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Abstract We model the Lights Out game on general simple graphs in the frame-
work of linear algebra over the field F2. Based upon a version of the Fredholm
alternative, we introduce a separating invariant of the game, i.e., an initial state can
be transformed into a final state if and only if the values of the invariant of both
states agree. We also investigate certain states with particularly interesting proper-
ties. Apart from the classical version of the game, we propose several variants, in
particular a version with more than only two states (light on, light off), where the
analysis relies on systems of linear equations over the ring Zn. Although it is easy
to find a concrete solution of the Lights Out problem, we show that it is NP-hard to
find a minimal solution. We also propose electric circuit diagrams to actually realize
the Lights Out game.
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1 Introduction

The game Lights Out exists in several versions. The classical edition, issued by Tiger
Electronics in 1995, consists of a 5�5 grid of lights which are switches at the same
time. Pressing a light will toggle the state of this light and its adjacent neighbors
between off and on. Initially a random set of lights are on and the aim is to turn
all lights off, if possible with a minimum number of operations. More generally, a
given initial state has to be transformed into a prescribed final state.

This game and some variants of it have been studied several times in the literature:
The classical problem as described above was modeled in the language of linear
algebra in [1]. In [16] the puzzle on a 2k � 2k torus is investigated, and a criterion
for the solvability of the 5k � 5k torus is derived. In [19] the solvability of the
Lights Out game with respect to varying board size and with more than one color
(see Sect. 4.4 below) is studied by methods from algebraic number theory. The
game has first been studied under the name Garden of Eden (configuration with
no predecessor) in [24] and [25] in the context of cellular automata. The Lights
Out game may also be described in the framework of graph theory where the set of
buttons to be pushed in order to invert a given state corresponds to an odd dominating
set (see [11, 13–15]). Sutner was the first to show that the “all-on” configuration is
universal. This means that on any n-vertex graph it is possible in finitely many steps
to turn off all lights when you started with all lights on. Different proofs regarding
this problem were later given in [5], [7], [13], and [12]. Other results regarding
universally solvable graphs were for instance considered in [13] and [12]. In [8]
the authors were looking for universal configurations also for similar games like
“Orbix”.

Another modification can be found in [3] where the Lights Out game was inves-
tigated on a grid f1; :::; mg � f1; :::; ng. In [22] the Lights Out game for cartesians
products of graphs has been investigated. In particular, conditions are formulated
for this particular situation which imply that every initial configuration of lights can
be turned off. For a wide historical review of the game and its variants we refer to
[9] and the references therein.

In the present paper we investigate some new variants of the Lights Out game
and add some new elements to the theory of such games: Based upon a version
of the Fredholm alternative, we introduce a separating invariant of the game and
several of its variants, i.e., an initial state can be transformed into a final state if and
only if the values of the invariant of both states agree (see Theorems 4, 11 and 13).
We also investigate certain states with particularly interesting properties and their
relations (see Theorem 5 and Propositions 7, 8, 9 and 10). Apart from the classical
version of the game, we propose several variants of it, in particular a version with
more than only two states (light on, light off), where the analysis relies on systems
of linear equations over the ring Zn (see Theorem 17). Although it is easy to find
a concrete solution of the Lights Out problem, we show that it is NP-hard to find
a minimal solution (see Proposition 18 and Theorem 21). We also propose electric
circuit diagrams to actually realize the Lights Out game in Sect. 6.

We can play the game with the rules described above on an arbitrary simple
graph G (see Sect. 2 for some basic definitions of graph theory) with vertex set
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V WD fv1; :::; vng. Each vertex is a light and at the same time a switch. The status
of the lights is modeled by a map V ! F2 D f0,1g, represented by a vector
.x1; :::; xn/>, where xi D 1 means that the light in vertex vi is on, and off if xi D 0.
Let A 2 Fn�n

2 be the adjacency matrix of G. Then N WD A C I, where I is the
n � n identity matrix, encodes the information about which lights are toggled when
pushing a certain button: If x 2 Fn

2 represents a state of lights and we press switch
vj , then the resulting state will be

x C N ej ; (1)

where ej is the j -th column of I, and where the operations in (1) are carried out in
the field F2. Hence, pressing a sequence of switches, say vj1 ; vj2 ; :::; vjk , will lead
an initial state x 2 Fn

2 to the resulting state

x C N ej1 C N ej2 C ::: C N ejk D x C N.ej1 C ej2 C ::: C ejk /:

In particular,

� the order in which switches are pushed does not play a role, and
� pressing a switch an even number of times is equivalent to not pressing it at all.

Hence, for an initial state i 2 Fn
2 of lights, a given final state f 2 Fn

2 can be reached
in the Lights Out game if and only if there exists a 2 Fn

2 such that f D i C Na.
Here, a D .a1; a2; :::; an/> encodes the concrete solution: To get from i to f we
push all switches vj for which aj D 1.

2 A separating invariant for the Lights Out game on graphs

Since we will use several notions from graph theory, we first recall some basic
concepts:

� A graph G D .V; E/ is a mathematical structure consisting of a set V of points
called vertices and a (possibly empty) set E of edges. Each edge connects a pair
of vertices.

� A loop is an edge that connects a vertex to itself.
� A simple graph is a graph which does not have more than one edge between any

two vertices and which has no loops.
� Two vertices are said to be adjacent if there is an edge connecting them.
� A vertex is incident to an edge if the vertex is one of the two vertices the edge

connects.
� The degree of a vertex of a graph is the number of edges that are incident to the

vertex.
� A directed graph is a graph in which edges have an orientation.
� A complete graph is a simple undirected graph in which every pair of distinct

vertices is connected by a unique edge.
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� The adjacency matrix A is a square matrix used to represent a finite graph. The
element Aij is equal to 1 if the vertices vi and vj are adjacent, and 0 otherwise.

As we have seen in the introduction, a final state f 2 Fn
2 can be reached from

an initial state i 2 Fn
2 if and only if i C f belongs to the column space of N WD

A C I. This observation can conveniently be expressed by introducing the following
equivalence relation:

Definition 1 Two elements x; y 2 Fn
2 are called equivalent with respect to the

matrix N 2 Fn�n
2 (or just equivalent) if x C y lies in the column space of N . In

this case we write x � y.

Hence, an initial state i 2 Fn
2 can be transformed into a final state f 2 Fn

2 if
and only if i � f . In principle, it is now easy to check, if i and f belong to the
same equivalence class by applying Gauss elimination in F2 for the linear system
Na D i C f . However, if we want to see at a glance whether i � f , we need a
handy separating invariant. In order to formulate such an invariant, we first define a
bilinear form on Fn

2 :

Definition 2 h�; �i W Fn
2 � Fn

2 ! F2; .x; y/ 7! Pn
iD1xiyi .

Two vectors x; y 2 Fn
2 with hx; yi D 0 are called orthogonal. If M is an arbitrary

subset of Fn
2 , M ? WD fx 2 Fn

2 j hx; mi D 0 for all m 2 M g is a vector space.
However, note that the bilinear form h�; �i is not positive definite: Every x 2 Fn

2
with an even number of ones satisfies hx; xi D 0 (such vectors are called isotropic).
Nonetheless, the Fredholm alternative holds in the following sense:

Proposition 3 Let N 2 Fm�n
2 be an m � n matrix. Then the linear system Nx D b

has a solution x 2 Fn
2 if and only if b 2 Fm

2 is orthogonal to all solutions of the
adjoint system N >y D 0. I.e., we have

imN D .kerN >/?:

Proof Let C WD imN . Then dim C D rankN DW r . Observe that ker N > D C ?
and that dim C ? D m � dim C D m � r . Clearly, we have

C � C ??: (2)

On the other hand, as above, we get for the dimension of C ??:

dimC ?? D m � dim C ? D m � .m � r/ D r: (3)

Thus, by (2) and (3) the two vector spaces imN and .kerN >/? agree. �

In the theory of linear codes, Proposition 3 is formulated as C ?? D C : a code
C coincides with its double-dual code.
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Lights Out on graphs 241

Now we apply Proposition 3 in our case to the symmetric matrix N D N > 2
Fn�n

2 and get:

Theorem 4 Let A 2 Fn�n
2 be the adjacency matrix of a simple graph G and N WD

A C I with rank r . Let v1; :::; vn�r be a basis of ker N and J 2 F
.n�r/�n
2 be the

matrix with rows v>
1 ; :::; v>

n�r . Then x 7! J x is a separating invariant for the Lights
Out game on G: An initial state i can be transformed into a final state f if and only
if J i D Jf . In particular, all lights can be turned off if and only if J i D 0.

Proof As we have seen above, i can be transformed into f if and only if i C f 2
im N . According to Proposition 3 this is equivalent to the fact that iCf is orthogonal
to ker N , which in turn means that J.i C f / D 0. And over F2 this is equivalent to
J i D Jf . �

In the case where the final state is given by f D .0; :::; 0/, an illustrative survey
regarding the question which problems are completely solvable is given by [18].

Remarks. We conclude this section by a simple consideration how to count the
number of equivalence classes of states for a given graph: Since the rank of J is
equal to n� r we know that the linear system J.i Cf / D 0 has r parameters which
can be freely chosen. Therefore the system has 2r solutions. Hence we have 2n�r

equivalence classes for a given graph.
In [17] the authors gave a result regarding the number of equivalence classes for

a generalisation of the Lights Out game in the sense that every vertex can have a
state given by a number out of f0; :::; p � 1g where p is an arbitrary given positive
number.

3 Special states

3.1 Inverting a state

Let x 2 Fn
2 describe a state in the Lights Out game. Then we say that Nx WD

x C .1; 1; :::; 1/> is the inverse state: Lights which are on in x are off in Nx and vice
versa. It turns out that in the Lights Out game every state can be inverted:

Theorem 5 Let G be an arbitrary simple graph and x an initial state. Then, x can
be transformed into its inverse state Nx.

Theorem 5 is also called Sutner’s theorem (see [24]). For completeness we provide
a short proof of it based on the following Lemma which is also interesting in itself:

Lemma 6 Let N 2 Fn�n
2 be symmetric with all diagonal elements Ni i D 1. Then,

each x 2 kerN is isotropic.
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Proof Let x 2 kerN . We have to show that the number of components xi of x
which are equal to 1 is even. Let � D fj j xj D 1g and N .i/ denote the i-th column
of N . Then

0 D hN .i/; xi D
X

j 2�

Nij : (4)

Taking the sum over i 2 � in (4) we get, by the symmetry of N ,

0 D
X

i;j 2�

Nij D
X

i2�

Ni i C 2
X

i<j 2�

Nij : (5)

The first term on the right hand side of (5) is card.�/mod 2 because all diagonal
elements of N equal 1, the second term is zero in F2. Hence x is isotropic. �

Proof of Theorem 5 Let A 2 Fn�n
2 be the adjacency matrix of G and N WD

A C I. We have to show that x C Nx D .1; 1; :::; 1/> 2 im N D .ker N /?. In fact,
according to Lemma 6, all elements y 2 kerN have an even number of ones. Hence,
h.1; 1; :::; 1/>; yi D 0. �

Let ‚ D fvj1 ; :::; vjk g be a set of buttons which, when pressed, invert a state.
Such a set will be called inverting set. Hence, if x 2 Fn

2 is a vector with ones at
the coordinates j1; :::; jk and zeros at all other coordinates, then we have Nx D
.1; :::; 1/>. Such a vector will be called inverting.

Remarks. Theorem 5 is optimal in the sense that for the complete graph Kn, we
have dim .im N / D 1. Indeed, on Kn inverting a state is the only possible operation.
In [5] the question whether a state can be inverted has been treated in connection
with the existence of an odd-parity cover of a graph (see also Theorem 15 below).

3.2 Self-reproducing, self-avoiding and neutral vectors

Is it possible, starting from all lights off, to press a certain set of buttons such that
exactly those lights are turned on? Such a self-reproducing set ‚ D fvj1 ; :::; vjk g cor-
responds to a self-reproducing vector x 2 Fn

2 having ones exactly at the coordinates
j`, ` D 1; :::; k, and zeros in all other coordinates, such that Nx D .A C I/x D x.
Hence we have the following:

Proposition 7 A vector x 2 Fn
2 is self-reproducing on the graph G with adjacency

matrix A if and only if Ax D 0.

Is it possible, starting from all lights off, to press a certain set of buttons such that
exactly all other lights are turned on? Such a self-avoiding set ‚ D fvj1 ; :::; vjk g
corresponds to a self-avoiding vector x 2 Fn

2 having ones exactly at the coordinates
j`, ` D 1; :::; k, and zeros in all other coordinates, such that Nx D .AC I/x D Nx D
x C .1; :::; 1/>. Hence we have:
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Proposition 8 A vector x 2 Fn
2 is self-avoiding on the graph G with adjacency

matrix A if and only if Ax D .1; :::; 1/>.

Next we are looking for a set of lights ‚ D fvj1 ; :::; vjk g with the following
property: If the lights in ‚ are on and all others are off, and if then all buttons in
‚ are pushed, then again exactly the lights in ‚ are supposed to be on. Such a
neutral set ‚ D fvj1 ; :::; vjk g corresponds to a neutral vector x 2 Fn

2 having ones
exactly at the coordinates j`, ` D 1; :::; k, and zeros in all other coordinates, such
that x D x C Nx D x C .A C I/x, i.e. Nx D 0 or equivalently Ax D x.

Proposition 9 A vector x 2 Fn
2 is neutral on the graph G with adjacency matrix A

if and only if Ax D x.

In other words, pressing the buttons which correspond to a neutral vector x has
no effect since x D x C 0 D x C Nx. From these considerations we conclude
immediately:

Proposition 10

� The sum of an even number of self-avoiding vectors is self-reproducing.
� The sum of an arbitrary number of self-reproducing vectors is self-reproducing.
� The sum of an arbitrary number of neutral vectors is neutral.
� The sum of a self-avoiding vector and an arbitrary number of self-reproducing

vectors is self-avoiding.
� The sum of a neutral vector and a sum of an even number of inverting vectors is

neutral.

4 Variants of the game

4.1 The Second Neighbors Lights Out game

Here, we change the rules of the game a little bit to create a new challenge. Let G
be a simple graph with the property that either every vertex has even degree or zero
degree, or every vertex has odd degree. In the first case every row of the adjacency
matrix A is isotropic. On this graph, we play the Lights Out game as follows: If we
push a button vi , the corresponding light is inverted and also the second neighbors.
However, if a vertex vk is connected with vi by an even number of paths of length 2,
then vk keeps its status. We call this game the Second Neighbors Lights Out game.
We find:

Theorem 11 Let A 2 Fn�n
2 be the adjacency matrix of a simple graph G such that

(a) all vertices have even degree or zero degree, and r is the rank of NN WD A2 C I,
or

(b) all vertices have odd degree, and r is the rank of NN WD A2.
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Let v1; :::; vn�r be a basis of ker NN and J 2 F
.n�r/�n
2 be the matrix with rows

v>
1 ; :::; v>

n�r . Then x 7! J x is a separating invariant for the Second Neighbors Lights
Out game on G: An initial state i can be transformed into a final state f if and only
if J i D Jf .

Proof Observe that the Second Neighbors Lights Out game is equivalent to the
original Lights Out game, but on a new simple graph NG with adjacency matrix
NA WD A2 in case (a). It is at this point where we need the fact that all rows of A are
isotropic: This implies that all elements on the diagonal of A2 are 0, which means
that indeed NG has no loops. Let NN D NAC I D A2 C I. Then, the claim follows from
Theorem 4 applied to NG. Similarly in case (b) NA D A2 C I is the adjacency matrix
of a simple graph NG. Hence, if we put NN D NA C I D A2, then the claim follows
from Theorem 4 applied to NG as above. �

Moreover, we have

Theorem 12

(a) Every state in the Second Neighbors Lights Out game on G can be inverted.
(b) If all vertices of G have even degree or zero degree, then the following is true: If

an initial state i can be transformed into a final state f in the Second Neighbors
Lights Out game on G, then this is also possible for the original Lights Out game
on G.

Proof Part (a) follows from Theorem 5 applied to the graph NG in the proof of
Theorem 11.

To prove part (b) we argue as follows: Let again A be the adjacency matrix of G,
and N WD A C I. If, as in the proof of Theorem 11, NA D A2 denotes the adjacency
matrix of NG, we have NN WD NACI D A2CI D N 2. Recall that the Second Neighbors
Lights Out game on G is equivalent to the original Lights Out game on NG. Thus,
an initial state i can be transformed into a final state f in the Second Neighbors
Lights Out game on G if and only if i C f belongs to the column space of NN . But
im N 2 � im N , and hence i can be transformed into f in the original Lights Out
game on G if this is possible on NG. �

4.2 The Neighborhood Lights Out game

Here, we mix the original and the Second Neighbors Lights Out game: Let G be
a simple graph such that either every vertex has odd degree, or every vertex has
even degree or zero degree. On this graph, we play the game as follows: If we
push a button vi , the corresponding light is inverted, its direct neighbors and also
the second neighbors. As before, if a vertex vk is connected with vi by an even
number of paths of lengths 1 or 2, then vk keeps its status. We call this game the
Neighborhood Lights Out game. For this game we have:
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Theorem 13 Let A 2 Fn�n
2 be the adjacency matrix of a simple graph G such that

� all vertices have odd degree, and r is the rank of NN WD A C A2, or
� all vertices have even degree or zero degree, and r is the rank of NN WD ACA2CI.

Let v1; :::; vn�r be a basis of ker NN and J 2 F
.n�r/�n
2 be the matrix with rows

v>
1 ; :::; v>

n�r . Then x 7! J x is a separating invariant for the Neighborhood Lights
Out game on G: An initial state i can be transformed into a final state f if and only
if J i D Jf .

Proof In case (a) the Neighborhood Lights Out game is equivalent to the original
Lights Out game, but on a new simple graph NG with adjacency matrix NA WD A C
A2 C I. Since all vertices of G have odd degree the elements on the diagonal of
NA are 0, and hence NG has no loops. Let NN D NA C I D A C A2. Then, the claim
follows from Theorem 4 applied to NG. Similarly in case (b), NA D A C A2 is the
adjacency matrix of a simple graph NG. Hence, with NN D NA C I D A C A2 C I, the
claim follows from Theorem 4 applied to NG. �

Moreover, we have

Theorem 14

(a) Every state in the Neighborhood Lights Out game on G can be inverted.
(b) If every vertex of G has odd degree, then the following ist true: If an initial state

i can be transformed into a final state f in the Neighborhood Lights Out game
on G, then this is also possible for the original Lights Out game on G.

Proof Part (a) follows from Theorem 5 applied to the graph NG in the proof of
Theorem 13.

For part (b) let again A be the adjacency matrix of G and N WD A C I. Then
NA D ACA2CI is the adjacency matrix of NG, and NN WD NACI D ACA2 D N CN 2.
The Neighborhood Lights Out game on G is equivalent to the original Lights Out
game on NG. Thus, an initial state i can be transformed into a final state f in the
Neighborhood Lights Out game on G if and only if i C f belongs to the column
space of NN . But im .N C N 2/ � imN , and hence i can be transformed into f in
the original Lights Out game on G if this is possible on NG. �

4.3 The Non-reflexive Lights Out game

Suppose, your Lights Out game device does not function properly anymore: You
notice that some of the buttons vi (maybe all) invert only their direct neighbors but
no longer the light in vi . This means that on the diagonal of the original matrix
N D A C I, some places turned from 1 to 0. Hence the game is described by a new
matrix NN D A C NI, where NI 2 Fn�n

2 is a given diagonal matrix.
It is clear that Theorem 4 with N replaced by NN remains true for this version of

the game. However, Theorem 5 turns into the following:
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Theorem 15 Let G be a simple graph with adjacency matrix A, and NN D A C NI,
where NI 2 Fn�n

2 is diagonal. Then, NI.1; 1; :::; 1/> belongs to the column space of NN .
I.e., if i; f 2 Fn

2 are such that i C f D NI.1; 1; :::; 1/>, then the initial state i can be
transformed into the final state f . In particular, if all lights are turned off initially,
the state NI.1; 1; :::; 1/> can be reached.

Proof Let d D . NN11; NN22; :::; NNnn/> D NI.1; :::; 1/> be the vector consisting of the
diagonal entries of NN and x 2 ker NN be an element of the kernel of NN . Then, we
have

0 D xT NN x D
nX

i;j D1

NNij xi xj D 2
X

i<j

NNij xixj C
nX

iD1

NNi ix
2
i D hd; xi :

Thus, d is orthogonal to all elements x 2 ker NN , which is, according to Proposition 3
and in view of the symmetry of the matrix NN , equivalent to d 2 im NN . �

The same theorem has been obtained independently by Igor Minevich (see [20]).

4.4 The Colored Lights Out game

We consider again a simple graph G with n vertices and with adjacency matrix A.
Instead of toggling between on and off, we may consider a cycle

off ! color 1 ! color 2 ! ::: ! color k � 1 ! off:

We encode the colors by their numbers, and off by 0. Hence a state of colored lights
on G corresponds to a vector .x1; :::; xn/> 2 Zn

k
, where xi indicates the color of

the light in vertex vi . Pushing a button in vertex vi will increment the color in vi

and its neighbors by one, modulo k. Suppose we push ai -times the button in vi ,
i D 1; :::; n, then an initial state i 2 Zn

k
of colored lights on the graph will end up in

the final state f D i C Na, where a D .a1; :::; an/> and the operations are carried
out in Zk , and where N D A C I. This means, we have to solve the linear system

Na � c mod k (6)

where c D f � i . We first treat the simpler case where k is squarefree.

Proposition 16 If k is a product of different prime numbers p1; p2; :::; p`, then a
solution of (6) can be found as follows:

1. Solve (6) modulo pi for i D 1; 2; :::; ` by Gauss elimination, i.e., find bi 2 Zn

such that N bi � c mod pi for i D 1; 2; :::; ` .
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2. Let ki WD k=pi and use the extended Euclidean algorithm to find ri ; si 2 Z

such that ri pi C si ki D 1 for each i . Then a solution of (6) is given by

a D
X̀

iD1

bisi ki :

In particular, a solution of (6) exists if and only if detN 6� 0 mod pi for all i 2
f1; :::; `g.

Proof Observe that si ki � 1 mod pi and si ki � 0 mod pj for all j ¤ i . There-
fore we have modulo pj

Na D
X̀

iD1

N bisi ki �
X̀

iD1

.c C qipi /si ki � c

for all j 2 f1; :::; `g, and the claim follows by the Chinese Remainder theorem. �

For the general case of an arbitrary k 2 N, we first observe that (6) can equiva-
lently be written as

M Na D c (7)

where M WD .N j kI/ is the n � 2n-matrix with N in the left block and kI in the
right block, and where Na is the vector with first n components a and n additional
(unknown) integer components below. Then (7), and hence (6), can be solved as
follows:

Theorem 17 Let UM V D B be the Smith decomposition of M , i.e., U 2 Zn�n

and V 2 Z2n�2n are unimodular matrices, and B 2 Zn�2m is the Smith normal form
of M . Let y be an integer solution of By D Uc. Then, Na D Vy solves (7), and in
particular, the first n components of Na solve (6). Moreover, (7) has a solution if and
only if Bi i divides the i-th component of Uc for all i .

Proof The proof follows immediately from the properties of the Smith decompo-
sition. �

Remark. The Colored Lights Out game on a particular class of graphs, so called
subdivided caterpillars, has been treated in [21]. In [2] harmonic functions on graphs
are used to formulate the Colored Lights out game. In [17] they observed the number
of equivalence classes of this problem. Furthermore, in [10] they give a complete
list of graphs for which this generalized Lights Out game is solvable in the sense
that from any initial state one can reach the state where all lights are turned off.
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4.5 The asymmetric Lights Out game

Here we play the game on a directed graph G: If a certain button is pressed the cor-
responding light toggles and also the lights in all of its out-neighbors. The adjacency
matrix A 2 Fn�n

2 of G is in this case in general not symmetric:

Ajk D
�
1 if j is the foot and k is the head of a directed edge,
0 otherwise.

We put again N D A C I. If i 2 Fn
2 is an initial state and f 2 Fn

2 a final state, then
i can be transformed into f if and only if f D i C N >a for some a 2 Fn

2 , i.e.,
if i C f belongs to the column space of N >. But then, according to Proposition 3,
im N > D .ker N /?, and therefore Theorem 4 remains true for the Lights Out game
on the directed graph G.

5 The problem of finding minimal solutions

The questions we encountered so far could easily be answered by standard tools
of linear algebra: E.g. to determine whether an initial state i can be transformed
into a final state f for the Lights Out game is answered by the separating invariant
from Theorem 4: This requires only to compute a matrix multiplication J.i C
f / and to check if the result is the zero vector. Similarly, to actually compute
a solution for this problem, we just apply Gauss elimination to solve the linear
system Na D i C f for a over F2. However, it turns out that finding minimal
solutions is computationally much more difficult. We recall the following concepts
from computational complexity theory:

� A decision problem H is NP-complete if H is in NP and if every problem in NP
is reducible to H in polynomial time.

� A decision problem H is called NP-hard if there is a polynomial-time reduction
from an NP-complete problem G to H .

We have:

Proposition 18 The problem of finding a self-reproducing vector x ¤ 0 in Propo-
sition 7 of minimal Hamming weight is NP-hard.

Proof Recall that a self-reproducing vector x is characterized by the equation
Ax D 0, where A is the adjacency matrix of the graph G. Such a vector x corre-
sponds to a vertex set V 0 D fvj1 ; :::; vj`g � V with vjk 2 V 0 , xjk D 1 which has
the property that every vertex v 2 V has an even number of vertices of V 0 (or none
of them) among its neighbors. This translates into the following decision problem:

Even Vertex Set

Instance: A graph G D .V; E/ and an integer w > 0.
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Question: Is there a nonempty subset V 0 � V of at most w vertices, such that
every vertex v 2 V has an even number of vertices of V 0 among
its neighbors?

It has been shown by Vardy [26] that the Even Vertex Set problem is NP-complete.
To find a vector x with Ax D 0 and minimal Hamming weight is therefore NP-
hard. �

As a second example, we take a closer look at the problem of finding a minimal
solution to the Non-reflexive Lights Out game with N D A (see Sect. 4.3), i.e., a
solution with a minimum buttons pressed. Suppose our graph has n vertices. As we
have seen above, to transform an initial state i 2 Fn

2 into a final state f 2 Fn
2 we

need to solve the linear system Aa D i Cf over F2 for a 2 Fn
2 . If the matrix rank of

A over F2 is n, the solution a is unique. However, in general, r WD rankA < n and
the set of solutions (if non-empty) forms an affine space A of dimension n � r > 0
in Fn

2 . To find a solution with a minimum number of buttons to push means to find
a vector in A with minimum Hamming weight. We will show that this problem is
NP-hard. The reasoning is based upon the result of Berlekamp, McEliece and van
Tilborg who showed in [4] that the nearest codeword problem is NP-complete:

Nearest Codeword Problem

Instance: A binary m � n matrix A, a binary vector y 2 Fm
2 , and an integer

w > 0.
Question: Is there a vector x 2 Fn

2 of Hamming weight � w such that
Ax D y?

We first show that the special case of a square matrix A is not easier than the
general problem:

Balanced Nearest Codeword Problem

Instance: A binary n � n matrix A, a binary vector y 2 Fn
2 , and an integer

w > 0.
Question: Is there a vector x 2 Fn

2 of Hamming weight � w such that
Ax D y?

Lemma 19 The Balanced Nearest Codeword Problem is NP-complete.

Proof It is easy to see that the Balanced Nearest Codeword Problem is in NP. We
will now show that the General Nearest Codeword Problem can be reduced to the
Balanced Nearest Codeword Problem: Let A 2 Fm�n

2 and y 2 Fm
2 . Consider first

the case n < m and let

NA WD .A j 0/ 2 Fm�m
2 ; Ny WD y:
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If x is a solution of Ax D y with Hamming weight w, then

Nx D
�

x

0

�

2 Fm
2

is a solution of NA Nx D Ny with Hamming weight w. Vice versa, if Nx 2 Fm
2 is a

solution of NA Nx D Ny, then

x D

0

B
@

Nx1
:::

Nxn

1

C
A 2 Fn

2

is a solution of Ax D y with Hamming weight � w.
If n > m we define similarly

NA WD
�

A

0

�

2 Fn�n
2 ; Ny WD

�
y

0

�

2 Fn
2 :

If x is a solution of Ax D y with Hamming weight w, then Nx D x is a solution of
NA Nx D Ny with Hamming weight w and vice versa. �
Next, we show that the symmetric case is not easier than the general problem:

Symmetric Nearest Codeword Problem

Instance: A symmetric binary n � n matrix A, a binary vector y 2 Fn
2 , and

an integer w > 0.
Question: Is there a vector x 2 Fn

2 of Hamming weight � w such that
Ax D y?

Lemma 20 The Symmetric Nearest Codeword Problem is NP-complete.

Proof Obviously the Symmetric Nearest Codeword Problem is in NP, and we
have to show that the Balanced Nearest Codeword Problem can be reduced to the
Symmetric Nearest Codeword Problem. To this end, let A 2 Fn�n

2 and y 2 Fn
2 , and

consider

NA D
�
0 A>
A 0

�

D NA> 2 F2n�2n
2 ; Ny D

�
0
y

�

2 F2n
2 :

If x is a solution of Ax D y with Hamming weight w, then

Nx D
�

x

0

�

2 F2n
2
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is a solution of NA Nx D Ny with the same Hamming weight w. Vice versa, if Nx 2 F2n
2

is a solution of NA Nx D Ny with Hamming weight w, then

x D

0

B
@

Nx1
:::

Nxn

1

C
A 2 Fn

2

is a solution of Ax D y with Hamming weight � w. �

The corresponding computational problem for the Non-reflexive Lights Out game
is the following:

Non-reflexive Lights Out game Problem

Instance: A simple graph G with n vertices, an initial state i 2 Fn
2 , a final

state f 2 Fn
2 , and an integer w > 0.

Question: Is there a solution a in Fn
2 of Hamming weight � w such that

i C Ax D f ?

From Lemma 20 it follows now immediately:

Theorem 21 The Non-reflexive Lights Out game Problem is NP-complete. Hence,
to find a solution of the Non-reflexive Lights Out game Problem with a minimal num-
ber of pressed buttons is NP-hard.

If the rank of A is r < n, this indicates that one has to go over all of the 2n�r

points in the affine space defined by Ax D i C f to determine a minimal solution
of the Non-reflexive Lights Out game.

A related question has been treated in [11]. There an initial state of the Lights Out
game is given, and the problem is to determine the maximum number of vertices
with light off. This problem also turned out to be NP-hard.

Another problem which was shown in [6] and [9] (and the references therein) to
be NP-hard is to determine the minimal number of steps to turn off all lights when
you start with all lights on.

Other similar results regarding the complexity of coding problems were done by
Barg in [23, p. 733ff]. For instance he showed that the following problem is NP-
complete:

Weight of error

Instance: A matrix H , a vector s, and a nonnegative integer w.
Question: Is there a vector y of weight wt.y/ � w such that HyT D sT ?
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6 Circuit diagrams of the Lights Out game

It is far from obvious how a classical electric circuit with voltage source, lamps
and switches can be built which realizes the Lights Out game. We propose such a
circuit diagram for the cycle graph Cn with n 	 3 vertices. To this end, consider the
building block Bk in Fig. 1.

Then, combine blocks B1; :::;Bn such that Ak is connected to akC1, Bk to bkC1,
Ck to ckC1, and Dk to dkC1, for k D 1; :::; n � 1, and close the cycle by connecting
An and a1, Bn and b1, Cn and c1, and Dn and d1. Then, the quadrupole changeover
switch in block Bk will invert the lamps `k; `kC1 and `kC2 cyclically. An initial
state can be arranged by changing, if necessary, the contacts of the switch next to
each lamp.

Using a circuit diagram with boolean gates gives more flexibility. In this case,
the building blocks are T flip-flops (Fig. 2).

Fig. 1 Quadrupole changeover switch for the Lights Out game on a cycle graph

Fig. 2 T flip-flop for the Lights Out game on general simple graphs
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Fig. 3 Circuit element in vertex vi

Whenever a clock pulse at C arrives, the output state Q; NQ D :Q toggles.
To build the Lights Out game, we are going to use only the Q output which will
represent the lamp: Q D 1 corresponds to light on, Q D 0 corresponds to light off.
To implement the Lights Out game on an arbitrary graph, we represent every vertex
vi by the circuit element in Fig. 3.

The output of the or-gate is connected to the clock input of the T flip-flop Ti .
The button Bi of vertex vi is then connected to

� an input pin of the corresponding or-gate (see Fig. 3), and
� an input pin of the or-gate of every neighboring vertex of vi .

In this way, pushing the button Bi toggles the outputs Qi and the outputs of all
neighboring vertices.

7 Lights Out on graphs with symmetries

Let G D .V; E/ be a graph with vertex set V D fv1; :::; vng and edge set E D
fe1; :::; ekg, where each edge e` is the set fvi ; vj g of the two vertices which are
incident with it. An automorphism of G is a bijective map

� W V ! V such that f�.vi /; �.vj /g 2 E , fvi ; vj g 2 E:

The bijection � W .v1; :::; vn/ 7! .v�.1/; :::; v�.n// corresponds to a permutation �

of the index set fi; :::; ng which in turn can be expressed by a permutation matrix
P 2 Fn�n

2 W .1; :::; n/> 7! P.1; :::; n/> D .�.1/; :::; �.n//> with the property that
P >AP D A.

Prominent examples of graphs with a nontrivial automorphism group are Cayley
graphs: Let G be a finite group and S � G be a symmetric subset, i.e., with each
s 2 S , also the inverse s�1 2 S . The Cayley graph �.G; S/ has as vertices the
elements g 2 G and the edges are ffg; gsg W g 2 G; s 2 Sg. If we assume in addition
that S does not contain the unit element of G, then the resulting graph has no loops,
and is therefore suitable for the Lights Out game. Observe that G is a subgroup of the
automorphism group of the Cayley graph �.G; S/. In fact, each h 2 G induces an
automorphism of �.G; S/ by G ! G; g 7! hg. Indeed, the edge fg; gsg is mapped
to the edge f.hg/; .hg/sg.

The symmetries of a graph allow mapping a special state of the Lights Out game
from Sect. 3 into a similar one by applying an automorphism of the graph:
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Proposition 22 Let � be an automorphism of a graph. Then:

(a) If J is an inverting set, then �.J / is an inverting set.
(b) If J is a self-avoiding set, then �.J / is a self-avoiding set.
(c) If J is a self-reproducing set, then �.J / is a self-reproducing set.
(d) If J is a neutral set, then �.J / is a neutral set.

Proof (a) Let x 2 Fn
2 be the vector with ones at the coordinates which correspond

to elements of J , and y D P >x the vector with ones at the coordinates which cor-
respond to elements of �.J /. The set J is inverting if and only if Nx D .1; :::; 1/>.
Letting x D P P >x gives, after multiplying the previous equation from the left by
P >, the identity

.1; :::; 1/> D P >.1; :::; 1/> D P >Nx

D P >.A C I/P P >x D P >.A C I/Py D .A C I/y D Ny

and hence �.J / is inverting.
The proofs of (b), (c) and (d) are analogous. �
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