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Abstract
We obtain a formula for the number of horizontal equilibria of a planar convex body
K with respect to a center of mass O in terms of the winding number of the evolute
of ∂K with respect to O . The formula extends to the case where O lies on the evolute
of ∂K and a suitably modified version holds true for non-horizontal equilibria.

Keywords Static equilibria · Convex bodies · Gömböc

1 Introduction

We study the number of static equilibria of a planar convex body K supported by a
horizontal line subject to a uniform vertical gravity field. It is well-known that the
number of static equilibria with respect to the centroid of a homogeneous body K
is ! 4 [see Domokos et al. (1994) and Proposition 3.4 below]. It was pointed out in
Varkonyi and Domokos (2006) that this result is equivalent to the four-vertex theorem.
For an arbitrary center of mass, one can find planar convex bodies with only one stable
and one unstable equilibrium—the 3-dimensional counterparts of such objects are
known as roly-poly toys. In Varkonyi and Domokos (2006) it is shown that there
exists a homogeneous convex roly-poly toy with exactly one stable and one unstable

Communicated by Alain Goriely.

B Norbert Hungerbühler
norbert.hungerbuehler@math.ethz.ch

Jonas Allemann
Jonas.Allemann@ibm.com

Micha Wasem
micha.wasem@hefr.ch

1 IBM, Vulkanstrasse 106, 8048 Zürich, Switzerland
2 ETH Zürich, Department of Mathematics, Rämistrasse 101, 8092 Zürich, Switzerland
3 HTA Freiburg, HES-SO University of Applied Sciences and Arts Western Switzerland, Pérolles 80,

1700 Freiburg, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00332-021-09740-2&domain=pdf
http://orcid.org/0000-0001-6191-0022
https://orcid.org/0000-0002-1310-7929


86 Page 2 of 19 Journal of Nonlinear Science (2021) 31 :86

equilibrium, the so-called gömböc—thus answering a long-standing conjecture by
Arnol’d in the affirmative.

In this article, we provide a geometric characterization of the number n of static
equilibria of a planar convex body K in terms of the winding number of the evolute
of ∂K with respect to a given center of mass O of K : If ∂K is parametrized by a
positively oriented curve γ and O is not a point of the evolute of ∂K , then the winding
number of the evolute of ∂K is an integer m ≤ 0 and the formula

n = 2 − 2m (1.1)

holds true.
On an intuitive level, this might be explained as follows: The number of equilibria

of K with respect to O equals the number of normals to γ that can be dropped from O .
Since the envelope of the family of normals to γ is the evolute of γ , each equilibrium
gives rise to a tangent line from O to the evolute. The number of normals through a
given point is a locally constant function on the complement of the evolute: It changes
by 2 if one crosses the evolute at a smooth point since locally, two tangents to the
evolute are added or removed, where the sign of the change depends on whether it
happens from the concave to the convex side of the evolute or the otherway round (note
that the evolute of a convex curve does not have any inflection points: see the beautiful
book Fuchs and Tabachnikov 2007, Lecture 10). Furthermore, for points O very far
from K , exactly 2 normals can be dropped onto γ which explains the additional term
2 in the formula.

There are a few caveats concerning the heuristics above: If a portion of the evolute of
γ is traversed more than once, multiplicity has to be taken into account. Furthermore,
tangents are added or removed locally if one crosses a smooth point of the evolute, but
other tangents might appear or disappear since we are looking at a global problem.
So, it turned out to be difficult to convert the above geometric arguments into a formal
proof. We have therefore decided to give an analytic proof which also covers the cases
where O is a point on the evolute, possibly even a cusp. In this case, m may be half-
integer valued, but the result still admits a nice geometric interpretation (see Fig. 6).
Our main theorem is the following:

Theorem 1.1 Let K be a strongly convex compact set with C3-boundary ∂K such that
the curvature of ∂K has only finitely many stationary points, and let O be a point in
the plane. Then the number n of horizontal equilibria of K with respect to O is given
by

n = 2 − 2m,

where 0 ! m ∈ 1
2Z is the winding number of the evolute of ∂K with respect to O.

The strategy of the proof is to identify the horizontal equilibria as zeros of the first
derivative of a support function that parametrizes ∂K and using the zero-counting
integral developed in Hungerbühler and Wasem (2018) in order to count its zeros.
The resulting integral can then be related to the generalized winding number (see
Hungerbühler and Wasem 2019) of the evolute of ∂K .
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Fig. 1 The support functions p
and q of a strictly convex
compact set K
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In Sect. 4 we replace the horizontal supporting line of the body K by an inclined
line with inclination angle α ∈ (−π

2 ,
π
2 ). It is interesting that for any angle α %= 0,

there exist homogeneous bodies K such that the inequality n ! 4 fails. In fact, for
every α %= 0, there are such bodies with exactly one metastable equilibrium and also
bodieswith exactly one stable and one unstable equilibriumwith respect to the centroid
(see Proposition 4.1 below). Moreover, we construct a homogeneous convex body for
which the function α &→ nα , which assigns to a given angle 0 ≤ α < π

2 the number
of oblique equilibria with respect to α is not monotonically decreasing.

Finally, a formula like (1.1) holds true for α %= 0, where m is the winding number
of the evolute of a suitable modification of ∂K .

Weend the introductionbyfixing somenotations and conventions. For x, y ∈ R2, let
(x, y) = {t x + (1 − t)y, t ∈ (0, 1)} denote the line segment between the points x and
y. A set K ⊂ R2 is called convex if for any x, y ∈ K it holds that (x, y)∩K = (x, y).
The set K is called strictly convex if (x, y)∩ K̊ = (x, y) for any x, y ∈ K . A bounded
convex set K ⊂ R2 with Cn-boundary, n ! 2 is called strongly convex if ∂K can be
parametrized by a curve γ : S1 → ∂K such that ‖γ̇ ‖ = 1 and γ̈ does not vanish. We
will use the identification S1 += R/2πZ and the notation u(ϕ) = (cos(ϕ), sin(ϕ)),

throughout this article.

2 Support Functions

In this section, we are going to collect several facts about support functions and convex
sets. Some of the material here is classical, but to our best knowledge, Lemma 2.1 is
new and so is Corollary 2.2 for curves of class C2.

The boundary ∂K of a strictly convex compact set K admits a parametrization by
support functions p and q, i.e., there exists a parametrization z : S1 → ∂K such that
z(ϕ) = p(ϕ)u(ϕ) + q(ϕ)u′(ϕ) (see Euler 1778), as indicated in Fig. 1: Here S is a
reference point and & a ray emanating in S from which we measure angles.

In fact, for fixed ϕ, the orthogonal projection of K to the line g = {λu(ϕ) | λ ∈ R}
is a compact interval (see Fig. 2), and for its endpoint P we have

P = pu(ϕ) with p = max{〈X , u(ϕ)〉 | X ∈ K }.
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Fig. 2 Existence and uniqueness
of the support functions Z
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Since K is strictly convex, p = 〈Z , u(ϕ)〉 for a unique Z ∈ K . Hence, by choosing
p(ϕ) = p, and q(ϕ) as the oriented distance of Z and P we have indeed

Z = z(ϕ) = p(ϕ)u(ϕ)+ q(ϕ)u′(ϕ).

The connection between the regularity of the boundary curve ∂K and the support
functions is described in the following lemma.Note that herewe need that K is strongly
convex.

Lemma 2.1 Let K be a strongly convex compact set with Cn boundary ∂K, n ! 2.
Then ∂K can be parametrized by ϕ &→ z(ϕ) = p(ϕ)u(ϕ) + p′(ϕ)u′(ϕ), where
p ∈ Cn(S1,R2).

This result is remarkable in that p as a function of arc length s along ∂K instead of ϕ

is only in Cn−1 in general.

Proof Let γ be a Cn arc length parametrization of ∂K and let J =
( 0 −1
1 0

)
. Observe

that {−J γ̇ (s), γ̇ (s)} forms an orthonormal basis of R2 for every s, where the dot
indicates the derivative with respect to arc length. Hence we may write

γ (s) = −p(s)J γ̇ (s)+ q(s)γ̇ (s), (2.1)

where

p(s) = −〈γ (s), J γ̇ (s)〉 ∈ Cn−1

q(s) = 〈γ (s), γ̇ (s)〉 ∈ Cn−1.

See Fig. 3. It holds that ϕ(s) = arg γ̇ (s) − π
2 = − arctan

(
γ̇1(s)
γ̇2(s)

)
is of class Cn−1.

Hence ϕ &→ q(s(ϕ)) is of class Cn−1 and

dϕ
ds

= − 1

1+
(

γ̇1
γ̇2

)2 · γ̈1γ̇2 − γ̇1γ̈2

γ̇ 2
2

= − γ̈1γ̇2 − γ̇1γ̈2

γ̇ 2
1 + γ̇ 2

2
= −〈γ̇ , J γ̈ 〉. (2.2)
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Fig. 3 Parametrization by arc
length
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We now show that the derivative (p ◦ s)′(ϕ) = (q ◦ s)(ϕ) which implies that ϕ &→
p(s(ϕ)) is of class Cn : Indeed we have

(p ◦ s)′(ϕ) = − d
dϕ

〈
γ (s(ϕ)), J γ̇ (s(ϕ))

〉

= −
〈
γ̇ (s(ϕ)), J γ̇ (s(ϕ))

〉 ds
dϕ

−
〈
γ (s(ϕ)), J γ̈ (s(ϕ))

〉 ds
dϕ

(2.2)= 〈γ (s(ϕ)), J γ̈ (s(ϕ))〉
〈γ̇ (s(ϕ)), J γ̈ (s(ϕ))〉

=
〈
γ (s(ϕ)), γ̇ (s(ϕ))

〉
= (q ◦ s)(ϕ),

where we have used J γ̈ ‖ γ̇ in the last line. 12

Corollary 2.2 Let K be a strongly convex compact set with Cn boundary ∂K, n ! 2.
If ∂K is parametrized by z(ϕ) = p(ϕ)u(ϕ) + p′(ϕ)u′(ϕ), then z′(ϕ) = u′(ϕ)((ϕ),
where ((ϕ) = p(ϕ)+ p′′(ϕ) is the radius of curvature of ∂K in z(ϕ).

Proof It follows from Lemma 2.1 that p is of class Cn . First, by direct calculation,
we see that z′ = (p + p′′)u′, because u′′ = −u. If n ! 3, we compute z′′ =
(p+ p′′)u′′ + (p′ + p′′′)u′. Since the radius of curvature ( is the projection of z′′ onto
u′′ we obtain the desired result. If n = 2 we consider again a parametrization γ of ∂K
by arc length and use (γ̈ = J γ̇ and J 2 = − id to compute by (2.1)

γ̇ = −pJ γ̈ − ṗ J γ̇ + qγ̈ + q̇ γ̇

= p
(

γ̇ − ṗ J γ̇ + q
(
J γ̇ + q̇ γ̇

=
(
p
(
+ q̇

)
γ̇ +

(
q
(

− ṗ
)
J γ̇ .

Hence we have p
( + q̇ ≡ 1 and q

( − ṗ ≡ 0. Using q̇ = 1 − p
( we find
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p + p′′ = p + q ′ = p + q̇ · ds
dϕ

= p +
1 − p

(

−〈γ̇ , J γ̈ 〉 = p +
1 − p

(

1
( 〈γ̇ , γ̇ 〉

= ( .

12

We will now collect a few expressions for relevant geometric quantities in terms of
the parametrization for ∂K from Lemma 2.1: First of all the arc length s(ϕ) of z|[0,ϕ]
is given by

s(ϕ) =
∫ ϕ

0
|z′| d) =

∫ ϕ

0
(p + p′′) d) =

∫ ϕ

0
p d) + p′(ϕ) − p′(0) (2.3)

and hence the perimeter of K is

s(2π) =
∫ 2π

0
p dϕ =: L.

The center of mass of the curve ∂K is given by

1
L

∫ 2π

0
z|z′| dϕ = 1

L

∫ 2π

0
(pu + p′u′)(p + p′′) dϕ = 1

L

∫ 2π

0

(
p2 − p′2

2

)
u dϕ,

where we have integrated by parts. Similarly, the area A and the centroid O of K are
given by

A = 1
2

∫ 2π

0
(p2 − p′2) dϕ, and O = 1

3A

∫ 2π

0
(pu + p′u′)p(p + p′′) dϕ.

3 The Evolute of @K

Let K be a strongly convex set of class C2. Then, the evolute of ∂K is given by

e(ϕ) = z(ϕ) − ((ϕ)u(ϕ)

= z(ϕ)+ (p(ϕ)+ p′′(ϕ))u′′(ϕ)
= p(ϕ)u(ϕ)+ p′(ϕ)u′(ϕ) − (p(ϕ)+ p′′(ϕ))u(ϕ)
= p′(ϕ)u′(ϕ) − p′′(ϕ)u(ϕ). (3.1)

Thus, the evolute is obtained from the original curve ∂K by replacing its support
function p by p′ and a rotation about 90◦. Formula (3.1) shows that all parallel curves
of ∂K , which have support function p + constant, have the same evolute as K .
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3.1 Curves of ConstantWidth

Suppose that K is a strongly convex set with C2-boundary ∂K and assume in addition
that ∂K is a curve of constant width d > 0. Then ∂K can be parametrized by a
support function p that satisfies p(ϕ) + p(ϕ + π) ≡ d. This equation implies that
p(k)(ϕ) = −p(k)(ϕ + π) for k = 1, 2, and it follows for the evolute e of ∂K

e(ϕ + π) = p′(ϕ + π)

=−u′(ϕ)︷ ︸︸ ︷
u′(ϕ + π)−p′′(ϕ + π)

=−u(ϕ)︷ ︸︸ ︷
u(ϕ + π)

= p′(ϕ)u′(ϕ) − p′′(ϕ)u(ϕ)
= e(ϕ).

Hence e : S1 → R2 is π -periodic. This means that the evolute of a curve of constant
width is traversed twice.

3.2 Cusps of the Evolute

Even if ∂K is a smooth regular curve, its evolute has necessarily at least four singular
points (cusps). The situation is described in the following lemma:

Lemma 3.1 Let K be strongly convex and compact with ∂K of class C3 parametrized
by ϕ &→ z(ϕ) = p(ϕ)u(ϕ) + p′(ϕ)u′(ϕ). We assume that the curvature of ∂K has
only finitely many stationary points. Then, the evolute of ∂K, given by ϕ &→ e(ϕ) =
p′(ϕ)u′(ϕ)− p′′(ϕ)u(ϕ), is regular and of class C2 except for points where the radius
of curvature ( of ∂K is stationary. More precisely:

• If ( has a local minimum in ϕ0, then e has a cusp in ϕ0 pointing toward the point
z(ϕ0) (see Fig. 4).

• If ( has a local maximum in ϕ0, then e has a cusp in ϕ0 pointing away from the
point z(ϕ0) (see Fig. 4).

• If ( has a saddle point in ϕ0, then e is C1 in ϕ0.

Remarks • By the four-vertex theorem (see Mukhopadhyaya 1909, Kneser 1912 or
Osserman 1985), it follows that the evolute of ∂K has at least four cusps. Since
maxima and minima alternate, the number of cusps is always even.

• Note that the C2-regularity of e is not evident, since the parametrization of e with
respect to ϕ is obviously only C1 in general.

• The connection between the cusps of the evolute and strict local extrema of the
base curve has first been observed by Light (1919).

Proof First of all, note that

z′ = (u′ and e′ = −(′u

which shows that 〈z′, e′〉 = 0. Suppose now, that (′(ϕ0) = 0.
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1. case: ( has a local minimum in ϕ0. Then

lim
ϕ↗ϕ0

e′(ϕ)
‖e′(ϕ)‖ = u(ϕ0) and lim

ϕ↘ϕ0

e′(ϕ)
‖e′(ϕ)‖ = −u(ϕ0).

2. case: ( has a local maximum in ϕ0. Then

lim
ϕ↗ϕ0

e′(ϕ)
‖e′(ϕ)‖ = −u(ϕ0) and lim

ϕ↘ϕ0

e′(ϕ)
‖e′(ϕ)‖ = u(ϕ0).

3. case: ( has a saddle point in ϕ0, i.e., (′ does not change sign in ϕ0. Then
limϕ→ϕ0

e′(ϕ)
‖e′(ϕ)‖ exists, and e is C1 in ϕ0.

To check the regularity of the evolute, we interpret the curve locally as a graph of a
function x2(x1) or x1(x2). Then, by the chain rule, we have for x1(x2)

dx2
dx1

(ϕ) =
dz2(ϕ)
dϕ

dz1(ϕ)
dϕ

= tan(ϕ)

and

d2x2
dx21

(ϕ) =
d tan(ϕ)

dϕ
dz1(ϕ)
dϕ

= − 1
(′(ϕ) cos3(ϕ)

.

The case x1(x2) is similar. Since (′ is C0, we conclude that locally, in points ϕ where
(′(ϕ) %= 0, the curve e is C2. 12

Corollary 3.2 If we count the arc length of the evolute e between two cusps alternating
positive and negative, the resulting sum vanishes (see Fig. 4).

Proof The factor (′ in e′ = −(′u changes its sign in every cusp. The length of e is

∫ 2π

0
‖e′‖ dϕ =

∫ 2π

0
|(′| dϕ

and hence the alternating sum of the lengths between cusps equals

∫ 2π

0
(′ dϕ = 0.

12
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Fig. 4 The blue squares are
maxima of the curvature of z,
and the round magenta points
are minima. The sum of the
lengths of the red arcs of the
evolute e equals the sum of
lengths of the green arcs. We
also refer the reader to (Fuchs
and Tabachnikov 2007, Lecture
10) which gives a very nice
geometrical view on the topic of
evolutes

z

e

3.3 Equilibria

We now choose a measure µ with support in the compact convex set K ⊂ R2 which
models the density of a distribution of mass. The center of mass ofµ is a point O ∈ K .
Vice versa, given a point O ∈ K , there is a measure supported in K with center of
mass O (e.g., a Dirac mass in O). In a physical model, this scenario can be realized by
fixing a heavy lead ball in the point O on a thin, lightweight plate which has shape K .
If the density in K is constant the center of mass is usually called the centroid. If we
allow signed measures, the center of mass can be any point O in R2, and vice versa,
given an arbitrary point O ∈ R2, there is a signed measure supported in K with center
of mass in O . A physical model can be manufactured be glueing a long, thin batten to
K joining K to a point O /∈ K and to fix a heavy lead ball at its far end in O .

We are interested in the following question: Suppose K is equipped with a center of
mass O , as discussed above, and is rolling along a horizontal straight line &. Horizontal
means that & is perpendicular to the direction of the gravitational force g. What can
we say about the number of equilibria with respect to O in terms of the geometry of
∂K ? In particular, how many equilibrium positions are there?

Physically, an equilibrium position is characterized by the fact that the vector v
from the center of mass O of K to the contact point of ∂K with the supporting straight
line & is parallel to the gravitational force. This follows from Varignon’s theorem of
the resulting torque and the principle of angular momentum. In case of a horizontal
supporting line &, this means that v is orthogonal to &. The equilibrium is stable, if
the potential energy of K (i.e., of its center of mass) has a strict local minimum with
respect to the direction −g, and it is unstable, if the potential energy has a strict local
maximum. This translates into the following definition:

Definition 3.3 Let K be strongly convex and compact with ∂K of class C3

parametrized by ϕ &→ z(ϕ) = p(ϕ)u(ϕ) + p′(ϕ)u′(ϕ), where the origin is cho-
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p(ϕ)

p′(ϕ)

K

O

ϕ

"

Fig. 5 K rolling along the horizontal line &. The dashed line is the trace of the red center of mass O . The
dotted red line emanating from O corresponds to the angle ϕ = 0. Stable equilibrium on the left (p has a
strict local minimum), non-equilibrium in the middle (p′(ϕ) %= 0), unstable equilibrium on the right (p has
a strict local maximum).

sen in the center of mass O of K . Then, a horizontal equilibrium position with respect
to O is a point z(ϕ0) ∈ ∂K such that p′(ϕ0) = 0. The equilibrium is stable if p has a
strict local minimum in ϕ0, and unstable if p has a strict local maximum in ϕ0.

A horizontal equilibrium z ∈ ∂K is therefore a point where the tangent at z and the line
joining z and the center of mass are perpendicular. Figure 5 shows a shape K which
has one stable and one unstable horizontal equilibrium with respect to the center of
mass O . We start by investigating the number of equilibria for the special case of the
centroid O of a homogeneous body.

Proposition 3.4 Let K be a convex and compact set with C1 boundary. Then K has
at least four horizontal equilibria with respect to its centroid.

Proof Suppose the boundary ∂K is given in polar coordinates as r : S1 →
(0,∞),ϕ &→ r(ϕ), such that the origin is the centroid of K . The tangent in a point
z(ϕ) = r(ϕ)(cos(ϕ), sin(ϕ)), ∈ ∂K is perpendicular to the line joining z(ϕ)with the
origin if and only if r ′(ϕ) = 0. So we have to show that r ′ has at least four zeros on
[0, 2π). The condition that the centroid is at the origin leads upon integrating by parts
to

∫ 2π

0
r2(ϕ)r ′(ϕ)

(
sin(ϕ)

− cos(ϕ)

)
dϕ = 0. (3.2)

This implies that (3.2) remains valid if g(ϕ) = r2(ϕ)r ′(ϕ) is replaced by any trans-
lation ϕ &→ g(ϕ − c), where c ∈ R. We will now assume that there is no interval on
which r is constant; otherwise, there is nothing to show. If r ′ has only two zeros, then
r ′ > 0 on an interval of length l ∈ (0, π

2 ], or r ′ < 0 on an interval of length l ∈ (0, π
2 ].

We only discuss the first case (the second case is analogue). By a suitable translation
we may assume that r ′ > 0 on (a,π − a), where 0 ≤ a < π/2. By periodicity of r3,
we find

∫ 2π

0
g(ϕ) dϕ = 0,

123
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and therefore
∫ π

0
g(ϕ) dϕ > 0.

It follows that
∫ π

0
g(ϕ) sin(ϕ) dϕ > sin(a)

∫ π

0
g(ϕ) dϕ ! 0. (3.3)

On the other hand
∫ 2π

π
g(ϕ) sin(ϕ) dϕ > 0, (3.4)

and (3.3) and (3.4) contradict (3.2). Observe that the argument goes through if r ′ has
a third zero either in (a,π − a) or in [0, 2π) \ (a,π − a) and hence we conclude that
r ′ must have at least 4 zeros as claimed. 12
The previous proposition already appears in Domokos et al. (1994) and could also be
obtained using the Sturm–Hurwitz theorem (Theorem 5.16 in Tabachnikov (2005)).

The next theorem reveals a connection between the number of equilibrium points
of K with respect to an arbitrary point O which is not a point of the evolute of ∂K
and the winding number of the evolute of ∂K around O .

Theorem 3.5 Let K be a strongly convex compact set with C3-boundary ∂K and O a
point in the plane. Suppose that O is not a point of the evolute of ∂K. Then the number
n of horizontal equilibria of K with respect to O is given by

n = 2 − 2m,

where 0 ! m ∈ Z is the winding number of the evolute of ∂K with respect to O.

Proof We consider the parametrization z(ϕ) = p(ϕ)u(ϕ) + p′(ϕ)u′(ϕ) of ∂K with
origin O . The function p is of class C3 by Lemma 2.1, and hence, p′ is of class C2.
The evolute e of ∂K is then given by e(ϕ) = p′(ϕ)u′(ϕ) − p′′(ϕ)u(ϕ). In particular,
since O is not a point on e, p′ can only have simple zeros, and by periodicity of p, the
number n of zeros of p′ is at least 2. Then according to Lemma 1.1 in Hungerbühler
and Wasem (2018), n and hence the number of horizontal equilibria of K is given by

n = 1
π

∫ 2π

0

p′′(ϕ)2 − p′(ϕ)p′′′(ϕ)
p′(ϕ)2 + p′′(ϕ)2

dϕ. (3.5)

Hence n equals twice the winding number of the curve ϕ &→ (p′′(ϕ), p′(ϕ)) with
respect to O . The evolute can be rewritten as follows:

e(ϕ) =
(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)

︸ ︷︷ ︸
=:R(ϕ)

(−p′′(ϕ)
p′(ϕ)

)
.

123



86 Page 12 of 19 Journal of Nonlinear Science (2021) 31 :86

Since R(ϕ) causes one counterclockwise rotation around the origin and since the
winding number of ϕ &→ (−p′′(ϕ), p′(ϕ)) equals − n

2 , the winding number m of the
evolute is given by m = 1 − n

2 . The claim follows immediately. 12

Remark According to Sect. 3.1 the number of equilibria of a curve of constant width
with respect to a point not on the evolute is 2 modulo 4.

The foregoing proof can be obtained by a direct computation which remains valid
in a more general setting: Since e is a piecewise C2 immersion under the assumptions
of Lemma 3.1, the winding number of e with respect to O is given (see Proposition
2.3 in Hungerbühler and Wasem (2019)) by

m = 1
2π

∫ 2π

0

〈Je, e′〉
‖e‖2 dϕ = 1

2π

∫ 2π

0

p′(p′ + p′′′)
p′2 + p′′2 dϕ (3.6)

and the corresponding integrand is bounded. In the case of simple zeros of p′ as
discussed in Theorem 3.5, the integrand is even continuous. Then it holds that

−2m + 2
(3.6)= 1

π

∫ 2π

0

−p′(p′ + p′′′)
p′2 + p′′2 dϕ + 1

π

∫ 2π

0

p′2 + p′′2

p′2 + p′′2 dϕ

= 1
π

∫ 2π

0

p′′2 − p′ p′′′

p′2 + p′′2 dϕ
(3.5)= n.

(3.7)

The last equality of this computation also holds true by Theorem 2.4 in Hungerbühler
and Wasem (2018) in a more general setting: In particular, the computation remains
valid if p′ has zeros of order at most 2 and the relevant integrands are continuous by
the following lemma:

Lemma 3.6 If p ∈ Ck, k ! 3 and p′ only has zeros of order at most k − 1, then the
integrands in (3.7) are continuous.

Proof It suffices to show the continuity of the integrands in 0 provided ϕ = 0 is a zero
of p′ of multiplicity k − 1. Using Proposition 2.5 in Hungerbühler and Wasem (2018)
we find by Taylor expansion

p′(ϕ) =
(

p(k)(0)
(k − 1)! + r0(ϕ)

)

ϕk−1,

p′′(ϕ) =
(

p(k)(0)
(k − 2)! + r1(ϕ)

)

ϕk−2,

p′′′(ϕ) =
(

p(k)(0)
(k − 3)! + r2(ϕ)

)

ϕk−3,
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where ri are continuous functions with limϕ→0 ri (ϕ) = 0. Then

lim
ϕ→0

p′′(ϕ)2 − p′(ϕ)p′′′(ϕ)
p′(ϕ)2 + p′′(ϕ)2

= 1
k − 1

and

lim
ϕ→0

p′(ϕ)(p′(ϕ)+ p′′′(ϕ))
p′(ϕ)2 + p′′(ϕ)2

= k − 2
k − 1

.

12

In order to prove Theorem 1.1 it remains to discuss the cases where the center of
mass O of K is possibly a point of the evolute. We continue to assume, as in Lemma
3.1, that the radius of curvature of ∂K has only finitely many stationary points and
∂K is of class C3. We will distinguish two cases:

1. If O is a regular point of the evolute of ∂K , then whenever e(ϕ0) = 0, it holds that
e′(ϕ0) %= 0. This corresponds to the two black points in Fig. 6 which are labeled
by 3 and 4. Since e′ = −(′u this means that ϕ0 is not a stationary point of ( and
hence p′′′(ϕ) %= 0. Therefore the set e−1(0) consists of zeros of p′ of multiplicity
2, and we conclude that p′ has zeros of order at most 2.
In this case, computation (3.7) remains valid by Proposition 2.3 in Hungerbühler
and Wasem (2019) and Theorem 2.4 in Hungerbühler and Wasem (2018) and the
integrands are continuous according to Lemma 3.6. Proposition 2.2 in Hungerbüh-
ler and Wasem (2019) tells us (since the angles in O are equal to π ) that 2m ∈ Z
and we conclude that n = 2 − 2m, but m might be half-integer valued.

2. If O is a singular point of the evolute of ∂K , there exist values ϕ0 such that
e(ϕ0) = e′(ϕ0) = 0. See, e.g., the black point in Fig. 6 which is labeled by 2.
In this case, ϕ0 is a stationary point of ( which is either a saddle point or a cusp
of e according to Lemma 3.1. Since e = p′u′ − p′′u and e′ = −(p′ + p′′′)u we
conclude that such points are zeros of p′ of order at least 3.
Computation (3.7) remains valid in this case if we can show that p′ is an admissible
function in the sense of Definition 2.4 in Hungerbühler and Wasem (2018). More
precisely, the first equality is then justified by Proposition 2.3 in Hungerbühler
and Wasem (2019) and the last one by Theorem 2.4 in Hungerbühler and Wasem
(2018). According to Proposition 2.2 in Hungerbühler and Wasem (2019) (since
the angles in O are 0, π or 2π ) we find again 2m ∈ Z.
Since p′ ∈ C2, it suffices to show that the zeros of p′ are admissible in the sense
of Definition 2.1 in Hungerbühler and Wasem (2018), i.e., we have to show that
whenever p′(ϕ0) = 0, then

lim
ϕ↗ϕ0

p′′(ϕ)
p′(ϕ)

= −∞ and lim
ϕ↘ϕ0

p′′(ϕ)
p′(ϕ)

= +∞.

Let ϕ0 = 0 be a zero of p′. If this zero is of multiplicity one or two, then the
admissibility follows immediately from the 5th point in the remark after Definition
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2.1 in Hungerbühler andWasem (2018). In the present case we assume that p′(0) =
p′′(0) = p′′′(0) = 0. In this case, ((0) = p(0) and (′(0) = 0 and we can solve
the ODE ( = p + p′′ with initial value p′(0) = 0 in order to obtain

p(ϕ) =
∫ ϕ

0
sin(ϕ − t)((t) dt + p(0) cos(ϕ)

=
∫ ϕ

0
sin(ϕ − t)(((t) − ((0)) dt + ((0).

Upon integrating by parts (since ( is of class C1) we get the formulas

p(ϕ) = ((ϕ) −
∫ ϕ

0
cos(ϕ − t)(′(t) dt,

p′(ϕ) =
∫ ϕ

0
sin(ϕ − t)(′(t) dt,

p′′(ϕ) =
∫ ϕ

0
cos(ϕ − t)(′(t) dt .

Since the number of zeros of (′ is finite, we can consider the case where, e.g.,
(′ > 0 on (0,ϕ) provided ϕ > 0 is small enough. Then

p′′(ϕ) !
∫ ϕ

0
(1 − (ϕ − t)2)(′(t) dt ! (1 − ϕ2)

∫ ϕ

0
(′(t) dt

and

p′(ϕ) ≤ ϕ

∫ ϕ

0
(′(t) dt .

We conclude that

p′′(ϕ)
p′(ϕ)

! 1 − ϕ2

ϕ

ϕ↘0→ +∞.

The remaining cases are similar, and we find

lim
ϕ↗0

p′′(ϕ)
p′(ϕ)

= −∞ and lim
ϕ↘0

p′′(ϕ)
p′(ϕ)

= +∞

and therefore, the zeros of p′ are admissible.

This concludes the proof of Theorem 1.1.

Remarks 1. According to Sect. 3.1 the number of equilibria of a curve of constant
width with respect to a point on the evolute is even.
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Fig. 6 The number of equilibria
with respect to a given center of
mass is 2 minus twice the
winding number of the evolute.
The number of equilibria is
indicated in the figure for areas
bounded by the evolute in red
and for selected black points on
the evolute by underlined
numbers.

6

2

4

4
4

6

4

2

3

2. It follows from the conclusion of Theorem 1.1 that the number of zeros of p′ is
finite. This also follows a priori from the fact that the number of extrema of ( is
finite. Indeed, if p′(ϕ0) = 0, then the tangent of z in ϕ0 is perpendicular to z(ϕ0)

and z(ϕ0) is parallel to e′(ϕ0). Since every arc of the evolute e is convex, there are
at most 2 tangents to such an arc through z(ϕ0). Since the curvature of ∂K has only
finitely many stationary points, e is made of only finitely many arcs and there are
only twice as many zeros of p′ as there are extrema of (.

3. For points on the evolute, one can formulate the result alternatively as follows: If
the center of mass O lies on the evolute, then the number of equilibrium positions
with respect to O is the average of the number of equilibrium positions in the
neighboring areas defined by the evolute, where each neighboring area is weighted
by its angle in O . For example, the number of equilibrium positions in the black
points in Fig. 6 can be obtained in this way: 3 is the average of 2 and 4, 4 is the
average of 4 and 4 (with equal weight) and 2 and 6 (with equal weight), and 2 is
the average of 2 (with full weight) and 4 (with weight zero).

4 Oblique Equilibria

Here we investigate the equilibrium positons of K with respect to a center of mass O
on an oblique line & with angle of inclination α %= 0. The situation is shown in Fig. 7.
We can immediately read off the condition for an equilibrium position in terms of the
support function p: An equilibrium point is characterized by the condition

p′(ϕ) = tan(α)p(ϕ), (4.1)

or, if p(ϕ) %= 0, equivalently by

tan(α) = p′(ϕ)
p(ϕ)

= (ln |p(ϕ)|)′.
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Fig. 7 Equilibrium position on
an oblique line &

p

p′

K

O

!

α

α

In particular, the number nα of solutions of (4.1) on [0, 2π) corresponds to the number
of equilibrium points. This number varies with α: See Fig. 8. From a physical point
of view it seems reasonable to conjecture that the number nα of equilibria decreases
monotonically with α ∈ [0,π/2): Indeed you destroy more and more equilibria as
you increase the angle α. However, this is surprisingly not always the case: In general
nα is not monotonically decreasing with α (see point 5 in Proposition 4.1).

If we denote by v =
(

cos(α)
− sin(α)

)
the vector in the downhill direction of & and

by s(ϕ) the arclength on ∂K corresponding to the parameter interval [0,ϕ] we can
express the position of O in coordinates with respect to fixed horizontal and vertical
axis as

O(ϕ) =
(
O1(ϕ)

O2(ϕ)

)
= (s(ϕ) − p′(ϕ))v + p(ϕ)v⊥,

where v⊥ =
(
sin(α)
cos(α)

)
. An equilibrium corresponds to a point with stationary poten-

tial energy, i.e., O ′
2(ϕ) = 0. A sufficient condition for an equilibrium to be stable is

O ′′
2 (ϕ) > 0, corresponding to a strict local minimum of the potential energy. Similarly,

O ′′
2 (ϕ) < 0 implies that an equilibrium is unstable. According to (2.3) we have

O ′
2(ϕ) = p′(ϕ) cos(α) − p(ϕ) sin(α), and

O ′′
2 (ϕ) = p′′(ϕ) cos(α) − p′(ϕ) sin(α).

Thus, for an equilibrium O ′
2(ϕ) = 0, we obtain

• if p′′(ϕ) > p(ϕ) tan2(α), then ϕ is a stable equilibrium,
• if p′′(ϕ) < p(ϕ) tan2(α), ϕ is an unstable equilibrium.
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1 2 3 4 5 6

−0 .2

−0 .4

0 .2

0 .4

(ln(p))′

two equilibria

four equilibria

one equilibrium
no equilibrium

Fig. 8 Number of equilibrium points with respect to α. The value tan(α) is drawn for several values of α

In particular a center of mass O on ∂K is always a stable equilibrium.
Interesting observations are

Proposition 4.1 1. There are shapes K which have oblique equilibrium points with
respect to the centroid for angle of inclination α, but no equilibrium for angle−α.

2. For all α ∈ (−π/2,π/2) there exist shapes K which have stable equilibrium
positions with respect to α for the centroid.

3. For all small α > 0 there exist shapes K which have only one metastable equilib-
rium, and no other equilibrium, with respect to α for the centroid.

4. For all small α > 0 there exist shapes K which have only one stable and one
unstable equilibrium with respect to α for the centroid.

5. There exist shapes K for which the number nα of equilibrium positions is not
monotonically decreasing for α ∈ [0,π/2).

Remark Properties 3. and 4. are in sharp contrast to Proposition 3.4 for α = 0.

Proof Consider the support function

p(ϕ) = 3 − 279
8570 sin(ϕ)+ 36

857 cos(ϕ)+ 3
10

(
sin(2ϕ)+ cos(2ϕ)

)
+ 1

5 cos(3ϕ).

One can check that p(ϕ)+ p′′(ϕ) > 0 and thatmax(ln p)′+min(ln p)′ > 0.Moreover,
the centroid is at the origin. So, for α such that −min(ln p)′ < tan(α) < max(ln p)′

the shape with this support function p has the property mentioned in the first part of
the proposition.

For the second part, observe that the ellipse with half axis a > 1 and b = 1
has two stable and two unstable equilibria with respect to its center for every angle
α < arctan( a

2−1
2a ).

For part 3. and 4. let

pc(ϕ) = 3+ 3c(cos(2ϕ)+ sin(2ϕ))+ 2c cos(3ϕ)

+ 36c2
9−43c2 cos(ϕ) − 9(4−9c)c2

9−43c2 sin(ϕ).

Let c > 0 be sufficiently small, so that z = pcu + p′
cu

′ parametrizes the boundary
of a convex body K . By construction, the centroid of K lies at the origin. One can
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check that the function p′
c(ϕ)/pc(ϕ) has a unique maximum for each such c. Choose

αc in such a way that tan(αc) = max p′
c/pc. Then K has exactly one equilibrium for

αc and for a slightly smaller angle one stable and one unstable equilibrium. Since p′
c

pc
converges uniformly to 0 for c ↘ 0 the claim follows.

For the last part, consider the support function

p(ϕ) = 3+ 15
2602 cos(ϕ) − 1

5 cos(3ϕ) − 60
1301 sin(ϕ) − 1

3 sin(2ϕ).

This example is constructed in such a way, that the centroid is at the origin,
p(ϕ) + p′′(ϕ) > 0, and p′(ϕ)/p(ϕ) has a positive local minimum: Indeed, for
α ∈ [0, 1

100 ] there are 4 equilibrium positions, but for α ∈ [ 3
100 ,

1
10 ] there are 6

equilibrium positions. 12

In view of Theorem 1.1 it is natural to ask, if the number nα of oblique equilibria
with respect to angle α > 0 can be obtained as nα = 2 − 2mα , where mα is the
winding number of the evolute of a suitable modification of ∂K . Consider therefore
again a strongly convex and compact set K with C3 boundary and such that the radius
of curvature of ∂K has only finitely many stationary points. Let z = pu+ p′u′ be the
usual C2 parametrization of ∂K , and let e = p′u′ − p′′u be the evolute of ∂K . Define
eα = e− tan(α)J z and p′

α = p′ − tan(α)p. Let pα be a primitive of p′
α with constant

of integration large enough such that pα + p′′
α =: (α > 0. In this case, pα is again

the support function of a curve Cα and the evolute of Cα is precisely eα . Note that in
general, pα will not be periodic and therefore Cα will not be closed.

Proposition 4.2 If the curvature of Cα admits only finitely many stationary points,
then the number nα of oblique equilibria of ∂K with respect to O ∈ R2 and angle of
inclination α is given by nα = 2 − 2mα , where mα ∈ 1

2Z is the winding number of
the evolute of Cα with respect to O.

Proof Observe that eα is a piecewise C2 immersion, since e is piecewise C2, z is of
class C2, and the number of zeros of e′

α is finite. In this case, the winding number mα

of eα is given by

mα = 1
2π

∫ 2π

0

〈Jeα, e′
α〉

‖eα‖2 dϕ

and using p′
α = p′ − tan(α)p we obtain

−2mα + 2 = 1
π

∫ 2π

0

p′′
α
2 − p′

α p
′′′
α

p′
α
2 + p′′

α
2 dϕ = nα,

in analogous manner to the case where α = 0. 12

Remark It is clear by definition that eα diverges as α → ±π
2 ; however, the renormal-

ized perturbed evolute eα/ tan(α) converges to −J z as α → ±π
2 . Moreover mα → 1

as α → ±π
2 so that n± π

2
= 0, as expected.
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