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Abstract. For 2 < p < dimM we establish existence of global weak
solutions of the p-harmonic flow between Riemannian manifolds M
and N for arbitrary initial data having finite p-energy in the case
when the target N is a homogeneous space with a left invariant met-
ric. In particular we construct a solution f : M × [0,∞) → N which
satisfies the energy inequality

1
2

∫ T

0

∫
M

|∂tf |2dµ dt +
1
p

∫
M

|df(T )|pdµ ≤ 1
p

∫
M

|df(0)|pdµ

for all T > 0. In the proof we combine a (time-) discrete scheme with
certain compactness properties of the p-harmonic flow into homoge-
neous spaces.

1. Introduction. Let M and N be compact smooth Riemannian manifolds
without boundaries with metrics γ and g respectively. Let m and n denote the
dimensions of M and N . For a C1-map f : M → N the p-energy density is
defined by

e(f)(x) :=
1
p

|dfx|p(1.1)

and the p-energy by

E(f) :=
∫
M

e(f) dµ .(1.2)

Here, p denotes a real number in [2,∞[, |dfx| is the Hilbert-Schmidt norm with
respect to γ and g of the differential dfx ∈ T ∗

x (M) ⊗ Tf(x)(N) and µ is the
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measure on M which is induced by the metric. For concrete calculations we
need an expression for E(f) in local coordinates:

EU (f) =
1
p

∫
Ω

(
γαβ(gij ◦ f)∂αf i∂βf j

)p/2 √
γ dx .

Here, U ⊂ M and Ω ⊂ R
m denote the domain and the range of the coordinates

on M and it is assumed that f(U) is contained in the domain of the coordinates
chosen on N . Upper indices denote components, whereas ∂α denotes the deriva-
tive with respect to the coordinate variable xα. We use the usual summation
convention.

Variation of the energy-functional yields the Euler-Lagrange equations of the
p-energy which are

∆pf = − (γαβgij∂αf i∂βf j)p/2−1
γαβΓl

ij∂αf
i∂βf

j(1.3)

in local coordinates. Here, the operator

∆pf :=
1√
γ
∂β

(√
γ
(
γαβgij∂αf

i∂βf
j
)p/2−1

γαβ∂αf
l
)

is called p-Laplace operator (for p = 2 this is just the Laplace-Beltrami operator
and does not depend on N). On the right hand side of (1.3) the Γl

ij denote the
Christoffel-symbols related to the manifold N . According to Nash’s embedding
theorem we can think of N as being isometrically embedded in some Euclidean
space R

k since N is compact. Then, if we denote by F the function f regarded
as a function into N ⊂ R

k, equation (1.3) admits a geometric interpretation,
namely

∆pF ⊥TFN

with ∆p being the p-Laplace operator with respect to the manifolds M and R
k.

For p > 2 the p-Laplace operator is degenerately elliptic. (Weak) solutions
of (1.3) are called (weakly) p-harmonic maps. One possibility to generate p-
harmonic maps is to investigate the heat flow related to the p-energy, i.e., to
look at the heat flow-equation

∂tf − ∆pf ⊥ TfN(1.4)

f
∣∣
t=0 = f0(1.5)

or explicitly for (1.4)

∂tf − ∆pf = (p e(f))1−2/pA(f)(∇f,∇f)(1.6)

where A(f)( · , · ) is the second fundamental form on N . For p = 2 Eells and
Sampson showed in their famous work [5] of 1964, that there exist global solutions
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of (1.4)–(1.5) provided N has nonpositive sectional curvature and that the flow
tends for suitable tk → ∞ to a harmonic map. Existence and uniqueness of
partially regular solutions of the harmonic flow on Riemannian sufaces (i.e.,
p = m = 2) has been shown by Struwe in [10]. For p = 2 the higher dimensional
problem (i.e., m > 2) has been solved by Chen and Struwe in [4]. For p > 2
only little is known about existence and regularity of solutions of (1.4): If the
target manifold N is a sphere there exists a global weak solution f of the p-
harmonic flow with f ∈ L∞(0,∞;W 1,p(M,N)) and ft ∈ L2(0,∞;L2(M)) for
arbitrary initial data in W 1,p(M,N) (see [3]). Here, W 1,p(M,N) denotes the
nonlinear Sobolev space of functions g ∈ W 1,p(M,Rk) with g(x) ∈ N for almost
every x ∈ M . In the conformal case, i.e., if p = dim(M), there exists (again
for initial data in W 1,p(M,N)) a global weak solution which is partially regular
in the sense that ∇f ∈ C0,α in space-time up to finitely many singular times
T1 < T2 < . . . < TK ≤ ∞ (and K is a priori bounded in terms of the initial
p-energy). Moreover solutions in L∞(0, T ;W 1,∞(M,N)) are known to be unique
(see [8]).

Recently considerable progress has been achieved in different geometrically
motivated problems if homogeneous spaces with left invariant metric are as-
sumed as targets: see e.g. [7], [12] or [11]. Here, inspired by Toro and Wang [12],
we consider the p-harmonic flow for compact targets N which are homogeneous
spaces (i.e., N = G/H is the quotient of a connected Lie group G by a closed
discrete subgroup H) with a left invariant metric. It is known that then the
space of weak solutions of (1.4) is “weakly compact” (see [9]). However, as far as
the p-harmonic flow is concerned it is usually quite difficult to find approximat-
ing problems for which one can establish existence and then use the additional
compactness properties to pass to the limit. In particular the techniques used
in [3] for N = Sn and in [8] for the conformal case do not seem to work here.
Nevertheless a (time-) discrete scheme will provide the desired approximate so-
lutions. Similar techniques have been applied by Bethuel, Coron, Ghidaglia, and
Soyeur in [1] and recently by Freire in [6]. We restrict ourselves to the range
2 < p < dim(M), since the cases p = 2 and p = dim(M) are known (see [4]
and [8]) and existence theory for p > dimM offers fewer difficulties. We will
establish the following theorem:

Theorem 1.1. For 2 < p < dim(M) there exists a global weak solution
of the p-harmonic flow between Riemannian manifolds M and N for arbitrary
initial data having finite p-energy in the case when the target N is a homogeneous
space with a left invariant metric. The solution f : M × [0,∞) → N satisfies the
energy inequality

1
2

∫ T

0

∫
M

|∂tf |2dt dµ +
1
p

∫
M

|df(T )|pdµ ≤ 1
p

∫
M

|df(0)|pdµ(1.7)

for all T > 0.
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We finish this introduction by fixing some more notations:

V (M,N) := {g ∈ L∞(0, T ;W 1,p(M,N)) : ∂tg ∈ L2(0, T ;L2(M))}

be equipped with the norm

‖g‖V (M,N) := ess sup
0≤t

‖g(t, ·)‖W 1,p(M,N) + ‖∂tg‖L2(M×(0,∞))

and recall that L∞(0, T ;W 1,p(M)) is the dual space of L1(0, T ;W−1,p′
(M)).

2. The flow equation for homogeneous target. Let X be a Killing
field on N , that is the generator of an isometry of N , satisfying

〈∇vX(p), v〉 = 0 for all p ∈ N , v ∈ TpN ,(2.8)

where ∇v denotes the covariant derivative in direction v and 〈·, ·〉 is the inner
product on TpN ⊂ TpR

k, that is the scalar product in R
k restricted to TpN .

For the sake of simplicity we assume in this section that M is the flat torus
R
m/Zm (a justification will be given in the remark towards the end of this

section). Hence, if f ∈ V (M,N) is a weak solution of the p-flow, we have

−
∫ ∞

0

∫
M

〈∂α(ζX(f)), |df |p−2∂αf〉dµ dt =
∫ ∞

0

∫
M

〈∂tf, ζX(f)〉dµ dt

for all smooth cutoff functions ζ. Differentiating the product on the left-hand
side, we obtain∫ ∞

0

∫
M

ζ〈∂tf,X(f)〉dµ dt

= −
∫ ∞

0

∫
M

(ζ〈∂αX(f), |df |p−2∂αf〉 + (∂αζ)〈X(f), |df |p−2∂αf〉)dµ dt

= −
∫ ∞

0

∫
M

(ζ|df |p−2 〈∇∂αfX(f), ∂αf〉︸ ︷︷ ︸
=0 by (2.8)

+(∂αζ)〈X(f), |df |p−2∂αf〉)dµ dt

= −
∫ ∞

0

∫
M

(∂αζ)|df |p−2〈X(f), ∂αf〉dµ dt .

Hence we have
div(|df |p−2〈X(f),∇f〉) = 〈∂tf,X(f)〉(2.9)

in the sense of distributions. Notice that, since f ∈ V (M,N), there are test
functions ϕ ∈ V (M,R) allowed in (2.9). Let n denote the dimension of N .
Hélein [7] observed that on a homogeneous space with a left invariant metric of
dimension n there exist n linearly independent Killing vector fields Xi and n
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linearly independent tangent vector fields Yi such that any tangent vector field
W on N can be written as

W = 〈W,Xi〉Yi .(2.10)

In fact, if N is represented as a quotient N = G/H of a connected Lie group
by a closed, discrete subgroup H, we may choose as {Xi}1≤i≤n a basis of the
Lie algebra g of G and Yj a suitable linear combination of the vector fields Xi,
1 ≤ i ≤ n. In general Yi �= Xi as the vector fields Xi need not to be orthonormal.

Applying (2.10) to the vector fields ∂αf , 1 ≤ α ≤ m, we get

|df |p−2∂αf = |df |p−2〈∂αf,Xi(f)〉Yi(f)

and hence, by taking the divergence on both sides of this equation and using (2.9)
and (2.10) we obtain (weakly)

div(|df |p−2∇f)

= div(|df |p−2〈∇f,Xi(f)〉)Yi(f) + |df |p−2〈∂αf,Xi(f)〉∂α(Yi(f))

= ∂tf + |df |p−2〈∂αf,Xi(f)〉∂α(Yi(f)) .

Thus (1.4) implies

∂tf − ∆pf = −|df |p−2〈∂αf,Xi(f)〉∂α(Yi(f)).(2.11)

In fact (2.11) is equivalent to (1.4) as can easily be seen. Now, the product on
the right-hand side of (2.11) has a very special structure: We have seen, that the
divergence of the first factor |df |p−2〈∂αf,Xi(f)〉 is 〈∂tf,Xi(f)〉 (this was (2.9)),
whereas the second factor ∂α(Yi(f)) is a gradient and hence has vanishing curl.
Thus having control on the time derivative of the solution a variant of the div-
curl Lemma should apply as we consider sequences of approximate solutions in
the next section.

Remark 2.1. It remains to justify that 〈∇∂αfX(f), ∂αf〉 = 0 also in case
of a general domain manifold M . In fact, for general M the corresponding
expression is

〈∇∂αfX(f), ∂αf〉 = 〈∇∂αfX(f), γαβ∂βf〉.
Using orthogonal coordinates on M , we have that the vector fields ∂αf and ∂αf
are parallel and the desired result follows by applying (2.8) for every α separately.

3. Existence of a global weak solution. For g ∈ W 1,p(M,N) fixed,
f ∈ W 1,p(M,Rk) and h > 0 let

Eg(f) :=
∫
M

(
1
p

|df |p +
1

2h
|f − g|2

)
dµ .
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By the direct method of the calculus of variations we find a function w ∈
W 1,p(M,N) such that

Eg(w) = inf
f∈W 1,p(M,N)

Eg(f)

and we write w ∈ arg minEg. Now we define recursively a family fi ∈ W 1,p(M,N)
by

fi+1 ∈ arg minEfi for i = 0, 1, . . .

where f0 is the initial value in (1.5). Notice that fi is a weak solution of the
Euler-Lagrange equation to energy Efi

, i.e., there holds for every i = 1, 2, . . .

(3.12) ΠTfi
N

(
1
h

(fi − fi−1)
)

+ ∆pfi = (p e(fi))1−2/pA(fi)(∇fi,∇fi)

in distributional sense. In (3.12) ΠTfN denotes the orthogonal projection onto
the tangent space TfN .

Since fi minimizes Efi−1 we have in particular Efi−1(fi) ≤ Efi−1(fi−1), i.e.,

∫
M

(
1
p

|dfi|p +
1

2h
|fi − fi−1|2

)
dµ ≤

∫
M

1
p

|dfi−1|pdµ .(3.13)

Now we define the function f (h) : M × [0,∞) → N by

f (h)(t, ·) := fi for t ∈ [ih, (i + 1)h).

Thus, rewriting (3.12) in view of Section 2 we get the analogues of (2.9) and (2.11):

(2.9)′ div(|df (h)|p−2〈X(f (h)),∇f (h)〉) = 〈ΠT
f(h)N∂

(−h)f (h), X(f (h))〉
(2.11)′ ΠT

f(h)N∂
(−h)f (h) − ∆pf

(h) = −|df (h)|p−2〈∂αf (h), Xi(f (h))〉∂α(Yi(f (h)))

weakly on (h,∞) × M . Here, ∂(h) denotes the forward difference quotient in
time with step length h, i.e., (∂(h)f)(t, x) = 1

h (f(t + h, x) − f(t, x)). Summing
up (3.13), we obtain

(3.14)
1
2

∫ kh

0

∫
M

|∂(h)f (h)|2dµ dt +
1
p

∫
M

|df (h)(kh)|pdµ ≤ 1
p

∫
M

|df0|pdµ .
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So in particular we see that {f (h)}h>0 is a bounded set in L∞(0,∞;W 1,p(M,N))
and hence every sequence in {f (h)}h>0 has a subsequence fi := f (hi) such that
for any fixed T > 0

fi
∗
⇀ f weakly∗ in L∞(0,∞;W 1,p(M)).(3.15)

Now we show that the difference quotients for fixed step length H > 0 of the
sequence {f (h)} are bounded in L2(0,∞;L2(M)).

Lemma 3.1. Let H = ih+σ and T = kh+τ , k, i ∈ N, 0 ≤ σ, τ < h. Then∫ T

0

∫
M

|∂(H)f (h)|2dµ dt ≤ c

∫ h(k+i+1)

0

∫
M

|∂(h)f (h)|2dµ dt

for a constant c > 0.

Proof. We have

I :=
∫ T

0

∫
M

|∂(H)f (h)|2dµ dt(3.16)

≤
k∑

j=0

∫ jh+h−σ

jh

∫
M

|∂(H)f (h)|2dµ dt

+
∫ (j+1)h

jh+h−σ

∫
M

|∂(H)f (h)|2dµ dt

and the integrand in each term does not depend on time:∫ jh+h−σ

jh

∫
M

|∂(H)f (h)|2dµ dt +
∫ (j+1)h

jh+h−σ

∫
M

|∂(H)f (h)|2dµ dt(3.17)

= (h− σ)
∫
M

∣∣∣∣fj+i − fj
H

∣∣∣∣2 dµ + σ

∫
M

∣∣∣∣fj+i+1 − fj
H

∣∣∣∣2 dµ
≤ h2(h− σ)i

H2

∫
M

j+i∑
l=j+1

∣∣∣∣fl − fl−1

h

∣∣∣∣2 dµ
+

h2σ(i + 1)
H2

∫
M

j+i+1∑
l=j+1

∣∣∣∣fl − fl−1

h

∣∣∣∣2 dµ
where we used the fact that the arithmetic mean is less or equal than the
quadratic mean. Using (3.17) in (3.16) the claim follows after a short calcu-
lation.

Now we prove a “discrete” Aubin type lemma:
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Lemma 3.2. The set {f (h)}h>0 is precompact in the space Lr(0, T ;Lr(M))
for all r < ∞.

Proof. The sequence {f (h)}h>0 is bounded in L∞(0, T ;L∞(M)). Hence it
is sufficient to show that {f (h)}h>0 is totally bounded in L1(0, T ;L1(M)): For
simplicity we consider M = R

m/Zm (in the general case consider the set {f (h)ϕj}
for a partition of unity ϕj : M → R with each support contained in a single
coordinate chart of M). Let ψ : R

m ×R → R be a smooth non-negative function
with support in B1(0) ⊂ R

m ×R and with L1-norm equal to 1. Furthermore, let
ψδ(z) = (1/δm+1)ψ(z/δ) (where z = (x, t) denotes a variable in space-time) and
f

(h)
δ = ψδ ∗ f (h) be the standard mollification in every component of f (h) (we

extend f (h) with value 0 constant in time for t < 0 and t ≥ T ). Here, ‘∗’ denotes
the convolution in space-time. Then of course {f (h)

δ }h>0 (for δ > 0 fixed) is
pointwise bounded and equicontinuous. In fact, if suph>0 ‖f (h)‖L1((0,T )×M) ≤ c,
we have

|f (h)
δ (z)| ≤

∫
B1(0)

ψ(ζ)|f (h)(z − δζ)| dζ

≤ c

δm+1 supψ , and

|Df (h)
δ (z)| ≤ 1

δ

∫
B1(0)

|Dψ(ζ)||f (h)(z − δζ)| dζ

≤ c

δm+2 sup |Dψ|,

where D denotes time or spatial derivative. Thus, {f (h)
δ }h>0 is a bounded,

equicontinuous subset of C0([0, T ]×M) and hence precompact in C0([0, T ]×M)
by Arzela-Ascoli’s theorem, and consequently also precompact in L1(0, T ;L1(M)).
It remains to show that f (h)

δ is L1-close to f (h). To simplify the notation in the
following calculation we drop the h (which is fixed for the moment) and just
write f for f (h). We assume that δ ≤ h/2. Then we have

|f(x, t) − fδ(x, t)|(3.18)

≤
∫

B1(0)

ψ(P,Q)|f(x, t) − f(x− δP, t− δQ)| dP dQ

≤
∫

B1(0)

ψ(P,Q)
∫ δ|P |

0

∣∣∣∣Drf

(
x− r

P

|P | , t− δQ

)∣∣∣∣ dr dP dQ
+
∫

B1(0)

ψ(P,Q)
∑
i∈Z

|fi+1(x) − fi(x)|χi,δQ(t) dP dQ

= I + II,
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where χi,δQ denotes the characteristic function of the interval [(i + 1)h,
(i + 1)h + δQ) (by [a, b] we always mean [min(a, b),max(a, b)]) and where we
set fi = 0 for negative i. Integrating the term I with respect to x and t, we
obtain by estimating the directional derivative |Drf | by the full derivative |df |
and using Hölder’s inequality∫ T

0

∫
M

I dµ dt ≤ δT |M |1/p′(∫
M

|df0|p dµ
)1/p

.(3.19)

Furthermore, integrating the second term II, we arrive at∫ T

0

∫
M

II dµ dt ≤ δ
∑
ih≤T

∫
M

|fi+1 − fi| dµ(3.20)

and by applying Hölder’s inequality and (3.14) we see that the sum of the terms
in (3.19) and (3.20) is smaller than a constant c = c(T ) not depending on h.

Since we have shown above that {f (h)
δ }h>0 is totally bounded in

L1(0, T ;L1(M)) for all δ > 0, it follows that {f (h)}h>0 is also totally bounded
in L1(0, T ;L1(M)) and this completes the proof.

Remark 3.3. An alternative proof is possible by using the compactness
Theorem of Fréchet-Kolmogorov (see e.g. [2]).

Combining Lemma 3.1 and (3.14), it follows that {∂(H)f}H>0 is bounded in
L2(0,∞;L2(M)). Hence by Lemma (3.2), f has a distributional time derivative
in L2(0,∞;L2(M)). Furthermore, we have (for a suitable subsequence h → 0)
that

∂(h)f (h) ⇀ ∂tf weakly in L2(0,∞;L2(M))

as a consequence of the partial integration rule for the discrete operator ∂(h).
Moreover, we have

ΠT
f(h)N∂

(−h)f (h) ⇀ ∂tf weakly in L2(ε,∞;L2(M))(3.21)

for arbitrary ε > 0 and hence we can pass to the limit in the first term of (2.11)′.
To see this observe that (after possible extraction of a further subsequence)
f (h) → f boundedly a.e. on M (i.e., the sequence f (h) is bounded in L∞(M)
and converges a.e.) and use the following lemma:

Lemma 3.4. If

• fk ⇀ f weakly in Lq(Ω)

• gk → g boundedly a.e. on Ω (i.e., ‖gk‖L∞(Ω) ≤ C for all k),

then
fkgk ⇀ fg weakly in Lq(Ω).
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Proof. The proof is a straightforward consequence of the Lebesgue dominated
convergence theorem and Egoroff’s theorem.

In order to pass to the limit in the p-Laplace term in (2.11)′ we need some
more compactness for {f (h)}h>0:

Lemma 3.5. The set {f (h)}h>0 is precompact in Lq(0, T ;W 1,q(M)) for
each q satisfying 1 ≤ q < p.

Proof. We use a technique from [3]: Using the facts we have proved so far
we start by extracting a subsequence fi of {f (hj)}j ⊂ {f (h)}h>0 such that

fi ⇀ f weakly in Lp(0, T ;W 1,p(M)) and

fi → f strongly in Lp(0, T ;Lp(M)).

Take K such that

‖dfi‖Lp(0,T ;Lp(M)) ≤ K(3.22)

‖∂(−hi)fi‖L1(0,T ;L1(M)) ≤ K(3.23)

for all i and with the convention fi = 0 for negative time t.
For δ ∈ ]0, 1], let Ei

δ = {(x, t) ∈ M × [0, T ]; |fi(x, t) − f(x, t)| ≥ δ}. Then

∫
Ei

δ

|dfi − df |q dµ dt ≤ (2K)q|Ei
δ|(p−q)/p.(3.24)

On the other hand, we define the cutoff function

η(y) = y min
{

δ

|y| , 1
}

: R
k → R

k

which cuts every vector longer than δ at length δ. Thus the strong monotonicity
of the p-Laplace operator implies that for some constant C there holds (as in [3])
the estimate

C

∫
M×[0,T ]\Ei

δ

|dfi − df |p dµ dt

≤
∫
M×[0,T ]\Ei

δ

trace
(
(|dfi|p−2dfi − |df |p−2df)∗(dfi − df)

)
dµ dt =
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=
∫
M×[0,T ]

|dfi|p−2 trace (df∗
i dη(fi − f)) dµ dt

− δ

∫
Ei

δ

|dfi|p−2 trace
(
df∗

i d

(
fi − f

|fi − f |
))

dµ dt

−
∫
M×[0,T ]\Ei

δ

|df |p−2 trace (df∗(dfi − df)) dµ dt

= I + II + III .

Now,

|I| ≤
∫
M×[0,T ]

(c|dfi|p + |∂(−hi)fi|)|η(fi − f)| dµ dt ≤ c′δK

where one uses Equation (2.11)′. In local coordinates the term II may be written
in the following way:

II = −
∫
Ei

δ

δ

|fi − f |3 |dfi|p−2γαβ∂αf
m
i

(|fi − f |2∂β(fmi − fm)

− (fmi − fm)(fni − fn)∂β(fni − fn)
)
dµ dt

= −
∫
Ei

δ

δ

|fi − f |3 |dfi|p−2γαβ∂αf
m
i

(|fi − f |2∂βfmi

− (fmi − fm)(fni − fn)∂βfni
)

+
∫
Ei

δ

δ

|fi − f |3 |dfi|p−2γαβ∂αf
m
i

(|fi − f |2∂βfm

− (fmi − fm)(fni − fn)∂βfn
)

= II′ + II′′.

Note that II′ ≤ 0 and, by Hölder’s inequality,

|II′′| ≤ 2
∫
Ei

δ

|dfi|p−1|df | dµ dt ≤ 2Kp−1

(∫
Ei

δ

|df |p dµ dt
)1/p

.

For III, we use the weak convergence of fi and Hölder’s inequality again to get

|III| ≤
∣∣∣∣∣
∫
M×[0,T ]

|df |p−2 trace(df∗d(fi − f)) dµ dt

∣∣∣∣∣
+

∣∣∣∣∣
∫
Ei

δ

|df |p−2 trace(df∗d(fi − f)) dµ dt

∣∣∣∣∣
≤ o(1) + 2K

(∫
Ei

δ

|df |p dµ dt
)1/p′

.
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Thus, we obtain

C

∫
M×[0,T ]\Ei

δ

|dfi − df |p dµ dt ≤ I + II′′ + III(3.25)

≤ |I| + |II′′| + |III| .

Choosing δ to be small, using the facts that

df ∈ Lp(0, T ;Lp(M)),

|Ei
δ| → 0 as i → ∞ and (3.24)–(3.25), the assertion follows.

Now, by Lemma 3.5 (and by a standard diagonalizing argument) we may
assume that for a suitable sequence h → 0

df (h) → df strongly in Lq(0, T ;Lq(M)) for all q < p

and hence (since {df (h)}h>0 is bounded in Lp(0, T ;Lp(M)))

|df (h)|p−2df (h) ⇀ |df |p−2 df weakly in Lp′
(0, T ;Lp′

(M)).(3.26)

This allows to pass to the limit in the p-Laplace term of Equation (2.11)′ and we
are left with the problem to do this also on the right-hand side of (2.11)′. Notice,
that in this section we did not yet make use of the fact, that N is a homogeneous
space. But in the following argument this is crucial.

First, notice that in the limit we get (2.9) from (3): In fact, if ϕ is a smooth
test function which vanishes on [0, ε] ×M for some positive ε, we have

∫ ∞

0

∫
M

(|df |p−2〈∂αf,X(f)〉∂αϕ− 〈∂tf,X(f)〉ϕ)dµ dt(3.27)

= lim
h→0

∫ ∞

0

∫
M

(|df (h)|p−2〈∂αf (h), X(f (h))〉∂αϕ

− 〈∂(−h)f (h), X(f (h))〉ϕ) dµ dt = 0

for suitable h → 0. Here we used (3.15), (3.26) and Lemma 3.4. Now we let
h → 0 on the right-hand side of the distributional form of (2.11)′ and obtain
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∫ ∞

0

∫
M

− |df (h)|p−2〈∂αf
(h), Xk(f (h))〉∂αYk(f (h))︸ ︷︷ ︸

= div(|df(h)|p−2〈∇f(h),Xk(f(h))〉Yk(f(h))) −

ϕdµdt

− div(|df(h)|p−2〈∇f(h),Xk(f(h))〉)︸ ︷︷ ︸
= 〈∂(−h)f(h),Xk(f(h))〉

Yk(f(h))

=
∫ ∞

0

∫
M

(
|df (h)|p−2〈∂αf

(h), Xk(f (h))〉Yk(f (h))∂αϕ

− 〈∂(−h)f (h), Xk(f (h))〉Yk(f (h))ϕ
)
dµ dt

→
∫ ∞

0

∫
M

(
|df |p−2〈∂αf,Xk(f)〉Yk(f)∂αϕ− 〈∂tf,Xk(f)〉Yk(f)ϕ

)
dµ dt

=
∫ ∞

0

∫
M

−|df |p−2〈∂αf,Xk(f)〉∂αYk(f)ϕdµdt

where we used (3), (3.27) and Lemma 3.4 again. Thus, we have proved Theo-
rem (1.1).

Remark 3.6. (1) The energy inequality (1.7) follows from (3.14) after
passing to the limit.

(2) Observing that (1.4) is equivalent to the system of equations

div(|df |p−2〈Xi(f),∇f〉) = 〈∂tf,Xi(f)〉 for i = 1, . . . , n,(3.28)

it is possible to shorten the proof of Theorem 1.1 somewhat, since the claim
follows allready from (3.27). However the proof we gave is closer to the
general problem of an arbitrary target manifold N and hence might be
generalized more easily.
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