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Abstract
Given a cubic K . Then for each point P there is a conic CP associated to P . The
conic CP is called the polar conic of K with respect to the pole P . We investigate
the situation when two conics C0 and C1 are polar conics of K with respect to some
poles P0 and P1, respectively. First we show that for any point Q on the line P0P1, the
polar conic CQ of K with respect to Q belongs to the linear pencil of C0 and C1, and
vice versa. Then we show that two given conics C0 and C1 can always be considered
as polar conics of some cubic K with respect to some poles P0 and P1. Moreover, we
show that P1 is determined by P0, but neither the cubic nor the point P0 is determined
by the conics C0 and C1.

Keywords Pencils · Conics · Polars · Polar conics of cubics

Mathematics Subject Classification 51A05 · 51A20

1 Terminology

Wewill work in the real projective planeRP2 = R3\{0}/ ∼, where X ∼ Y ∈ R3\{0}
are equivalent, if X = λY for some λ ∈ R. Points X = (x1, x2, x3)T ∈ R3\{0} will
be denoted by capital letters, the components with the corresponding small letter, and
the equivalence class by [X ]. However, since we mostly work with representatives,
we often omit the square brackets in the notation.

Let f be a non-constant homogeneous polynomial in the variables x1, x2, x3 of
degree n. Then f defines a projective algebraic curve

C f := {[X ] ∈ RP2 | f (X) = 0}
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of degree n. For a point P ∈ RP2,

P f (X) := 〈P,∇ f (X)〉
is also a homogeneous polynomial in the variables x1, x2, x3. If the homogeneous
polynomial f is of degree n, thenCP f is an algebraic curve of degree n−1. The curve
CP f is called the polar curve of C f with respect to the pole P; sometimes we call it
the polar curve of P with respect to C f . In particular, when C f is a cubic curve (i.e.,
f is a homogeneous polynomial of degree 3), then CP f is a conic, which we call the
polar conic of C f with respect to the pole P , and when C f is a conic, then CP f is a
line, which we call the polar line of C f with respect to the pole P (see, for example,
Wieleitner 1939). By construction, the intersections of a curve C f and its polar curve
CP f with respect to a point P give the points of contact of the tangents from P to
C f , as well as points on C f where ∇ f = 0 (see Examples 3 and 4 ). The geometric
interpretation of poles and polar lines (or polar surface in higher dimensions) goes back
to Monge, who introduced them in 1795 (see Monge 1809, § 3). The names pole and
polar curve (or polar surface) were coined by Bobillier (see Bobillier 1827–1828a, b,
c, Bobillier 1828–1829a, b) who also iterated the construction and considered higher
polar curves (polar curves of polar curves). Grassmann then developed the theory of
the poles using cutting methods (see Grassmann 1842a, b, 1843, and Cremona 1866,
p. 61). However, the analytical method generally used today—whichwe follow here—
is due to Joachimsthal (see Joachimsthal 1846, p. 373). Note that CP f is defined and
can be a regular curve even ifC f is singular or reducible.Wewill therefore not impose
any further conditions on f in the following.

A regular, symmetric matrix

A :=
⎛
⎝
a11 a12 a13
a12 a22 a23
a13 a23 a33

⎞
⎠

with eigenvalues of both signs defines a bilinear form R3 × R3 → R, (X ,Y ) �→
〈Y , AX〉. The corresponding quadratic form f (X) = 〈X , AX〉 is homogeneous of
degree 2, and it is convenient to identify the matrix A or its projective equivalence
class with the conic C f . Then, a point [X ] is on the polar line of C f with respect to
the pole [Y ] if and only if 〈Y , AX〉 = 0. It follows immediately that a point [X ] is on
the polar line of C f with respect to [Y ], if and only if [Y ] is on the polar line of C f

with respect to [X ]. Moreover, a line [g] given by the equation 〈g,Y 〉 = 0 is the polar
line of C f with respect to the pole [X ] = [A−1g].

For a conic C0 represented by a matrix A0, the map ϕC0 : RP2 → RP2, [X ] �→
[A0X ], which associates the pole [X ] to its polar line [A0X ], is called a polarity. Vice
versa, for a conic C1 represented by a matrix A1, the map ϕC1 : [Y ] �→ [A−1

1 Y ],
which associates to the polar line [Y ] its pole [A−1

1 Y ], is also called a polarity. The
composition of the two polarities ϕC1C0 : [X ] �→ [A−1

1 A0X ] is a projective map
associated to the pair C0,C1 of conics. More generally, a cubic f defines a polarity
RP2 → RP5 by associating the point P ∈ RP2 to CP f interpreted as an element of
the projective space RP5 of conics in RP2.
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This point of view can be considered as a guiding concept in the following. It may
also open the door to further research questions. For example, one may ask which
projective maps from RP2 to RP5 can be realized in this way.

Let now f be a homogeneous polynomial of degree n > 2, and letCP f be the polar
curve of C f with respect to a point P . Moreover, let CQP f be the polar curve of CP f

with respect to a point Q. Then we have

CQP f = {[X ] | 〈P, H f (X)Q〉 = 0
}
,

where H f := ( ∂ f 2

∂xi ∂x j

)
i j is the Hessian of f . IfCQ f denotes the polar curve ofC f with

respect to Q and CPQ f is the polar curve of CQ f with respect to P , then, obviously,

CPQ f = CQP f . (1)

For two given conics C0 and C1, represented as matrices A0 and A1 as indicated
above, the linear pencil of C0 and C1 is defined as the set of conics represented by the
linear pencil of matrices

Aλ,μ = λA0 + μA1 where λ,μ ∈ R, (λ, μ) 	= (0, 0).

In the next section we will find for a fixed pair of conics C0,C1 points P0, P1 and
a cubic E such that Ci is the polar conic of E with respect to Pi , and each conic in
the linear pencil of C0,C1 is the polar conic of E with respect to a point on the line
through P0 and P1.

2 Conics as polar conics of cubics

We investigate now the situation when two conics CP f and CQ f are polar conics of
some cubic C f with respect to some poles P and Q, respectively. First we show that
for any point R on the line PQ, the polar conic CR f of C f with respect to R belongs
to the linear pencil ofCP f andCQ f , and vice versa (see Fact 1). A necessary condition
for C0 = CP f and C1 = CQ f is, as we have seen in (1), that the polar line of C0 with
respect to Q coincides with the polar line of C1 with respect to P . A general solution
to this problem is given in Proposition 3. Finally, we show how to construct a cubic
C f and two points P and Q, such that C0 and C1 are the polar conics of C f with
respect to P and Q, respectively (see Theorem 5).

Fact 1 Let C f be a cubic, and let P and Q be two distinct points. Furthermore, let
CP f and CQ f be the polar conics of C f with respect to P and Q, respectively. Then
every conic in the linear pencil of CP f and CQ f is the polar conic of C f with a pole
on PQ; and vice versa, for every point R on PQ, the polar conic of C f with respect
to R is a conic in the linear pencil of CP f and CQ f .
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Proof Note that for any R on the line PQ, there exist λ,μ ∈ R such that R =
λP + μQ. Hence, CR f is given by the equation

〈R,∇ f (X)〉 = λ〈P,∇ f (X)〉 + μ〈Q,∇ f (X)〉 = 0,

which shows thatCR f belongs to the linear pencil ofCP f andCQ f . On the other hand,
the conic in the linear pencil of CP f and CQ f with this equation is the polar conic of
C f with respect to the pole R = λP + μQ on the line PQ. 
�

So, in the case when two given conics C0,C1 are polar conics of a cubic C f with
respect to two points P, Q, we can interpret the linear pencil of C0,C1 in a new way:
namely as the polar conics of C f with respect to points on the straight line joining
P, Q.Wewill see in Theorem5, that it is indeed always possible to interpret two conics
C0,C1 as polar conics of a cubic C f with respect to two points P, Q. Therefore, by
Fact 1, we can generalize the notion of the pencil of two conicsC0,C1 in the following
way.

Definition 2 Let C f be a cubic, let P and Q be two distinct points, and let CP f and
CQ f be the polar conics of C f with respect to P and Q, respectively. Furthermore,
let � be a curve which contains P and Q. Then the set of conics

{
CR f : R ∈ �

}

is the �-pencil of CP f and CQ f with respect to C f .

Hence, by Fact 1, if � is the straight line joining P and Q, then the �-pencil
coincides with the linear pencil. However, if � is not a straight line, then the �-pencil
shows, depending on the curve �, a very rich geometry which can be quite different
from that of the linear pencil. Below, two examples of �-pencils are given where � is
not a straight line.

Example 1 Figure 1 shows the �-pencil of the two hyperbolas 3x2 − y2 − 2y + 3 = 0
and 3x2 − y2 + 2y + 3 = 0 with respect to the cubic

x3 + 3x2 − y2 + 1 = 0 ,

where P0 = (0, 1), P1 = (0,−1), and � is the circle x2 + y2 = 1.

Example 2 Figure 2 shows the �-pencil of the two circles x2 + y2 = 1 and x2 − 4x +
y2 = 561

100 with respect to the cubic

461x3

600
+ x2 + y2 + 461xy2

200
− 1

3
= 0 ,

where P0 = (0, 0), P1 = (− 200
561 , 0), and � is the ellipse

314721 x2

10000
+ 561 x

50
+ 314721 y2

6400
= 0 .
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Fig. 1 The �-pencil (thin black
lines) of the black hyperbolas
with respect to the red cubic
curve. � is the blue circle joining
P0 = (0, 1) and P1 = (0, −1)
(color figure online)

Fig. 2 The �-pencil (thin black
lines) of the black circles with
respect to the red cubic curve. �
is the blue ellips joining
P0 = (0, 0) and P1 = (− 200

561 , 0)
(color figure online)
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Remark 1 There is also another type of pencils of conics, called exponential pen-
cils (introduced and investigated in Halbeisen and Hungerbühler 2018). It would be
interesting to study the relation between �-pencils and exponential pencils.

The next result shows how we can find points P and Q on a given line g, such that
for given conics C0 and C1, the polar line of P with respect to C1 is the same as the
polar line of Q with respect to C0.

Proposition 3 Given two conics C0 and C1 and a line g. Then we are in one of the
following cases:

(a) There is exactly one pair of points P0 and P1 on g, such that the polar line of P0
with respect to C0 is the same as the polar line of P1 with respect to C1.

(b) For any P0 ∈ g, there exists a unique P1 on g such that the polar lines of C0 with
respect to P0 and of C1 with respect to P1 coincide.

In both cases, P1 = ϕC1C0(P0) is the image of P0 under the composition of the
polarities associated to C0 and C1.

Proof Let A0 and A1 be the matrices corresponding to the conics C0 and C1. Let P0
be a point on the given line g, i.e., 〈P0, g〉 = 0. The polar line of C0 with respect to
P0 is given by 〈X , A0P0〉 = 0. The pole of this line with respect to C1 is A−1

1 A0P0.
We consider the projective map ϕC1C0 : P0 �→ A−1

1 A0P0 which is the composition
of the two polarities induced by the conics C0 and C1. The image of g under ϕC1C0 is
the line 〈X , A1A

−1
0 g〉 = 0.

Suppose first that g is not an eigenvector of A1A
−1
0 . We want to show that points

P0 and P1 exist on g such that P1 = ϕC1C0 P0. Necessarily, P1 is the intersection of g
and ϕC1C0(g), i.e., P1 = g× A1A

−1
0 g 	= 0, and then P0 = A−1

0 A1P1 = g× A0A
−1
1 g.

The second case occurs if g is an eigenvector of A1A
−1
0 , i.e., if the poles of g with

respect to C0 and C1 coincide: Then, g and ϕC1C0(g) coincide. Hence one can choose
any point P0 on g, and P1 = A−1

1 A0P0 is the corresponding point on g such that the
polar lines of C0 with respect to P0 and of C1 with respect P1 agree. 
�
Remark 2 In the previous proposition we could also fix the line g together with a
projective map ψ : RP2 → RP2 and ask the following question: Are there two
conics C0,C1 and two points P0, P1 ∈ g with P1 = ψ(P0) such that the polar lines of
Pi with respect to Ci coincide? This is indeed the case, since every projective map ψ

can bewritten as the composition of two polarities (see, e.g. Dolgachev 2012, Theorem
1.1.9).

To motivate the main result of this section (which is Theorem 5), let us consider the
following problem: take two lines g0, g1 and two points P0, P1 in the projective plane.
Is there a conic C such that gi is the polar line of Pi with respect to C? Recall that by
von Staudt’s Theorem any pair of Desargues triangles are polar triangles in a certain
polarity (see, e.g. Coxeter 1993, Section 5.7). Hence, there must be many solutions in
case of only two prescribed points and two prescribed lines. The interesting feature
is, that these solutions form a pencil:
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Proposition 4 Let P0, P1 be two different points and g0, g1 two different lines inRP2,
both points not incident with the lines. Then there is a linear pencil of real symmetric
3 × 3 matrices A0 + λA1, λ ∈ R, such that the corresponding conics Cλ and only
those, have the property that gi is the polar line of Pi with respect to Cλ. Moreover,
if P is a point on the line through P0, P1, then there is a line g in the linear pencil of
g0, g1, such that for all λ, the polar line of P with respect to Cλ is g.

Proof By a suitable projective map we may assume without loss of generality that
P0 = (1, 0, 0)T and P1 = (0, 0, 1)T . Then, g0 = (g01, g02, 1)T and g01 	= 0 since
P0 is not incident with g0 and g1, and g1 = (1, g12, g13)T and g13 	= 0 since P1 is
not incident with g0 and g1. The matrix A of a conic C with the property that gi is the
polar line of Pi with respect to C must then satisfy AP0 = g0 and AP1 = μg1 for
some μ 	= 0. Hence

Aλ =
⎛
⎝
g01 g02 1
g02 0 g12
1 g12 g13

⎞
⎠ + λ

⎛
⎝
0 0 0
0 1 0
0 0 0

⎞
⎠ .

det(Aλ) cannot vanish identically in λ since g0 and g1 are not the same line, therefore
det(Aλ) = 0 for at most one value λ = λ0.With the criterion of Hurwitz it follows that
Aλ has eigenvalues of both signs for g01λ < g202 and is regular for λ 	= λ0. Hence Aλ

corresponds to a real, nondegenerate conicCλ. The fact that the polar line of a point P
on P0P1 with respect to Cλ is independent of λ follows now by a simple calculation.


�
It is now natural to ask whether two conics can always be considered as polar conics
of a cubic with respect to two poles, and if so, to what extent the cubic and the poles
are determined by the conics. The following theorem gives a complete answer to these
questions.

Theorem 5 Let C0 and C1 be any two different conics given by matrices A0 and
A1, respectively. Then there are infinitely many pairs of points P0, P1, where P1 =
ϕC1C0(P0) is the image of P0 under the composition of the polarities associated to
C0,C1, and there is a linear pencil of cubics given by Fλ(x, y, z) = f1(x, y, z) +
λ f2(x, y, z), λ ∈ R, such that Ci are the polar conics of CFλ with respect to Pi .

Proof Given two conics C0 and C1. We have to find a cubic CF and two points P0
and P1, such that C0 and C1 are the polar conics of CF with respect to P0 and P1,
respectively. It is convenient to consider the embedding of the affine planeR2 inRP2

given by

(
x1
x2

)
�→

⎡
⎣

⎛
⎝
x1
x2
1

⎞
⎠

⎤
⎦ .

Depending on the position of C0 and C1 we may apply a suitable projective transfor-
mation, such that a standard situation results (see Halbeisen and Hungerbühler 2017):

Case A: Suppose that C0 and C1 have one of the following properties:
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• four intersections
• no common point or two intersections
• two intersections and one first order contact
• one first order contact
• two first order contacts
• one third order contact

In these cases, we may assume that C0 is the unit circle given by the matrix

A0 =
⎛
⎝
1 0 0
0 1 0
0 0 −1

⎞
⎠

and that C1 is given by

A1 =
⎛
⎝
1 0 α

0 β 0
α 0 γ

⎞
⎠ .

Aswe have seen in the introduction, the polar line ofC0 with respect to P1 and the polar
line of C1 with respect to P0 must agree. Hence [A0 P1] = [A1 P0], or equivalently
[P1] = [A−1

0 A1 P0]. Let us first consider the case where P0 is on the symmetry axis
ofC0 andC1, i.e., P0 = (x0, 0, 1). In this case we obtain P1 = (x0+α, 0,−x0α−γ ).

It is from now on a bit more convenient to write x, y, z instead of x1, x2, x3. The
cubic curve CF we are looking for is given by a homogeneous polynomial F of
degree 3:

F(x, y, z) = a1 x
3 + a2 y

3 + a3 z
3 + a4 x

2y + a5 x
2z

+a6 xy
2 + a7 y

2z + a8 xz
2 + a9 yz

2 + a10 xyz. (2)

We need that CP0F = A0 and CP1F = A1, where P0F(X) = 〈P0,∇F(X)〉, and
P1F(X) = 〈P1,∇F(X)〉. The quadratic forms of P0F(X) and P1F(X) are given by

⎛
⎝
3a1x0 + a5 a4x0 + a10

2 a5x0 + a8
a4x0 + a10

2 a6x0 + a7 a9 + a10x0
2

a5x0 + a8 a9 + a10x0
2 3a3 + a8x0

⎞
⎠

and
⎛
⎝

3a1 p + a5q a4 p + 1
2a10q a5 p + a8q

a4 p + 1
2a10q a6 p + a7q a9q + 1

2a10 p
a5 p + a8q a9q + 1

2a10 p 3a3q + a8 p

⎞
⎠

where p := x0 + α and q := −αx0 − γ . The first of these two matrices has to be a
multiple of A0, the second a multiple of A1. If we solve the resulting linear system of
equations, we find: If α(1 + x20 ) + x0(1 + γ ) 	= 0 then

F(x, y, z) = f1(x, y, z) + λ f2(x, y, z)
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is the linear pencil spanned by

f1(x, y, z) = (1 + x0α + γ )x3 − (α + x0(1 + γ ))z3 + 3αx2z +
+3(β + γ + x0α)xy2 + 3(x0 + α − x0β)y2z − 3x0αxz

2

f2(x, y, z) = y3.

Observe, that if α(1+ x20 )+ x0(1+γ ) = 0 then the Hessian of F vanishes identically,
and hence, the cubic curveCF is reducible, which is precisely the case when P0 = P1.

Now we consider a general point P0 = (x0, y0, 1) with y0 	= 0. In this case, we
obtain P1 = (x0 + α, y0β,−x0α − γ ). The matrix of the quadratic form P0F(X) is
given by

⎛
⎝

3a1x0 + a4y0 + a5 a4x0 + a6y0 + 1
2a10 a5x0 + a8 + 1

2a10y0
a4x0 + a6y0 + 1

2a10 3a2y0 + a6x0 + a7 a7y0 + a9 + 1
2a10x0

a5x0 + a8 + 1
2a10y0 a7y0 + a9 + 1

2a10x0 3a3 + a8x0 + a9y0

⎞
⎠

and the matrix for P1F(X) can now be written as

⎛
⎝

3a1 p + a4r + a5q a4 p + a6r + 1
2a10q a5 p + a8q + 1

2a10r
a4 p + a6r + 1

2a10q 3a2r + a6 p + a7q a7r + a9q + 1
2a10 p

a5 p + a8q + 1
2a10r a7r + a9q + 1

2a10 p 3a3q + a8 p + a9r

⎞
⎠

with p := x0+α,q := −x0α−γ , as above, and r := y0β. Ifα(1+x20 )+x0(1+γ ) 	= 0,
we find the following solution of the resulting linear system:

F(x, y, z) = f1(x, y, z) + λ f2(x, y, z)

where

f1(x, y, z) = (1 + αx0 + γ )x3 + 1
y0

(α(1 + x20 ) + x0(1 + γ ))y3

− (x0(1 + γ ) + α)z3 + 3αx2z − 3αx0xz
2

f2(x, y, z) =
(
x0y0(αx + (1 − β)z) + y0(β + γ )x − (α(1 + x20 ) + (γ + 1)x0)y

+ αy0z
)3

.

Case B:Suppose thatC0 andC1 have one second order contact and one intersection.
In this case we may assume that C0 is again the unit circle, given by the matrix A0
above, and that C1 is given by the matrix

A1 =
⎛
⎝

1 −ν 0
−ν 1 ν

0 ν −1

⎞
⎠
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with ν 	= 0 (see Halbeisen and Hungerbühler 2017). Let P0 = (x0, y0, 1). Then we
get this time P1 = A−1

0 A1P0 = (x0 − y0ν, y0 + ν(1 − x0), 1 − y0ν). We make the
same general Ansatz for F as above in (2). Then, the quadratic forms P0F(X) and
P1F(X) are

⎛
⎝
3a1x0 + a4y0 + a5 a4x0 + a6y0 + a10

2 a5x0 + a8 + a10
2 y0

a4x0 + a6y0 + a10
2 3a2y0 + a6x0 + a7 a7y0 + a9 + a10

2 x0
a5x0 + a8 + a10

2 y0 a7y0 + a9 + a10
2 x0 3a3 + a8x0 + a9y0

⎞
⎠

and

⎛
⎝

3a1 p + a4r + a5q a4 p + a6r + 1
2a10q a5 p + a8q + 1

2a10r
a4 p + a6r + 1

2a10q 3a2r + a6 p + a7q a7r + a9q + 1
2a10 p

a5 p + a8q + 1
2a10r a7r + a9q + 1

2a10 p 3a3q + a8 p + a9r

⎞
⎠

where p = x0 − y0ν, q = 1 − y0ν, and r = y0 + ν(1 − x0). The first of these two
matrices has to be a multiple of A0, the second a multiple of A1. Solving the linear
system of equations yields the following:

If y0 = 0 and x0 	= 1, then the cubic function F is the linear pencil F(x, y, z) =
f1(x, y, z) + λ f2(x, y, z), spanned by

f1(x, y, z) = (x0 − 1)x2z − y2z + xy2 − (x0 − 1)x0xz
2 + 1

3 (x0 − 1)2(x0 + 1)z3

f2(x, y, z) = (x − x0z)
3.

If y0 	= 0 and x0 = 1, then F(x, y, z) = f1(x, y, z) + λ f2(x, y, z), with

f1(x, y, z) = y(y0x
2 − xy + 1

3 y0y
2 + yz − y0z

2)

f2(x, y, z) = (x − z)3.

If y0 	= 0 and x0 = 1 + y20 , then F(x, y, z) = f1(x, y, z) + λ f2(x, y, z), with

f1(x, y, z) = (x − z)(y0x
2 − 3xy + 3y0y

2 + 3yz + y0xz − 2y0z
2)

f2(x, y, z) = (y − y0z)
3.

Finally, if y0 	= 0 and x0 	= 1 and x0 	= 1 + y20 , then F(x, y, z) = f1(x, y, z) +
λ f2(x, y, z), with

f1(x, y, z) = u(1 + x0(y
2
0 − 1))x3 + v2y30 y

3 +
+(v(3x20 − x0 − v)y20 − v2x30 − x0y

4
0 )z

3

−3uvy0x
2y − 3x0u

2x2z − 3v3y20 y
2z + 3x0u(y20 − vx0)z

2x

+3vy0(x
2
0v − y20 (v + x0))z

2y + 6uvx0y0xyz

f2(x, y, z) = (ux − y0vy − wz)3

where u = 1 − x0 + y20 , v = x0 − 1, and w = x0(1 − x0) + y20 . 
�
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It is remarkable that in Case B, the pencil of cubics does not depend on ν.
Observe, that the situation in Proposition 4 and in Theorem 5 is somewhat different

in that the point P1 cannot be chosen independently of P0 in Theorem 5. However, we
have the following common feature:

Proposition 6 For each point P on the line through P0 and P1 in Theorem 5, the polar
conic of P with respect to the pencil CFλ does not depend on λ.

Proof For P0, P1 we have that the polar conic 〈Pi ,∇Fλ(X)〉 = 0 is independent of λ.
This equation written out in full is

〈Pi ,∇ f1(X)〉 + λ〈Pi ,∇ f2(X)〉 = 0.

Direct inspection of all cases in the proof of Theorem 5 shows that 〈Pi ,∇ f2(X)〉
vanishes identically in X , and the claim follows. 
�
Remark 3 In order to obtain a cubic with respect to two given conics and a pole, we
had to solve an over-constrained system of linear equations. Thus, it is somewhat
surprising that this system is not just solvable, but has infinitely many solutions, and
that the solutions lead to a linear pencil of cubics with only “few” singular or reducible
cubics (see also Examples 3 and 4 ).

We conclude this paper by providing two linear pencils of cubics which belong to
two given conics C0 and C1 and a point P0 (see Theorem 5).

Example 3 Figure 3 shows the linear pencil of cubics which belong to the conics

C0 : x2 + y2 = 1 and C1 : x2 + 4x + 5y2 + 2 = 0

and the points P0 = (0, 0), P1 = (−1, 0): tangents to the red cubics in points of C0
meet in P0, and tangents to the red cubics in points ofC1 meet in P1.At the intersections
ofC0 andC1 the gradient of the corresponding cubic vanishes. This examples belongs
to Case A in the proof of Theorem 5 since C0 and C1 have two intersections.

Example 4 Figure 4 shows the linear pencil of cubics which belong to the conics

C0 : x2 + y2 = 1 and C1 : x2 − 4xy + 4y + y2 = 1

and the points P0 = (1,−2), P1 = (1,− 2
5 ): tangents to the red cubics in points of

C0 meet in P0, and tangents to the red cubics in points of C1 meet in P1. At the
intersections of C0 and C1 the gradient of the corresponding cubic vanishes. This
examples belongs to Case B in the proof of Theorem 5 since C0 and C1 have one
second order contact and one intersection.

Acknowledgements We would like to thank the referee for his or her comments and suggestions, which
helped to improve the quality of the article.
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Fig. 3 The linear pencil of cubics (thin red lines) which belongs to the two conics (thick black lines), and
the points P0 = (0, 0), P1 = (−1, 0) (small black circles). In this example, all members of the linear pencil
given by Theorem 5 are irreducible cubic curves, and only two curves of the pencil have a singular point,
namely a double point at the intersections of C0 and C1 (color figure online)

Fig. 4 The linear pencil of cubics (thin red lines) which belongs to the two conics (thick black lines), and
the points P0 = (1, −2), P1 = (1, − 2

5 ) (small black circles). In this example, all cubics in the pencil have
a singular point in (1, 0). One cubic of the pencil is reducible and decomposes into the line and an ellipse
trough the two intersections of C0 and C1 (color figure online)

123



Beitr Algebra Geom (2020) 61:681–693 693

References

Bobillier, É.: Géométrie de situation. Démonstration de quelques théorèmes sur les lignes et surfaces
algébriques de tous les ordres. Annales demathématiques pures et appliquées 18, 89–98 (1827–1828a)

Bobillier, É.: Géométrie de situation. Recherche sur les lois générales qui régissent les lignes et surfaces
algébriques. Annales de mathématiques pures et appliquées 18, 253–269 (1827–1828b)

Bobillier, É.: Géométrie de situation. Recherches sur les lignes et surfaces algébriques de tous les ordres.
Annales de mathématiques pures et appliquées 18, 157–166 (1827–1828c)

Bobillier, É.: Géométrie de situation. Recherches sur les lois générales qui régissent les courbes algébriques.
Annales de mathématiques pures et appliquées 19, 106–114 (1828–1829a)

Bobillier, É.: Géométrie de situation. Théorèmes sur les polaires successives. Annales de mathématiques
pures et appliquées 19, 302–307 (1828–1829b)

Coxeter, H.S.M.: The real projective plane, 3rd edn. Springer, New York (1993). (With an appendix by
George Beck)

Cremona, L.: Preliminari di una teoria geometrica delle superficie. Tipi Gamberini e Parmeggiani (1866)
Dolgachev, I.V.: Classical Algebraic Geometry. A Modern View. Cambridge University Press, Cambridge

(2012)
Grassmann, H.: Theorie der Centralen. J. Reine Angew. Math. 24, 262–282 (1842a)
Grassmann, H.: Theorie der Centralen. J. Reine Angew. Math. 24, 372–380 (1842b)
Grassmann, H.: Theorie der Centralen. J. Reine Angew. Math. 25, 57–73 (1843)
Halbeisen, L., Hungerbühler, N.: The exponential pencil of conics. Beitr. Algebra Geom. 59(3), 549–571

(2018)
Halbeisen, L., Hungerbühler, N.: Closed chains of conics carrying poncelet triangles. Contrib. Algebra

Geom. (Beiträge zur Algebra und Geometrie) 58, 277–302 (2017)
Joachimsthal, F.: Remarques sur la condition de l’egalité de deux racines d’une équation algébrique; et sur

quelques théorèmes de Géometrie, qui en suivent. J. Reine Angew. Math. 33, 371–376 (1846)
Monge, G.: Application de l’analyse à la géométrie. Mad. Ve. Bernard, Libraire de l’Ecole Impériale

Polytechnique, quatrième edition, Paris (1809)
Wieleitner, H.: Algebraische Kurven. II. Allgemeine Eigenschaften. Sammlung Göschen Band 436

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Generalized pencils of conics derived from cubics
	Abstract
	1 Terminology
	2 Conics as polar conics of cubics
	Acknowledgements
	References




