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Abstract: In the Euclidean plane, two circles that intersect or are tangent clearly do not carry a finite Steiner
chain of circles. We show that such exotic Steiner chains exist in finite MiquelianMöbius planes of odd order.
We obtain explicit conditions in terms of the order of the plane and the capacitance of the two carrier circles
for the existence, length, and number of Steiner chains.
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1 Introduction
When Jakob Steiner was still a pupil in Yverdon’s Pestalozzi school, he found his famous theorem in circle
geometry (fromhis notes during his first month in Yverdon: “Found on Saturday Dec. 10th, 1814, after 3+3+4
hours of efforts, at 1 o’clock in the night”):

Theorem (Steiner’s porism). Let C1, C2 be two disjointMöbius circles (circles or straight lines) in the Euclidean
plane. Consider a sequence of different Möbius circles M1,M2, . . . ,Mk which are tangent to both C1 and C2,
and let Mi and Mi+1 be tangent for i = 1, . . . , k − 1. Then the following is true: If M1 and Mk are tangent, then
there are infinitely many such chains: Every point of C1 and C2 belongs to a circle of such a chain. And every
chain of consecutive tangent circles closes after exactly k steps.
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Figure 1: Left: Steiner chain wrapping around twice. Middle and right: carrier circles which are
not nested.

of one of its circles. If q ≡ 1 mod 4 and if the given pair of disjoint circles admits a common
tangent circle, then there exists either no Steiner chain, or precisely two of them, each with a circle
containing P . The full statement is the following theorem (see Section 2 for definitions):

Theorem (Theorem 5.5 in [5]). Let C1 and C2 be disjoint circles in the Miquelian Möbius plane
M(q), c := cap(C1, C2) their capacitance, and P an arbitrary point on C1 or C2. Then b :=
1
2 (c − 2 +

√
c(c− 4)) ∈ GF (q) \ {0}. If b is a nonsquare in GF (q), then C1 and C2 have no

common tangent circles and hence they do not carry a Steiner chain. If, on the other hand,
b = µ2, for µ = µ1 and µ = µ2 = −µ1 6= µ1 ∈ GF (q), then for each j ∈ {1, 2} satisfying the
following conditions there is a separate Steiner chain of length k ≥ 3 carried by C1 and C2 such
that P belongs to one of its circles:

(i) −µj is a nonsquare in GF (q),

(ii) µj solves ξk = 1 for ξ given by

ξ =
−µ2

j + 6µj − 1 + 4(µj − 1)
√−µj

(1 + µj)2
(1)

but ξl 6= 1 for all 1 ≤ l ≤ k − 1.

Now, in the Euclidean plane finite Steiner chains cannot exist if C1 and C2 intersect or are tangent
to each other. In the latter case, the situation corresponds to a Pappus chain (see Figure 2). On
the other hand, in a finite Möbius plane there are only finitely many circles, and therefore it is
conceivable that a Pappus chain closes after finitely many steps. It is the aim of this paper to
investigate the corresponding questions: Do Steiner chains exist if the carrier circles intersect or
are tangent to each other? The easier case, when the carrier circles are tangent, will be treated
in Section 3. The more delicate case of intersecting carrier circles is discussed in Section 4. Since
these chains do not exist in the classical Möbius plane, we call them exotic Steiner chains.

2 Preliminaries

A Möbius plane is a triple (P,B, I) of points P, circles B and an incidence relation I, satisfying
three axioms:

(M1) For any three elements P,Q,R ∈ P, P 6= Q, P 6= R and Q 6= R, there exists a unique element
C ∈ B with P ∈ C, Q ∈ C and R ∈ C.

(M2) For any C ∈ B, P,Q ∈ P with P ∈ C and Q /∈ C, there exists a unique element D ∈ B such
that P ∈ D and Q ∈ D, but for all R ∈ P with R ∈ C,P 6= R, we have R /∈ D.

2

Figure 1: Left: Steiner chain wrapping around twice. Middle and right: carrier circles which are not nested.

Later Steiner investigated the geometric properties of such chains. For example, he proved that the tangent
points of the circlesM1, . . . ,Mk lie on a circle and that their centers lie on a conic whose foci are the centers
of the carrier circles C1 and C2. He also stated conditions for such a chain to close after k steps in terms of
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Figure 2: Pappus chain (left), degenerate Steiner chain (right)

(M3) There are four elements P1, P2, P3, P4 ∈ P such that for all C ∈ B, we have Pi /∈ C for at
least one i ∈ {1, 2, 3, 4}. Moreover, for all C ∈ B there exists a P ∈ P with P ∈ C.

A Steiner chain in a Möbius plane is defined as follows:

Definition 1. Given two circles C1, C2, we say that they carry a (proper) Steiner chain of length
k ≥ 3, if there exists a sequence (chain) of distinct circles M1, . . . ,Mk such that

(i) each circle Mi is tangent to the next one Mi+1, where indices are taken cyclically,

(ii) each circle in the chain is tangent to C1 and C2, and

(iii) no point is contact point of more than two tangent circles.

The condition (iii) excludes degenerate Steiner chains as the one in Figure 2.

To fix notation and to make this presentation selfcontained, we briefly describe the construction of
a finite Miquel plane over the Galois field GF (q) and its quadratic extension GF (q)(α) ∼= GF (q2),
where α is a nonsquare in GF (q). Recall that the conjugation

GF (q2) → GF (q2), z 7→ z := zq

is an automorphism of GF (q2), whose fixed point set is GF (q) (see, e.g. [6, Theorem 2.21]). We
also define the norm and the trace in the usual way

N : GF (q2) → GF (q), z 7→ zz

Tr : GF (q2) → GF (q), z 7→ z + z.

The finite Miquelian Möbius plane constructed over the pair GF (q) and GF (q2) will be denoted
by M(q), and q is called the order of M(q): The q2 + 1 points of M(q) are the elements of GF (q2)
together with a point at infinity, denoted by ∞. There are two different types of circles: Circles of
the first type, are solutions of the equation N(z − c) = r, i.e.

B1
(c,r) : (z − c)(z − c) = r (2)

for c ∈ GF (q2) and r ∈ GF (q)\{0}. It is easy to see that there are q+1 points in GF (q2) on every
such circle, and that there are q2(q − 1) circles of the first type.

Circles of the second type are solutions of the equation Tr(cz) = r, i.e.

B2
(c,r) : cz + cz = r (3)
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the radii and the distance between the centers of C1 and C2. The interested reader will findmore information
about the classical theory of Steiner chains and generalizations in [2], [7], [3], [9], or [1].

Throughout this paper, p denotes an odd prime number, m ≥ 1 a natural number, and q = pm. It is
known that a version of Steiner’s porism holds in a finite Miquelian Möbius plane𝕄(q). However, unlike in
the Euclidean plane, a pair of circles in such a finite plane may or may not have a common tangent circle.
If we fix a pair C1, C2 of disjoint circles and choose a point P on one of them, then the following is true:
if q ≡ −1 mod 4 and the given pair C1, C2 admits a common tangent circle, then the pair carries precisely
one Steiner chain such that P is a point of one of its circles. If q ≡ 1 mod 4 and if the pair C1, C2 admits a
common tangent circle, then there exists either no Steiner chain, or precisely two of them, each with a circle
containing P. The full statement is the following theorem (see Section 2 for definitions):

Theorem (Theorem 5.5 in [5]). Let C1 and C2 be disjoint circles in the Miquelian Möbius plane 𝕄(q), c :=
cap(C1, C2) their capacitance, and P an arbitrary point on C1 or C2. Then b := 1

2 (c−2+√c(c − 4)) ∈ GF(q)\{0}.
If b is a nonsquare in GF(q), then C1 and C2 have no common tangent circles and hence they do not carry a
Steiner chain. If, on the other hand, b = μ2, for μ = μ1 and μ = μ2 = −μ1 ̸= μ1 ∈ GF(q), then for each j ∈ {1, 2}
satisfying the following conditions there is a separate Steiner chain of length k ≥ 3 carried by C1 and C2 such
that P belongs to one of its circles:

(1) −μj is a nonsquare in GF(q),
(2) ξ := (−μ2j +6μj −1+4(μj −1)√−μj)(1+ μj)

−2 is a root of unity of order k, i.e. ξ k = 1 ̸= ξ l for 1 ≤ l ≤ k −1.

In the Euclidean plane, finite Steiner chains do not exist if C1 and C2 intersect or are tangent; the latter
case corresponds to a Pappus chain (see Figure 2). A finite Möbius plane has only finitely many circles, thus
it is conceivable that a Pappus chain closes after finitely many steps. We investigate the questions whether
Steiner chains exist if the carrier circles intersect or are tangent to each other. The easier case,when the carrier
circles are tangent, is treated in Section 3. The more delicate case of intersecting carrier circles is discussed
in Section 4. Since these chains do not exist in the classical Möbius plane, we call them exotic Steiner chains.

2 Preliminaries
AMöbius plane is a triple (ℙ,𝔹, 𝕀) of pointsℙ, circles𝔹 and an incidence relation 𝕀, satisfying three axioms:

(M1) For any three elements P, Q, R ∈ ℙ, P ̸= Q, P ̸= R and Q ̸= R, there exists a unique element C ∈ 𝔹 with
P ∈ C, Q ∈ C and R ∈ C.

(M2) For any C ∈ 𝔹, P, Q ∈ ℙwith P ∈ C and Q ∉ C, there exists a unique element D ∈ 𝔹 such that P ∈ D and
Q ∈ D, but for all R ∈ ℙ with R ∈ C, P ̸= R, we have R ∉ D.
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(M3) There are four elements P1, P2, P3, P4 ∈ ℙ such that for all C ∈ 𝔹, we have Pi ∉ C for at least one
i ∈ {1, 2, 3, 4}. Moreover, for all C ∈ 𝔹 there exists a P ∈ ℙ with P ∈ C.

A Steiner chain in a Möbius plane is defined as follows:

Definition 1. Given two circles C1, C2, we say that they carry a (proper) Steiner chain of length k ≥ 3, if there
exists a sequence (chain) of distinct circles M1, . . . ,Mk such that

(i) each circle Mi is tangent to the next one Mi+1, where indices are taken cyclically,
(ii) each circle in the chain is tangent to C1 and C2, and
(iii) no point is contact point of more than two tangent circles.

Condition (iii) excludes degenerate Steiner chains as the one in Figure 2.
To fix notation and to make this presentation selfcontained, we briefly describe the construction of a

finite Miquel plane over the Galois field GF(q) and its quadratic extension GF(q)(α) ≅ GF(q2), where α is a
nonsquare in GF(q). The conjugation GF(q2) → GF(q2) : z 󳨃→ z := zq is an automorphism of GF(q2), whose
fixed point set is GF(q); see e.g. [6, Theorem 2.21]. The norm and the trace are defined by

N : GF(q2) → GF(q) : z 󳨃→ zz and Tr : GF(q2) → GF(q) : z 󳨃→ z + z.

The finite Miquelian Möbius plane constructed over the pair GF(q) and GF(q2) is denoted by𝕄(q), and q is
called the order of𝕄(q): The q2+1 points of𝕄(q) are the elements of GF(q2) together with a point at infinity,
denoted by∞. There are two different types of circles: Circles of the first type are solutions of the equation
N(z − c) = r, i.e.

B1(c,r) : (z − c)(z − c) = r (1)

for c ∈ GF(q2) and r ∈ GF(q)\{0}. There are q+1 points in GF(q2) on every such circle, and there are q2(q−1)
circles of the first type. Circles of the second type are solutions of the equation Tr(cz) = r, i.e.

B2(c,r) : cz + cz = r (2)

for c ∈ GF(q2)\{0} and r ∈ GF(q), together with∞. Hence, there are q(q + 1) circles of the second type, each
containing also q + 1 points.

Let a, b, c, d ∈ GF(q2) such that ad − bc ̸= 0. The bijective map Φ :𝕄(q) → 𝕄(q) defined by

Φ(z) = az + bcz + d if z ̸= ∞ and cz + d ̸= 0,

Φ(z) = ∞ if z ̸= ∞ and cz + d = 0, Φ(∞) = ac−1 if c ̸= 0 and Φ(∞) = ∞ if c = 0 is called a Möbius
transformation of𝕄(q). Every Möbius transformation is an automorphism of𝕄(q): It maps circles to circles
and preserves incidence. The Möbius transformations operate sharply triply transitive, i.e. there is a unique
Möbius transformation mapping any three points into any other three points. For more information on finite
Möbius planes see [4].

The following lemma,which is proved by an elementary computation, gives the conditions for themutual
position of two circles.

Lemma 2. (i) Let B1(c1 ,r1) and B
1
(c2 ,r2) be two distinct circles of the first type, and D := (cc+ r1 − r2)2 −4ccr1

for c = c2 − c1. Then:
∙ If D ̸= 0 is a square in GF(q), the circles are disjoint.
∙ If D = 0, the circles touch at z0 = cc+r1−r2

2c + c1 =
1
2 (c2 + c1 −

r2−r1
c2−c1
).

∙ If D is a nonsquare in GF(q), the circles intersect at z1,2 = (cc+r1−r2)±
√D

2c + c1.
(ii) Let B1(c1 ,r1) and B

2
(c2 ,r2) be a circle of the first type and of the second type, respectively, and let

D := r2 − 4c2c2r1 for r = r2 − c1c2 − c1c2. Then:
∙ If D ̸= 0 is a square in GF(q), the circles are disjoint.
∙ If D = 0, the circles touch at z0 = r

2c2
+ c1 = r2+c1c2−c1c2

2c2
.

∙ If D is a nonsquare in GF(q), the circles intersect at z1,2 = r±√D
2c2
+ c1.
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(iii) Let B2(c1 ,r1) and B
2
(c2 ,r2) be two distinct circles of the second type. Then:

∙ If c1c2 − c1c2 = 0, the circles touch at∞.
∙ If c1c2 − c1c2 ̸= 0, the circles intersect at∞ and z0 = c1r2−c2r1

c1c2−c1c2
.

Below we use Möbius transformations to bring two general carrier circles to a standard position. In or-
der to formulate conditions on the existence of Steiner chains for intersecting carrier circles in an arbitrary
position we need the capacitance, which was introduced in [5]:

Definition 3. The capacitance assigns an element of GF(q) to any pair of circles in𝕄(q). It is defined as

cap(B1(c1 ,r1), B
1
(c2 ,r2)) :=

1
r1r2
(r1 + r2 − (c1 − c2)(c1 − c2))2,

cap(B1(c1 ,r1), B
2
(c2 ,r2)) := cap(B

2
(c2 ,r2), B

1
(c1 ,r1)) :=

1
r1c2c2
(c1c2 + c1c2 − r2)2, and

cap(B2(c1 ,r1), B
2
(c2 ,r2 )) :=

1
c1c1c2c2

(c1c2 + c1c2)2.

The remarkable property of the capacitance is its invariance under Möbius transformations:

Theorem 4 (Theorem 5.1 in [5]). If B, B󸀠 ∈ 𝕄(q)are circles andΦ is aMöbius transformation, then cap(B, B󸀠) =
cap(Φ(B),Φ(B󸀠)).

3 Exotic Steiner chains in tangent carrier circles

3.1 The standard case

Let us start with the two circles B−1 := B2(1,−1) and B1 := B
2
(1,1) in𝕄(q) with equations

B−1 : z + z = −1 and B1 : z + z = 1.

These circles of the second type are different as p is odd, and since both equations cannot be satisfied at the
same time, the circles are tangent at∞. Let τ(B−1, B1) be the set of all common tangent circles of B−1 and B1
of the first type. Observe that circles of the second type cannot belong to a proper Steiner chain carried by B−1
and B1, because∞ is already used as the contact point of the carrier circles B−1 and B1 (see Definition 1(iii)).

According to Lemma 2, B1(c,r) is in τ(B−1, B1) if and only if (c + c + 1)2 = 4r and (c + c − 1)2 = 4r. This
implies c + c = 0 and 4r = 1. The condition for c is the equation of a circle of the second type, so there are q
circles of the first type in τ(B−1, B1). Hence we have the following:

Lemma 5. There are q circles of the first type tangent to both B−1 and B1. They are given by B1(c,r) with c ∈ B0 :=
B2(1,0) and r =

1
4 .

Aswe are trying to construct a chain of circles, we pick B1(0, 14 )
∈ τ(B−1, B1) as our starting circle. Lemma 6

tells us under what circumstances such a chain may possibly exist.

Lemma 6. If −1 is a nonsquare in GF(q), then there are exactly two circles B1(c,r) ∈ τ(B−1, B1) tangent to B
1
(0, 14 )

.

They are given by c = ±√−1 and r = 1
4 . If −1 is a square in GF(q), then there are no common tangent circles of

B−1, B1 and B1(0, 14 )
.

Proof. Let B1(c,r) be in τ(B−1, B1), i.e. c + c = 0 and r = 1
4 . For B

1
(c,r) to be tangent to B

1
(0, 14 )

as well, it has to
satisfy the condition from Lemma 2(i), i.e. c2(c2 + 1) = 0 since c = −c. As c ̸= 0 (otherwise B1(c,r) coincides
with B1(0, 14 )

), it follows that c2 = −1 and thus c = ±√−1. Moreover, the relation c = −c makes it clear that
c ∉ GF(q). Consequently, there only exists a solution if −1 is a nonsquare in GF(q). 2

Assume now that −1 is a nonsquare in GF(q). As we have seen, in this case the two circles B1(0, 14 )
and

B1
(√−1, 14 )

are in τ(B−1, B1) and are tangent. We apply the Möbius transformation T : z 󳨃→ z + √−1: Indeed,
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T leaves B−1 and B1 invariant, B1(0, 14 )
is mapped to B1

(√−1, 14 )
, while B1

(√−1, 14 )
is mapped to B1

(2√−1, 14 )
. By the

properties of Möbius transformations, both circles are still tangent to each other, as well as tangent to B−1
and B1. This induces a Steiner chain: By applying the above translation k times, we get the k-th circle in the
chain, and for k = p we are back to our starting circle:

B1(0, 14 ) → B1(√−1, 14 )
→ B1(2√−1, 14 )

→ ⋅ ⋅ ⋅ → B1(p√−1, 14 )
= B1(0, 14 ).

Recall that there are q = pm circles in τ(B−1, B1). Hence there are exactly pm−1 Steiner chains of length p
each. Therefore we have:

Proposition 7. The circles B2(1,−1) and B
2
(1,1) in𝕄(q), q = p

m, carry a Steiner chain if and only if q ≡ 3 mod 4.
In this case there are pm−1 different Steiner chains, and each chain has length p.

3.2 The general case

Let C1 and C2 be two circles in𝕄(q) that are tangent at z0. Choose two points z1, z2 on C1 and two points
z󸀠1, z
󸀠
2 on B−1. There is a Möbius transformation T1 which maps zi to z󸀠i and z0 to∞, hence T1(C1) = B−1 and

T1(C2) is a circle of the second kind tangent to B−1 at∞. By Lemma 2, for any circle B2(c,r) tangent to B−1 we
have c ∈ GF(q), thus T1(C2) has the form z+z = r for r ̸= −1. TheMöbius transformation T2 : z 󳨃→ λ(z+ 12 )−

1
2 ,

with λ = 2
r+1 , maps B−1 to itself, and T1(C2) to B1. Hence T = T2 ∘ T1 maps C1 to B−1 and C2 to B1, and an

exotic Steiner chain exists for C1, C2 if and only if this is the case for B−1, B1. Hence we have:

Theorem 8. Let C1 and C2 be two tangent circles in𝕄(q), q = pm. If q ≡ 3 mod 4, then C1 and C2 carry pm−1

Steiner chains, and each chain has length p. If q ≡ 1 mod 4, then C1 and C2 do not carry a Steiner chain.

4 Exotic Steiner chains for intersecting carrier circles
The case of intersecting carrier circles is particularly more delicate than the case of tangent carrier circles
treated in the previous section. We start again by a standard situation.

4.1 The standard case

We start with two different circles of the second type B2(γ1 ,0) and B
2
(γ2 ,0) intersecting in 0 and∞. By Lemma 2

we have γ1γ2 − γ1γ2 ̸= 0, which is needed in the proof of:

Lemma 9. If γ1γ2 is a square in GF(q2), there are exactly 2(q − 1) circles in τ(B2(γ1 ,0), B
2
(γ2 ,0)). If γ1γ2 is a non-

square, then B2(γ1 ,0) and B
2
(γ2 ,0) have no common tangent circles.

Proof. We observe that there are no circles of the second type tangent to both B2(γ1 ,0) and B
2
(γ2 ,0): By Lemma 2,

any such circle B2(c,r) would satisfy cγ1 − cγ1 = 0 and cγ2 − cγ2 = 0, which implies c(γ1γ2 − γ1γ2) = 0. But
c ̸= 0 for a circle of the second type, and this contradicts γ1γ2 − γ1γ2 ̸= 0.

For any circle B1(c,r) of the first type in τ(B2(γ1 ,0), B
2
(γ2 ,0)) we have

(cγ1 + cγ1)2 = 4γ1γ1r (3)

and
(cγ2 + cγ2)2 = 4γ2γ2r (4)

as a consequence of Lemma 2. Note that 4γiγir ̸= 0 because of the way the circles are defined, and since p is
odd. Eliminating r = (cγ2+cγ2)

2

4γ2γ2
from (3) leads to

γ2γ2(c2γ
2
1 + c

2γ21) = γ1γ1(c
2γ22 + c

2γ22) ⇐⇒ c2γ1γ2 ⋅ (γ1γ2 − γ1γ2) = c
2γ1γ2(γ1γ2 − γ1γ2).
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Since γ1γ2 − γ1γ2 ̸= 0, this is equivalent to c2γ1γ2 = c
2γ1γ2. Thus any c satisfying (3) and (4) is characterized

by the condition c2γ1γ2 =: β ∈ GF(q) \ {0}, i.e.

c2 = β/(γ1γ2) for β ∈ GF(q) \ {0}.

This can be solved for c if and only if γ1γ2 is a square in GF(q2), and in this case, c is given by

c = ±√β/(γ1γ2). (5)

There are q − 1 possible choices for β ∈ GF(q) \ {0}, and thus 2(q − 1) different values that ±√β can attain.
Since there is a unique r corresponding to every c, there are exactly 2(q − 1) circles in τ(B2(γ1 ,0), B

2
(γ2 ,0)). 2

From now on we assume that γ1γ2 is a square in GF(q2), i.e. τ(B2(γ1 ,0), B
2
(γ2 ,0)) is non-empty. Observe that

γ1γ2 is a square if and only if both γ1 and γ2 are either squares or nonsquares. This also implies that γ1γ2 is

a square if and only if γ2
γ1
is a square. So, we define γ := √ γ2

γ1
to be a square root of γ2

γ1
, and apply the Möbius

transformation z 󳨃→ γ1γz to the carrier circles

B2(γ1 ,0) : γ1z + γ1z = 0 and B2(γ2 ,0) : γ2z + γ2z = 0.

The images of the circles B2(γ1 ,0) and B2(γ2 ,0) are then given by the equations γz + γz = 0 and γz + γz = 0,
respectively. We summarize what we have shown so far: If γ1γ2 is a nonsquare, no Steiner chain exists. But
if γ1γ2 is a square, we can transform the circles B2(γ1 ,0), B

2
(γ2 ,0) into the two symmetric circles B2(γ,0) and B

2
(γ,0),

where γ is defined as above. Note that the condition γ1γ2 − γ1γ2 ̸= 0 changes to γ2 ̸= γ
2.

We now state an explicit condition for a circle to be in τ(B2(γ,0), B
2
(γ,0)).

Lemma 10. There are 2(q − 1) circles tangent to B2(γ,0) and B2(γ,0) with γ
2 ̸= γ2. They are given by B1(c,r) with c

and r satisfying

c = c, r = c2 (γ + γ)
2

4γγ
(6)

or
c = −c, r = c2 (γ − γ)

2

4γγ
(7)

for c ∈ GF(q2) \ {0}.

Proof. By Lemma 2, the condition for a circle B1(c,r) to be in τ(B2(γ,0), B
2
(γ,0)) is

(cγ + cγ)2 = 4γγr and (cγ + cγ)2 = 4γγr. (8)

We subtract the second equation in (8) from the first and get (c2 − c2)(γ2 − γ2) = 0. Since γ2 ̸= γ2, this implies
c2 − c2 = (c − c)(c + c) = 0. Plugging in the respective values c = c and c = −c in (8) yields the r-values
specified in the lemma. We also see that c is nonzero, as c = 0 would lead to r = 0. 2

We established in Lemma 10 that the center c1 of any circle B1(c1 ,r1) tangent to both carrier circles is either
on the circle z − z = 0 (i.e. z ∈ GF(q)) or on the circle z + z = 0. Accordingly, we subsequently investigate what
the conditions are for a second circle B1(c2 ,r2) ∈ τ(B

2
(γ,0), B

2
(γ,0)) to be tangent to B

2
(c1 ,r1) if

∙ both c1 and c2 are on z − z = 0 (see Lemma 11),
∙ both c1 and c2 are on z + z = 0 (see Lemma 12), and
∙ c1 and c2 are not on the same line (see Lemma 13).

Lemma 11. Let B1(c1 ,r1), B
1
(c2 ,r2) ∈ τ(B

2
(γ,0), B

2
(γ,0)) with c1 = c1 and c2 = c2. The circles B1(c1 ,r1) and B1(c2 ,r2) are

tangent if and only if γγ is a square in GF(q) and

c2 = c1 ⋅
2√γγ ± (γ + γ)
2√γγ ∓ (γ + γ)

. (9)
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Proof. Recall that both circles B1(c1 ,r1) and B
1
(c2 ,r2) satisfy equation (6) from Lemma 10, namely:

ci = ci , ri = c2i
(γ + γ)2

4γγ
, ci ̸= 0, i = 1, 2. (10)

Moreover, because they are mutually tangent, we also have

(cc + r1 − r2)2 = 4ccr1 for c := c2 − c1 (11)

by Lemma 2. Note that c ∈ GF(q), and therefore cc = c2. We write r2 as

r2 =
c22
c21

r1 = (
c
c1
+ 1)

2
r1

and apply it to equation (11):

((
c
c1
+ 1)

2
r1 − r1 − c2)

2
= 4c2r1 ⇐⇒ ((

c2

c21
+
2c
c1
)r1 − c2)

2
= 4c2r1.

Dividing both sides by c2, which is nonzero because B1(c1 ,r1) and B
1
(c2 ,r2) are different, yields

(c
r1 − c21
c21
+
2r1
c1
)
2
= 4r1. (12)

Note that c r1−c
2
1

c21
+ 2r1

c1 ∈ GF(q), since c, r1, c1 ∈ GF(q). Consequently, (12) only has a solution if r1 is a square
in GF(q). In view of equation (10) it is clear that r1 is a square in GF(q) if and only if γγ is a square in GF(q).
In that case we can write equation (12) as

c
r1 − c21
c21
= ±2√r1 −

2r1
c1

. (13)

At this point we observe that r1 − c21 ̸= 0, i.e.,
(γ+γ)2
4γγ ̸= 1. In fact, (γ + γ)

2 = 4γγ ⇐⇒ (γ − γ)2 = 0 ⇐⇒ γ = γ,
but as we mentioned earlier, γ2 ̸= γ2. We can therefore rearrange (13) by solving for c:

c =
c21

r1 − c21
(±2√r1 −

2r1
c1
) = −

2c1√r1
±c1 + √r1

.

We use that c2 = c + c1 and get

c2 = c1
c1 ∓ √r1
c1 ± √r1

.

Finally, substituting r1 gives (9), as claimed. 2

Lemma 12. Let B1(c1 ,r1), B
1
(c2 ,r2) ∈ τ(B

2
(γ,0), B

2
(γ,0)) with c1 = −c1 and c2 = −c2. The circles B1(c1 ,r1) and B1(c2 ,r2)

are tangent if and only if −γγ is a nonsquare in GF(q) and

c2 = c1 ⋅
2√−γγ ± (γ − γ)
2√−γγ ∓ (γ − γ)

. (14)

Proof. Both circles B1(c1 ,r1) and B
1
(c2 ,r2) must satisfy equation (7) from Lemma 10, i.e.

ci = −ci , ri = c2i
(γ − γ)2

4γγ
, ci ̸= 0, i = 1, 2. (15)

Moreover we have again (11) as in Lemma 11. But note that this time we have cc = −c2. We write r2 as

r2 =
c22
c21

r1 = (
c
c1
+ 1)

2
r1.
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Equation (11) now reads (( cc1 + 1)
2r1 − r1 + c2)2 = −4c2r1, or equivalently

(c
r1 + c21
c21
+
2r1
c1
)
2
= −4r1, (16)

where we used that c ̸= 0 (because B1(c1 ,r1) and B1(c2 ,r2) are different). We have a closer look at equation (16).
For this, define

ι := c
r1 + c21
c21
+
2r1
c1

.

Observe that ι = −ι, which means that ι is on the circle z + z = 0. This implies that in order for (16) to be
solvable, we need the square root of −4r1 to be on that circle as well. Since −4r1 ∈ GF(q), the square root
always exists in GF(q2), and we conclude that −r1 must be a nonsquare in GF(q). In view of (15) this is the
case if and only if −γγ is a nonsquare in GF(q). In this case, we can solve equation (16) for c and obtain

c =
c21

r1 + c21
(±2√−r1 −

2r1
c1
) with √−r1 = c1

γ − γ
2√−γγ

. (17)

We also mention here that r1 + c21 ̸= 0, i.e.
(γ−γ)2
4γγ ̸= −1. This follows from the condition γ2 ̸= γ2, because

(γ − γ)2 = −4γγ ⇐⇒ (γ + γ)2 = 0.

Using (17) in c2 = c + c1, a short calculation yields

c2 = c1
c1 ± √−r1
c1 ∓ √−r1

.

If we plug in the term for√−r1 in the previous expression, we finally get (14), as claimed. 2

Lemma 13. Let B1(c1 ,r1), B
1
(c2 ,r2) ∈ τ(B

2
(γ,0), B

2
(γ,0)) with c1 = c1 and c2 = −c2. The circles B

1
(c1 ,r1) and B

1
(c2 ,r2) are

tangent if and only if

c2 = ±c1 ⋅
γ − γ
γ + γ

.

Proof. By Lemma 10 we have

r1 = c21
(γ + γ)2

4γγ
and r2 = c22

(γ − γ)2

4γγ
.

We can write r2 as

r2 = c22(
(γ + γ)2

4γγ
−
4γγ
4γγ
) = c22(

r1
c21
− 1).

Furthermore, for c := c2 − c1 we have cc = (c2 − c1)(−c2 − c1) = c21 − c
2
2. We use these relations to transform

the equation (cc + r1 − r2)2 = 4ccr1 for two tangent circles of the first type (see Lemma 2). We find that

(cc + r1 − r2)2 − 4ccr1 = (c21 − c
2
2 + r1 − c

2
2(

r1
c21
− 1))

2
− 4(c21 − c

2
2)r1 = ((

c22
c21
− 1)r1 + c21)

2
,

where the last term is zero if and only if (c22 − c
2
1)r1 + c

4
1 = 0, which is equivalent to

c22 = c
2
1(1 −

c21
r1
).

The desired result now follows from the fact that

1 −
c21
r1
= 1 − 4γγ
(γ + γ)2

=
(γ − γ)2

(γ + γ)2
. 2

The following lemma is a useful observation about the restriction on γ as given in Lemmas 11 and 12.
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Lemma 14. (i) γγ is a square in GF(q) if and only if γ is a square in GF(q2).
(ii) −γγ is a nonsquare in GF(q) if and only if either
∙ γ is a square in GF(q2) and −1 is a nonsquare in GF(q), or
∙ γ is a nonsquare in GF(q2) and −1 is a square in GF(q).

Proof. Recall that an element b ∈ GF(q) \ {0} is a square in GF(q) if and only if b
q−1
2 = 1. Hence, by

(γγ)
q−1
2 = (γq+1)

q−1
2 = 1 ⇐⇒ γ

q2−1
2 = 1,

it follows that γγ is a square inGF(q) if and only if γ is a square inGF(q2), which proves (i), and (ii) is similar. 2

Summarizing, we have established that every circle B1(c1 ,r1) ∈ τ(B
2
(γ,0), B

2
(γ,0)) has — under the right cir-

cumstances — four tangent circles in τ(B2(γ,0), B
2
(γ,0)).

We now show that a proper Steiner chain (in accordance with Definition 1) can only be constructed in the
case of Lemma 11 or 12. If c1 = c1 and c2 = −c2 (or vice versa), the contact point of B1(c1 ,r1) and B1(c2 ,r2) lies
on one of the carrier circles, which is a violation of Definition 1(iii). To see this, we consult Lemma 2, where it
follows that B1(c1 ,r1) touches B

2
(γ,0) at

ζ (1)γ =
c1γ − c1γ

2γ
= c1

γ − γ
2γ

and B2(γ,0) at

ζ (1)γ =
c1γ − c1γ

2γ = c1
γ − γ
2γ .

Recall that for B1(c2 ,r2) as given in Lemma 13 we have

c2 = −c2 = ±c1
γ − γ
γ + γ

. (18)

Consequently, B1(c2 ,r2) has the point

ζ (2)γ =
c2γ − c2γ

2γ
= c2

γ + γ
2γ
= ±c1

γ − γ
γ + γ
⋅
γ + γ
2γ
= ±c1

γ − γ
2γ

in common with B2(γ,0), whereas it shares the point

ζ (2)γ =
c2γ − c2γ

2γ = c2
γ + γ
2γ = ±c1

γ − γ
γ + γ
⋅
γ + γ
2γ = ±c1

γ − γ
2γ

with B2(γ,0). Depending on the signwe choose in (18), we find that either ζ
(2)
γ corresponds to ζ (1)γ , or ζ (2)γ to ζ (1)γ .

In either case, we find a point that is a contact point of three tangent circles.
Similarly, it is easy to verify that if both c1 and c2 are in z − z = 0 (Lemma 11) or in z + z = 0 (Lemma 12),

there are no points shared by more than two tangent circles.
To summarize, we conclude that if τ(B2(γ,0), B

2
(γ,0)) is non-empty, any circle in τ(B2(γ,0), B

2
(γ,0)) has exactly

two tangent circles which would potentially allow the construction of a Steiner chain. In other words, if we
can find a Steiner chain starting from a given circle, the chain is unique.

According to our earlier reflections, we have to consider two separate cases. We start with the case where
B1(c1 ,r1) and B

1
(c2 ,r2) are given as in Lemma 11.

4.1.1 Case c1 = c1 and c2 = c2. Let us assume that γγ is a square in GF(q). We have seen (Corollary 14) that
this is equivalent to γ being a square in GF(q2). Moreover, γ is a square if and only if γ is a square. Therefore,
we can write equation (9) from Lemma 11 as

c2 = c1 ⋅
2√γ√γ ± (γ + γ)
2√γ√γ ∓ (γ + γ)

. (19)

Define
u1 := √γ + √γ, u2 := √γ − √γ, and u := −(u1u2

)
2
.
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Then the two possibilities in (19) correspond to c2 = uc1 and c2 = c1
u . Observe that u is in GF(q) \ {0}. Let k be

the multiplicative order of u in GF(q) \ {0}. Apparently, c1 is any element of GF(q) \ {0}, the chain of circles

B1(c1 ,r1) → B1(uc1 ,r2) → B1(u2c1 ,r3) → ⋅ ⋅ ⋅ → B1(ukc1 ,rk+1) = B
1
(c1 ,r1)

with
ri := (ui−1c1)2

(γ + γ)2

4γγ
defined as in Lemma 10, is a Steiner chain of length k. In fact, we can build such a chain starting with any
element c1 of GF(q)\{0}. Consequently, if γ is a square in GF(q2), there are q−1

k Steiner chains, and each chain
has length k.

Since the length of the Steiner chains depends on themultiplicative order of u, we have a closer look at u.
It follows from the definition that u1

u2 = −
u1
u2 , i.e. (

u1
u2 )

2 is a nonsquare in GF(q). Since u = −1 ⋅ ( u1u2 )
2, we have

to distinguish two cases:

∙ If −1 is a square in GF(q), then u is a nonsquare in GF(q). In this case, the multiplicative order of u is a
divisor of q − 1, but does not divide q−1

2 .
∙ If −1 is a nonsquare in GF(q), u is a square in GF(q), and the multiplicative order of u divides q−1

2 .
Note that if −1 is a nonsquare in GF(q), then m is odd and p ≡ 3 mod 4, hence q−1

2 is not divisible by 2,
and therefore the length of the Steiner chain is odd.

4.1.2 Case c1 = −c1 and c2 = −c2. We assume that −γγ is a nonsquare in GF(q) as required by Lemma 12.
Recall equation (14) in said lemma:

c2 = c1 ⋅
2√−γγ ± (γ − γ)
2√−γγ ∓ (γ − γ)

. (20)

Define
v1 := γ + √−1√γγ, v2 := √−1γ + √γγ, and v := ( v1v2

)
2
.

The readermay verify that the two possibilities in (20) correspond to c2 = vc1 and c2 = c1
v . With equation (20)

it is easy to see that v ∈ GF(q) \ {0} and v ̸= 1. We denote by k󸀠 the multiplicative order of v in GF(q) \ {0} and
let c1 be any of the q − 1 elements in B2(1,0) \ {0,∞}. A Steiner chain of length k󸀠 is then given by

B1(c1 ,r1) → B1(vc1 ,r2) → B1(v2c1 ,r3) → ⋅ ⋅ ⋅ → B1
(vk󸀠 c1 ,rk󸀠+1)

= B1(c1 ,r1)

with ri determined by Lemma 10:

ri := (vi−1c1)2
(γ − γ)2

4γγ
.

We can construct such a chain for any element c1 ̸= 0 in z + z = 0, which means that there are q−1
k󸀠 possible

Steiner chains.
The length of the Steiner chains depends on the multiplicative order of v. Let us therefore have a closer

look at v: We note that
v1
v2
=
2√γγ + √−1(γ − γ)

γ + γ
. (21)

By assumption, −γγ is a nonsquare in GF(q), which means that exactly one of −1 and γγ is a square in GF(q).
By (21), we can say that if −1 is a square in GF(q), then v1

v2 = −
v1
v2 , and otherwise,

v1
v2 =

v1
v2 . Accordingly, there

are two cases (see also Lemma 14):

∙ If −1 is a square in GF(q) and γ a nonsquare in GF(q2), then v is a nonsquare in GF(q). In this case, the
multiplicative order of v is a divisor of q − 1, but does not divide q−1

2 .
∙ If −1 is a nonsquare in GF(q) and γ a square in GF(q2), then v is a square in GF(q), and the multiplicative
order of v divides q−1

2 . By the above reasoning, the length of any Steiner chain in this case is always odd.
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4.1.3 Overview. We summarize what we have shown so far. Remember that −1 is a nonsquare in GF(q) if
and only if q ≡ 3 mod 4.

Theorem 15. Let B2(γ,0) and B
2
(γ,0) be two different circles of the second type, i.e. γ

2 ̸= γ2. Define

u := 2
√γγ + (γ + γ)

2√γγ − (γ + γ)
and v := 2

√−γγ + (γ − γ)
2√−γγ − (γ − γ)

,

and let k and k󸀠 be the multiplicative order of u and v, respectively.

(i) If −1 is a nonsquare in GF(q) and
(a) γ is a square inGF(q2), there are q−1

k Steiner chains of length k and q−1
k󸀠 Steiner chains of length k󸀠.

(b) γ is a nonsquare in GF(q2), there are no Steiner chains.
(ii) If −1 is a square in GF(q) and

(a) γ is a square in GF(q2), there are q−1
k Steiner chains of length k each.

(b) γ is a nonsquare in GF(q2), there are q−1
k󸀠 Steiner chains of length k󸀠.

In (ia) the length of every Steiner chain is odd and a divisor of q−12 . In (iia) and (iib) the length of the Steiner
chains does not divide q−1

2 .

Note that if −1 is a square in GF(q), Steiner chains always exist, and exactly q − 1 circles are part of a
Steiner chain. If −1 is a nonsquare in GF(q) and γ is a square, then there are 2(q − 1) circles used in Steiner
chains.

4.2 The general case

Let C1 ̸= C2 be two arbitrary circles with two intersection points z1 and z2. A Möbius transformation T map-
ping z1 to 0 and z2 to∞ maps C1 and C2 to two circles of the second type, say B2(γ1 ,0) and B2(γ2 ,0). Since C1
and C2 are different, we have γ1γ2 − γ1γ2 ̸= 0. And C1 and C2 carry a Steiner chain if and only if B2(γ1 ,0) and
B2(γ2 ,0) carry a Steiner chain.

We observed that in order for a Steiner chain to exist, γ1γ2 must be a square in GF(q2), and this is the
case if and only if γ2

γ1
is a square. This allows to map the circles B2(γ1 ,0) and B

2
(γ2 ,0) to B

2
(γ,0) and B

2
(γ,0), where

γ := √γ2/γ1,

and the condition γ1γ2 ̸= γ1γ2 changes to γ2 ̸= γ
2.

But what is the necessary condition for two arbitrary intersecting circles C1, C2 to carry a Steiner chain?
This questions will now be answered using the capacitance (see Section 2). The capacitance of B2(γ1 ,0) and
B2(γ2 ,0) (and hence of C1 and C2) is given by

κ = 1
γ1γ1γ2γ2

(γ1γ2 + γ1γ2)2 =
γ2
γ1
⋅
γ1
γ2
+ 2 +

γ1
γ2
⋅
γ2
γ1

.

Hence, if instead of formulating a condition for γ2
γ1
we can state a condition for κ, we will be able to decide for

two arbitrary intersecting circles whether they may possibly carry a Steiner chain or not by looking at their
capacitance. This is the motivation behind the following lemma.

Lemma 16. γ2
γ1
is a square in GF(q2) if and only if either

∙ κ = 0 and −1 is a nonsquare in GF(q), or
∙ κ ̸= 0 is a square in GF(q).

Proof. We substitute γ2
γ1
by g and write κ as

κ = g
g
+ 2 + gg =

(g + g)2

gg
. (22)
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Since κ is in GF(q), its square root in GF(q2) always exists. In particular, it is clear from (22) that if κ ̸= 0, its
square root is in GF(q) if and only if gg is a square in GF(q). Having a look at Corollary 14, it is evident that
this is equivalent to g = γ2

γ1
being a square in GF(q2).

On the other hand, if κ = 0, then g = −g, which is equivalent to gg = −g2 (recall that g ̸= 0 since
γ1γ2 − γ1γ2 ̸= 0). It follows that a square root of gg is given by√−1g, and therefore gg is a square in GF(q) if
and only if√−1g ∈ GF(q). Since g = −g, this is the same as requiring that√−1 is a nonsquare in GF(q) . With
Corollary 14 we conclude that g is a square in GF(q2) if and only if −1 is a nonsquare in GF(q). 2

From now on, we assume that γ2
γ1
is a square in GF(q2). In this case we can write

κ = γ
2

γ2
+ 2 + γ

2

γ2
= (

γ
γ
+
γ
γ )

2

where γ = √ γ2
γ1
is a square root of γ2

γ1
. Note that κ (and also the square root of κ) does not depend on which

square root of γ2
γ1
we assign to γ.

At this point Theorem 15 comes into play:We saw that the existence and length of a Steiner chain depends
on whether γ is a square in GF(q2) or not. We want to characterize existence or non-existence in terms of the
capacitance. To investigate this, we need to find a correlation between κ and γ being a square or a nonsquare.
We consider two separate cases (compare with Lemma 16):

(i) κ = 0 and −1 is a nonsquare in GF(q) (Lemma 17), and
(ii) κ ̸= 0 is a square in GF(q) (Lemma 18).

The reader may want to have a look at Theorem 20 and Table 1 already to see what we are aiming at.

Lemma 17. If κ = 0 and −1 is a nonsquare in GF(q), then γ is a square in GF(q2) if and only if p ≡ 7 mod 16.

Proof. The condition κ = 0 is equivalent to

γ
γ
+
γ
γ = 0 ⇐⇒ γ2 + γ2 = 0 ⇐⇒ γ = ±√−1γ.

Be aware that γ ∉ GF(q), and in particular γ ̸= 0, a consequence of the afore-mentioned property γ2 ̸= γ2.
Multiplying both sides of the equation by γ leads to γ2 = √−1 ⋅ γγ, where we omit the ±-sign by using√−1 to
represent both square roots of −1. If we write√−1 as√−1 = γ2

γγ , it is obvious that a square root of√−1 exists.
We can therefore write

γ = √√−1 ⋅ √γγ. (23)

Since q ≡ 3 mod 4, we have q2 ≡ 1 mod 4 and hence 4 divides q2 −1. Thus every element in GF(q) is a fourth
power in GF(q2). In particular,√γγ is a square.

So, by (23) we have that γ is a square if and only if √√−1 is a square. This is the case if and only if the

multiplicative order of√√−1 is a divisor of q2−1
2 . Since −1 has multiplicative order 2, the multiplicative order

of√√−1 is 8. This implies that γ is a square in GF(q2) if and only if q2 − 1 is divisible by 16, i.e. if and only if
q2 ≡ 1 mod 16. Since m is odd and q ≡ 3 mod 4 if follows easily that p ≡ 7 mod 16. 2

Recall that κ = ( γγ +
γ
γ )

2. In the following lemma, we choose γ
γ +

γ
γ as the square root of κ.

Lemma 18. Assume that κ ̸= 0 is a square in GF(q) with square root√κ = γ
γ +

γ
γ . Then:

(i) If −1 is a nonsquare in GF(q), the following are equivalent:
γ is a square in GF(q2) ⇐⇒ √κ + 2 is a square in GF(q) ⇐⇒ −√κ + 2 is a square in GF(q).

(ii) If −1 is a square in GF(q), the following are equivalent:
γ is a square in GF(q2) ⇐⇒ √κ + 2 is a square in GF(q) ⇐⇒ −√κ + 2 is a nonsquare in GF(q).

Proof. We treat the two cases√κ + 2 and −√κ + 2 separately:
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∙ For√κ + 2 we have
√κ + 2 = γ

γ
+ 2 + γγ =

(γ + γ)2

γγ
.

Note that γ + γ ̸= 0 as γ2 ̸= γ2. Obviously,√κ +2 is a square in GF(q) if and only if γγ is a square in GF(q),
which is the case if and only if γ is a square in GF(q2); see Corollary 14.
∙ Conversely, for −√κ + 2 we can write

−√κ + 2 = − γ
γ
+ 2 − γγ =

(γ − γ)2

−γγ
.

Note that γ − γ ̸= 0 as γ2 ̸= γ2. Here, −√κ + 2 is a square in GF(q) if and only if −γγ is a nonsquare in
GF(q). Again, the desired result follows with Corollary 14. 2

Remark 19. If√κ is a square root of κ and −1 is a nonsquare in GF(q), then√κ + 2 is a square in GF(q) if and
only if γ is a square in GF(q2) (Case (i) of Lemma 18). On the other hand, if −1 is a square in GF(q) (Case (ii) of
Lemma 18), exactly one of√κ +2 and −√κ +2 is a square in GF(q). A Steiner chain in this case always exists:
we are either in Case (iia) or in Case (iib) of Theorem 15.

What we still lack is a condition for the length of the Steiner chains in case they exist. For this, we rewrite
u and v in Theorem 15 as follows:

u =
2 + γ+γ
√γγ

2 − γ+γ
√γγ

and v =
2 + γ−γ
√−γγ

2 − γ−γ
√−γγ

.

Note that
(
γ ± γ
√±γγ
)
2
= ±

γ
γ
+ 2 ± γγ = ±

√κ + 2.

Apparently, u and v (or 1
u and

1
v , depending on which square root of ±√κ + 2 we take) correspond to

w± :=
2 + √±√κ + 2

2 − √±√κ + 2
.

In particular, if κ = 0, we have w± = 2+√2
2−√2
= 3 + 2√2. Our results from Section 4.2 combined with Theorem 15

are now summarized in the following

Theorem 20. Let C1 and C2 be two intersecting circles in𝕄(q), where q = pm for an odd prime p. Let κ :=
cap(C1, C2) be the capacitance of C1, C2, and√κ any square root of κ. If√κ ∈ GF(q), we additionally define

w± :=
2 + √±√κ + 2

2 − √±√κ + 2
.

Then, the circles C1 and C2 carry a Steiner chain if and only if one of the following three conditions is satisfied:

(i) κ = 0, m is odd, and p ≡ 7 mod 16.
In this case there are 2 q−1

k Steiner chains, whose length k is given by the multiplicative order of 3+2√2.
(ii) κ ̸= 0,√κ ∈ GF(q), −1 is a nonsquare in GF(q), and√κ + 2 is a square in GF(q).

There are q−1
k+ Steiner chains of length k+ and q−1

k− Steiner chains of length k−, where k+ and k− are the
multiplicative orders of w+ and w−, respectively.

(iii) κ ̸= 0,√κ ∈ GF(q), and −1 is a square in GF(q).
There are q−1

k Steiner chains of length k each, where k is the multiplicative order of w+ if √κ + 2 is a
square in GF(q), and the multiplicative order of w− otherwise.

In (i) and (ii), the length of the chains is odd and a divisor of q−1
2 , whereas the length of the chains in Case (iii)

does not divide q−1
2 .
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Case q ≡ 3 mod 4 q ≡ 1 mod 4

Condition κ = 0 and p ≡ 7 mod 16. κ ̸= 0 is a square in GF(q) and
√κ + 2 is a square in GF(q).

κ ̸= 0 is a square in GF(q).

Result There are 2 q−1
k chains of length k. There are q−1

k+ chains of length k+

and q−1
k− chains of length k−.

There are q−1
k chains of length k.

Comment k is the multiplicative order of
3 + 2√2.

k+ is themultiplicative order ofw+

and k− is the multiplicative order
of w−.

k is the multiplicative order of w±,
where the sign is chosen such that
±√κ + 2 is a square in GF(q).

Specifics The length of the chains is odd and divides q−1
2 . The length of the chains divides

q − 1 but does not divide q−1
2 .

Table 1: Overview of Steiner chains for intersecting carrier circles in𝕄(q)

Example. If 𝕄(31) is constructed over the pair of finite fields GF(31) and GF(31)(α) with α = √−1, one
can verify by Lemma 2 that the circles B1(3α+8,14) and B2(5α+12,17) are intersecting, and we compute that their
capacitance κ equals 2.

A square root of κ is given by √κ = 8. Moreover, we can determine the square roots √√κ + 2 = 14 and
√−√κ + 2 = 5. Obviously, all the requirements for the existence of a Steiner chain as stated in Theorem 20(ii)
are satisfied. To determine the length of the Steiner chains, we have a look at w±:

w+ = 2 + 14
2 − 14
=
16
19
= 9, w− = 2 + 5

2 − 5
=

7
28
= 8.

The multiplicative orders of w+ = 9 and w− = 8 are 15 and 5, respectively. Accordingly, B1(3α+8,14) and
B2(5α+12,17) carry 2 Steiner chains of length 15 and 6 Steiner chains of length 5. This can be confirmed by
an exhaustive search of circles, implemented in . Explicit code can be found in [8].

Acknowledgements: We would like to thank the referee for his or her careful reading and the valuable re-
marks which greatly helped to improve this article.
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