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 The coefficient of x2-l in h(x) is the coefficient of x2, in g/(l + g). A slightly more
 general version of the Lagrange Inversion Formula yields

 [x2n1]h(x) = [n-1] d (2 ) (1 )3 = 3n-2

 Thus IS2 1~ = - ( 3n ) and IS2n-11 = - (3n-2)

 Solution III by Southwest Missouri Problems Group. Let tn,k denote the number of strings in

 Sn that end in k; this is nonzero only when n -k (mod 2). Since appending a 1 to a string

 in S2m yields a string in S2m+l and appending a 2 to a string in S2m+l yields an element
 of S2m+2, we have IS2mI = Ek>ot2m,2k = t2m+l,l and IS2m+?1 = t2m+2,2. Similarly,
 tn,k = tn-l,k-1 ? tn,k+2, with ti,j = 1 and tn,k = 0 for k > n. By induction on 2n - k, we
 verify that the solution to this recurrence is tn,k 32k ((3n-k)/2). This specializes to the

 formulas for S2m and S2m+l obtained in the other two solutions.

 Editorial comment. Bijective proofs were supplied also by 0. P. Lossers and by Robin

 Chapman (based respectively on ballot sequences and on H. Snevily and D. B. West, The

 bricklayer problem and the strong cycle lemma, this MONTHLY 105 (1998) 131-143). David
 Beckwith gave a variant of Solution II avoiding the more general form of Lagrange Inversion
 via an extra application of the elementary form.

 Solved also by D. Beckwith, R. J. Chapman (U. K.), 0. Krafft (Germany), 0. P. Lossers (The Netherlands), J. Murray (Ireland),

 K. Schilling, Q. Zheng, Centre College Problems Group, GCHQ Problems Group (U. K.), NSA Problems Group, and the proposer.

 Leaves of Ordered Trees

 10753 [1999, 777]. Proposed by Louis Shapiro, Howard University, Washington, DC. An

 ordered tree is a rooted tree in which the children of each node form a sequence as opposed

 to a set. The 5 ordered trees with 3 edges are

 The number of ordered trees with n edges is the nth Catalan number (n2n)/(n + 1). Therefore,

 if one draws each of the ordered trees with n edges, one draws a total of ( n ) nodes. Prove
 that exactly half of these nodes are end-nodes (i.e., leaves with no children).

 Composite solution I by Richard Ehrenborg, Royal Institute of Technology, Stockholm,

 Sweden, and John W Moon, University of Alberta, Edmonton, Alberta, Canada. Let Cn
 denote the nth Catalan number. Counting the leaves on all ordered trees with n edges is

 equivalent to counting the pairs consisting of an ordered tree and one marked leaf. Such an

 ordered tree is obtained in a unique way from an unmarked ordered tree with n - 1 edges

 by attaching a marked leaf to some node of the unmarked tree. A new leaf can be attached

 at a node p with d(p) children in d(p) + 1 ways. For each tree with n - 1 edges, there

 are thus Ep(d(p) + 1) ways of attaching a marked leaf. Since Ep d(p) counts each edge
 exactly once, the number of ways to grow each tree is 2n - 1. The desired count of leaves

 in ordered trees with n edges is thus

 2n-1 t2n-2 1 t2nX
 (2n - 1)Cn-1 = n 1(2 12 = (

 November 2001] PROBLEMS AND SOLUTIONS 873

This content downloaded from 
������������129.132.21.168 on Mon, 31 Mar 2025 13:48:24 UTC������������� 

All use subject to https://about.jstor.org/terms



 Solution II by Michael Reid, Brown University, Providence, RI. We prove the more general

 statement that for n > 0 and r > 0, the number of nodes with exactly r children among all

 ordered trees with n edges is (2n-r1l)
 We use induction on n, with trivial basis n = 1. Now consider n > 1. Let F(n, r) be

 the set of paris (T, v), where T is an ordered tree with n edges and v is a vertex of T with

 exactly r children. Let f (n, r) = IF(n, r)j.
 For r > 0, we establish a bijection from F(n, r) to Us>r-i F(n - 1, s). Given (T, v) E

 F(n, r), contract the edge in T from v to its last child w. The result is (T', v'), in which the

 children of v' are the first r - 1 children of v followed by all children of w, in order. Hence

 (T', v') E Us>r-1 F(n - 1, s). To construct the inverse for (T', v') E Us>r-i F(n - 1, s),
 detach all but the first r - 1 children of v', and introduce a new rth child w as the parent of
 the detached children. The result is the only tree with n edges that maps to (T', v').

 Since the sets F(n - 1, s) are disjoint for distinct s, the induction hypothesis and a
 standard binomial coefficient identity yield

 n-1 n-i 1n-s 3\ /'n r iN
 f (n, r)= 1 f (n-1s)= - 2 n=-

 s=r-1 s=r-1 / n- /

 By the same identity, En=1 (27n-r1) = (27n 1). Since the total number of vertices in
 these trees is (2n), we have

 f (n, 0) = (:)- (n, r) = (2n) - (2n-1) (2n-1) = (2n)

 Editorial comment. Other solvers used bijections involving binary trees, bijections involv-
 ing Dyck paths, generating functions, Narayana numbers, convolutions, and induction.

 John W. Moon notes that the problem appeared in probabilistic guise in N. Dershowitz

 and S. Zaks, Enumerations of ordered trees, Disc. Math. 31 (1980) 9-28. An analogue for
 weighted ordered trees is proved in L. H. Clark, A. Meir, and J. W. Moon, On the Steiner

 distance of trees from certain families, Australasian J. Comb. 20 (1999) 47-68 (see p. 64).

 Solved also by C. Anderson, C. Baltus, D. Beckwith, J. C. Binz (Switzerland), D. M. Bloom, D. Callan, S. Cautis (Canada),

 R. J. Chapman (U. K.), C. Chauve (France), A. Del Lungo & S. Rinaldi (Italy), E. Deutsch, S. B. Ekhad, N. Hungerbuhler

 (Switzerland), G. Isaak, R. Johnsonbaugh, D. E. Knuth, S. C. Locke, 0. P. Lossers (The Netherlands), J. H. Nieto (Venezuela),

 A. Nijenhuis, C. R. Pranesachar (India), H. Prodinger (Austria), D. G. Rogers, P. Simeonov, N. K. Vishnoi, GCHQ Problems Group

 (U. K.), NCCU Problems Group, SJSU Problems Ring, Southwest Missouri Problems Group, and the proposer.

 10757 [1999, 778]. Proposed by Mark Kidwell, United States Naval Academy, Annapolis,
 MD. Given integers ao, al, a2, .. ., an with ai # 0 for i > 1, write [ao; al, a2, ... , an] for
 the continued fraction

 ao + 1

 al + 1

 a2 + 1

 an

 Every positive rational number has a unique representation as [ao; al, a2, .. , n] if we re-
 quire that ao > 0, ai > 0 for 1 < i < n-1, and an > 1 (we call this the standard representa-
 tion), but it can have other representations [bo; b1, b2, . . ., bin] if we permit negative values

 for some of the bi or if we permit bm = 1. For example, 11/3 = [3; 1, 2] = [3; 1, 1, 1] =
 [4; -3]. Prove or disprove: If r is a positive rational number, r = [ao; al, a2, . . , an] is
 the standard representation, and r = [bo; bi, b2, . .. , bm] is another representation, then
 ao + a, + + an <_ Ibo + Ijbi + - * - + Ibmn, with strict inequality if any of the bi are
 negative.
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A simple proof of Shapiro’s Theorem

Norbert Hungerbühler
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University of Fribourg
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Abstract

We prove Shapiro’s Theorem by applying the well known bijection between Catalan trees and
trivalent plane rooted trees, and using a simple symmetry argument.

Key words: Catalan trees, trivalent plane rooted trees, terminal vertices

1 Shapiro’s Theorem

For n ∈ IIN0, let Cn denote the set of planted planar trees1 with n + 1 edges, sometimes called
Catalan trees. Figure 1 shows C3. Terminal edges which are not incident with the root are called
leaves. Shapiro observed the following:

Theorem For n > 0 exactly half of the edges of the planted planar trees in Cn are leaves.

Shapiro presented a proof of this result using generating functions in [4], but finding it so attractive,
and believing that there must be other, neater, more insightful proofs, offered it also as a problem in
The American Mathematical Monthly [3]. A detailed history of Shapiro’s Theorem, and additional
bibliographic remarks on Catalan Problems can be found in [2].

r r rrr

Figure 1: C3 = {Catalan trees with 4 edges}. 10 among the altogether 20 edges are leaves.

2 A simple proof of Shapiro’s Theorem

We recall that there is a bijection between the sets Cn of Catalan trees and Tn, the sets of planar
rooted trivalent trees with n + 1 leaves (Figure 2 shows T3). This bijection between Cn and Tn

can be described as follows: First we bring a trivalent rooted planar tree in a special position—
starting from the root, all edges run from bottom to top or from left to right. Then we contract the

1i.e. planar trees with a root r of degree 1

1



r rrrr

Figure 2: T3 = {trivalent planar rooted trees with 4 leaves}

rrr

≡ 7−→

Figure 3: Bijection between Tn and Cn

horizontal edges and obtain the corresponding Catalan tree. See Figure 3 for convenience, and [1]
for how to find this bijection. So, in particular, |Tn| = |Cn|.2

The argument of the proof is now simply the following: For n > 0 we observe that, by symmetry,
just as many leaves in Tn are oriented to the right as to the left. Now, since exactly the edges

that go to the right are contracted, there are |Tn|(n+1)
2 leaves in Cn. This is, indeed, half of the

|Cn|(n + 1) edges in Cn!
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