + l1 while the number of even points is 2l1. So, for a simple configuration we
have

2l1 = 2(3l0 + l1) ⇑ l0 = 0.

We will also see that simple configurations are given by quite simple constructions.

Definition 2. An elliptic configuration is called dynamic if one can move the points
along the curve in such a way that all line incidences are preserved.
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In particular, an elliptic configuration is dynamic if every point of the curve is a
point of a configuration of the same type.

Lemma 3. An elliptic configuration which only consists of 1-lines is dynamic.

Proof. We can apply for an arbitrary real ↼ the corresponding translation as defined
in Section 1.4 simultaneously to all points of the configuration. Then, every 1-line
is translated to the 1-line through the translated points. ↭

Below, we will prove the following result.

Theorem 4. For all r → s → 1 there exists a simple (3rs, sr3) configuration with D3
symmetry if r ⇓ 0 (mod 3) and D1 symmetry otherwise. These configurations are

dynamic. The translated versions of D3 symmetric configurations have rotational

C3 symmetry.

We first consider the case when s = 4.

2.1. Construction of simple (3r4, 4r3) configurations. We start by constructing
elliptic (3r4, 4r3) configurations for r → 4. If 3 | r , then these configurations will
have D3 symmetry.

Let r → 4. The following points are understood to be in $/2$ ⇒ $/2r$. The set
of configuration points is P := P0 ⇔P1, where

P0 := {(0, 1), (0, 3), (0, 5), . . . , (0, 2r ↓ 1)},
P1 := {(1, 0), (1, 1), (1, 2), . . . , (1, 2r ↓ 1)}.

P contains r + 2r = 3r points as needed. As mentioned previously, we only use
1-lines. Define L1 to be the set of the lines

[a0, b0, c0] := [(0, ↓1), (1, 0), (1, 1)],
[ai+1, bi+1, ci+1] := [ai ↓ (0, 2), bi + (0, 1), ci + (0, 1)] for i ↑ {0, . . . , 2r ↓ 2}
and let L2 be the set of the lines

[d0, e0, f0] := [(0,↓3), (1, 0), (1, 3)],
[di+1, ei+1, fi+1] := [di ↓ (0, 2), ei + (0, 1), fi + (0, 1)] for i ↑ {0, . . . , 2r ↓ 2}.
Observe that

[ai , bi , ci ] = [(0, ↓1 ↓ 2i), (1, i), (1, 1 + i)],
[di , ei , fi ] = [(0, ↓3 ↓ 2i), (1, i), (1, 3 + i)],

where all numbers are to be read modulo 2r . We claim that L1⇔L2 yields appropriate
lines for a (3r4, 4r3) configuration. This is seen by considering the following points:
• The elements of L1 ⇔L2 define 1-lines in P: All ai and di are odd points and lie
in P . All bi , ci , ei , fi are even points and lie in P . Furthermore, ai + bi + ci = 0 =
di + ei + fi and no two points of a line are equal.
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(0, 1)

(0, 7)

(0, 5)

(1, 1)

(0, 6)

(0, 11)

(0, 9)

(0, 10)

(0, 3)

(1, 5)

(1, 4)

(1, 3) (1, 2)

(1, 6)

(1, 7)

(1, 8)

(1, 9) (1, 10)

(1, 11)

(1, 0)

(0, 2)

Figure 1. Simple D3 symmetric (184, 243) configuration, with
parameter q =1. Adding the twelve lines (0, ±1+4k), (1, ±2+4k),
(1, ±9 + 4k) and (0, ±1 + 4k), (1, ±3 + 4k), (1, ±8 + 4k) for
k = 1, 2, 3, we can extend this to a (186, 363) configuration. This
is a special case of the configurations treated in Section 2.2.

• All lines are different: If ai = a j for i ↖= j , then the sets {bi , ci } and {b j , c j } are
different. So, all lines in L1 are different. Similarly, all lines in L2 are different.
Moreover, the lines in L1 are different from those in L2 since the differences of the
even points on a line are (0, 1) and (0, 3), respectively. Note that for r = 3 we would
obtain two equal lines since then [d0, e0, f0]= [(0, ↓3), (1, 0), (1, 3)]= [d3, f3, e3].
• Each point in P0 occurs twice in the set of the ai and twice in the set of the di .
And the lines of both L1 and L2 contain each point in P1 twice.

Concerning the symmetry of the configuration, observe the following: For i ↑ $,

↓[ai , bi , ci ] = [(0, 2i + 1), (1, ↓i), (1, ↓i ↓ 1)] = [a↓i↓1, c↓i↓1, b↓i↓1]
taking all indices modulo 2r . Therefore the lines in L1 form a D1 symmetry.
Similarly, this can be seen to be true for the lines in L2, where ↓[di , ei , fi ] ⇓
[d↓i↓3, f↓i↓3, e↓i↓3] for all i ↑ $.

This completes the proof of Theorem 4 for s = 4. Figure 1 shows the smallest
simple D3 symmetric configuration according to this construction, while Figure 2
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Figure 2. A translated version of the simple D3 symmetric
(184, 243) configuration in Figure 1.

is a translated version of it. Figure 3 shows a simple D1 symmetric (334, 443)

configuration.
We even obtain a D3 symmetry for these configurations if r is a multiple of 3.

To see this, let n := 2r

3 and notice that since n ⇓ ↓2n (mod 2r) we have

ϕn[ai , bi , ci ] = [(0, n ↓ 2i ↓ 1), (1, i + n), (1, i + n + 1)] = [ai+n, bi+n, ci+n],
ϕn[di , ei , fi ] = [(0, n ↓ 2i ↓ 3), (1, i + n), (1, i + n + 3)] = [di+n, ei+n, fi+n].

Since the configuration is simple, it follows from Lemma 3 that it is dynamic. Also
observe that if three points on ϑD3 are vertices of an equilateral triangle centered at
the origin, then the translated points have also this property. So, when we translate
a D3 symmetric elliptic configuration on a ϑD3 curve, there results an elliptic
configuration with rotational C3 symmetry.

2.2. Simple (3rs, sr3) configurations for arbitrary r → s → 1. Now, we generalize
the construction of the previous section to (3rs, sr3) configurations where r → s → 1.
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(0, 5)

(0, 4)

(1, 4)

(1, 8)(1, 12)

(1, 16)

(1, 20)

(1, 2)

(1, 6)

(1, 10) (1, 14)

(1, 18)

(1, 0)

(0, 10)

(0, 1)

(0, 20)

(0, 14)

(0, 12)

(0, 17)

(0, 8)
(0, 21)

(0, 15)

(0, 2)

(0, 7)

(0, 11)

(0, 18)

Figure 3. Simple D1 symmetric (334, 443) configuration, with
parameter q = 5.

For the proof we have to distinguish two cases which we consider separately in the
following subsections. The first subsection covers the case r → s → 1 with r odd or
r = s even, the second subsections treats the case r > s → 1 with r even.

2.2.1. r odd or r = s even. Let r → s → 1 with r odd or r = s even. We use the
same set of points P := P0 ⇔P1 as in Section 2.1. For 1 ↙ j ↙

⌈
s↓1

2

⌉
=: s̄ let L j

be the set consisting of the lines

[a j

0 , b
j

0, c
j

0] := [(0, 1↓2 j), (1, 0), (1, 2 j ↓1)],
[a j

i+1, b
j

i+1, c
j

i+1] := [a j

i
↓(0, 2), b

j

i
+(0, 1), c

j

i
+(0, 1)] for i ↑ {0, . . . , 2r ↓2},

and L⇐ the set consisting of the lines

[d0, e0, f0] := [(0, ↓r), (1, 0), (1, r)],
[di+1, ei+1, fi+1] := [di ↓ (0, 2), ei + (0, 1), fi + (0, 1)] for i ↑ {0, . . . , r ↓ 2}.
Observe that

[a j

i
, b

j

i
, c

j

i
] = [(0, 1 ↓ 2 j ↓ 2i), (1, i), (1, 2 j + i ↓ 1)],

[di , ei , fi ] = [(0, ↓r ↓ 2i), (1, i), (1, r + i)].
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When s is even, we claim that L := ⋃
s̄

j=1 L j yields appropriate lines for a (3rs, sr3)

configuration, and if s is odd, then L := L⇐ ⇔ ⋃
s̄

j=1 L j does. To see this, we check
the following:
(1) The elements of L define 1-lines in P: All a

j

i
and di are odd and lie in P and so

do the even points b
j

i
, c

j

i
, e

j

i
and f

j

i
. Furthermore, a

j

i
+b

j

i
+c

j

i
=0=di +ei + fi

for all i, j , and no two points of a line are equal.

(2) All lines are different: For different j , the difference between b
j

i
and c

j

i
is

different, and different from the difference between ei and fi . For fixed j all
sets {b j

i
, c

j

i
} are different. The same can be checked for the sets {ei , fi }.

(3) If s is odd, each point in P0 occurs s ↓ 1 times in the set of the a
j

i
and once in

the set of the di . The lines of all L j and L⇐ together contain each point in P1
exactly s times. Similarly, when s is even, each point in P is contained in s

lines.
To see the D1 symmetry, observe that

↓[a j

i
, b

j

i
, c

j

i
] = [(0, 2i + 2 j ↓ 1), (1, ↓i), (1, 1 ↓ i ↓ 2 j)]
= [a j

1↓2 j↓i
, c

j

1↓2 j↓i
, b

j

1↓2 j↓i
],

where indices are taken modulo 2r . Hence the lines in L j are D1 symmetric.
Similarly, we have ↓[di , ei , fi ] = [dr↓i , fr↓i , er↓i ].

To see that D3 symmetry occurs when r is a multiple of 3, let n := 2r

3 and note that

ϕn[a j

i
,b

j

i
,c

j

i
]=[(0,1↓2 j↓2i+n), (1, i+n), (1, i+n+2 j↓1)]=[a j

i+n
,b

j

i+n
,c

j

i+n
]

and

ϕn[di , ei , fi ] = [(0, ↓r ↓ 2i ↓ 2n), (1, i + n), (1, i + n + r)] = [di+n, ei+n, fi+n].
Finally, since also in the present construction only 1-lines are used, the (3rs, sr3)

configurations are dynamic.
2.2.2. r even and r > s → 1. Let r > s → 1 with r even and define

P0 := {(0, 0), (0, 2), . . . , (0, 2r ↓2)} and P1 := {(1, 0), (1, 1), . . . , (1, 2r ↓1)}
and P = P0 ⇔P1. For 1 ↙ j ↙

⌈
s↓1

2

⌉
=: s̄ let L j be the set consisting of the lines

[a j

0 , b
j

0, c
j

0] := [(0, ↓2 j), (1, 0), (1, 2 j)],
[a j

i+1, b
j

i+1, c
j

i+1] := [a j

i
↓(0, 2), b

j

i
+(0, 1), c

j

i
+(0, 1)] for i ↑ {0, . . . , 2r ↓2},

and L⇐ be the set consisting of the lines

[d0, e0, f0] := [(0, ↓r), (1, 0), (1, r)],
[di+1, ei+1, fi+1] := [di ↓ (0, 2), ei + (0, 1), fi + (0, 1)] for i ↑ {0, . . . , r ↓ 2}.
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Figure 4. A D3 symmetric (365, 603) configuration, with parame-
ter q = 5.

Observe that

[a j

i
, b

j

i
, c

j

i
] = [(0, ↓2 j ↓ 2i), (1, i), (1, 2 j + i)],

[di , ei , fi ] = [(0, ↓r ↓ 2i), (1, i), (1, r + i)].

It can be checked very similarly as in the previous section that L := ⋃
s̄

j=1 L j if s

is even, and L := L⇐ ⇔ ⋃
s̄

j=1 L j if s is odd, yield appropriate lines for a (3rs, rs3)

configuration. Again we obtain D1 symmetry for all such configurations and D3
symmetry for r ⇓ 0 (mod 3).

Note that here we use the point (0, 0) at infinity in the D1 symmetric case, and
the points (0, 0),

(
0, 2r

3

)
and

(
0, 4r

3

)
at infinity in the D3 symmetric case. Since the

configuration is dynamic, we can still obtain a D3 symmetric configuration with all
points finite if we choose ↼ = (3ς1)/(4r) for the translation. Figure 4 shows such a
situation for r = 12, s = 5 and parameter q = 5.
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3. Closing remarks and open problems

For a fixed curve ϑD3 and fixed numbers r → s → 1 there is still some freedom in
our construction of a (3rs, sr3) configuration: we can choose the parameter ↼ ↑ #

(see Section 1.4) and the parameter q ↑ ! (see Section 1.2). However the resulting
configurations are combinatorially isomorphic: there is a bijection of the points
which preserves the line incidences. But choosing a different ↼ leads in general to
configurations which are geometrically nonisomorphic: there is no projective map
which maps one configuration to the other. Indeed, the configuration in Figure 4
with ↼ = (3ς1)/(4r) cannot be geometrically isomorphic to the corresponding
configuration with ↼ = 0, since the latter occupies the three inflection points of the
curve (at infinity), while the former does not. Also the choice of different values
for the parameter q leads in general to geometrically nonisomorphic configurations,
since a projective map preserves the order of the points on both branches of the
curve, while different values of q lead in general to a different order of the points
(compare Figures 1 and 3).

We conclude with two open problems.

• Does every (3rs, sr3) configuration of the combinatorial type constructed in
Section 2 have its points necessarily on a cubic curve?

• Which curves other than cubic curves carry dynamic configurations?

Observe that the miraculous chains of Poncelet polygons introduced in [4] and
[5] are examples of dynamic configurations carried by conics. So far, only a
(93) configuration consisting of three Poncelet triangles and a (243) configuration
consisting of six Poncelet quadrilaterals are known.
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