
Journal of Convex Analysis
Volume 24 (2017), No. 1, 309–317

Convex Integration and Legendrian
Approximation of Curves

Norbert Hungerbühler
Department of Mathematics, ETH Zürich,
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Using convex integration we give a constructive proof of the well-known fact that every
continuous curve in a contact 3-manifold can be approximated by a Legendrian curve.

1. Introduction

A contact structure on a 3-manifold M is a maximally non-integrable rank 2
subbundle ξ of the tangent bundle of M . If α is a 1-form on M whose kernel
is ξ, then ξ is a contact structure if and only if α → dα "= 0. A curve η in
a contact 3-manifold (M, ξ) is called Legendrian, whenever η∗α = 0 for some
(local) 1-form α defining ξ.

The purpose of this note is to give a detailed proof of the following statement
which is often used in contact geometry and Legendrian knot theory.

Theorem 1.1. Any continuous map from a compact 1-manifold to a contact
3-manifold can be approximated by a Legendrian curve in the C0-Whitney topol-
ogy.

Whereas this theorem is a special case of Gromov’s h-principle for Legendrian
immersions [5], the curve-case can be treated by more elementary techniques.
Sketches of proofs of Theorem 1.1 have already appeared in the literature, see
for example [1, p. 6–7], [4, p. 40] or [3, p. 102]. Exploiting the fact that every
contact 3-manifold is locally contactomorphic to R3 equipped with the standard
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contact structure defined by α = dz − ydx, Etnyre and Geiges indicate that
either the front-projection (x, z) of a given curve (x, y, z) can be approximated
by a zig-zag-curve whose slope approximates the y-component of the curve or
the Lagrangian projection (x, y) can be approximated by a curve whose area
integral approximates the z component of the curve, which can be achieved by
adding small negatively or positively oriented loops.

Here, we give a different and analytically rigorous proof of Theorem 1.1 by us-
ing convex integration. Our proof has the advantage of providing a constructive
approximation. In particular, in the case of a continuous curve in R3 equipped
with the standard contact structure, we obtain an explicit Legendrian curve
given in terms of an elementary integral. For instance, we obtain a solution,
even integral-free, to the “parallel parking problem" in Example 3.1. Exam-
ple 3.2 shows how our technique recovers the zig-zag-curves and the small loops
in the front - respectively Lagrangian projections.

2. Proof of the Theorem

We start by first treating the case where the contact manifold is R3 equipped
with the standard contact structure, that is, we aim to prove the following:

Proposition 2.1. Let υ ∈ C0([0, 2π],R3). For every ε > 0 there exists a
Legendrian curve η ∈ C∞([0, 2π],R3) such that ‖υ − η‖C0([0,2π]) ! ε.

Remark 2.2. Here, as usual, ‖γ‖C0(I) := supt∈I |γ(t)| and ‖γ‖C1(I) :=
‖γ‖C0(I) + ‖dγ‖C0(I).

Let the curve we wish to approximate be given by (x, y, z) ∈ C∞([0, 2π],R3).
The regularity is no restriction due to a standard approximation argument
using convolution. Let η = (a, b, c) ∈ C∞([0, 2π],R3) denote the approximating
Legendrian curve. For every choice of smooth functions (a, c) ∈ C∞([0, 2π],R2)
satisfying #a "= 0, we obtain a Legendrian curve by defining b = #c/ #a. Therefore,
if ( #a(t), #c(t)) lies in the set

Rt,ε :=
{

(u, v) ∈ R
2, |v − y(t)u| ! εmin{|u|, |u|2}

}

,

for every t ∈ [0, 2π], then ‖b− y‖C0([0,2π]) ! ε. This condition can be achieved
by defining

(a(t), c(t)) := (x(0), z(0)) +

∫ t

0

γ(u, nu) du,

with γ ∈ C∞([0, 2π]×S1,R2) and n ∈ N, provided that γ(t, ·) ∈ Rt,ε. Further-
more, if γ additionally satisfies

1

2π

∮

S1

γ(t, s) ds = ( #x(t), #z(t)),

for all t ∈ [0, 2π], then – as we will show below – (a(t), c(t)) approaches
(x(t), z(t)) as n gets sufficiently large.
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The set Rt,ε is ample, i.e., the interior of its convex hull is all of R2. For
any given point ( #x(t), #z(t)) ∈ R2 we will thus be able to find a loop in Rt,ε

having ( #x(t), #z(t)) as its barycenter. This fact is sometimes referred to as
the fundamental lemma of convex integration (see for instance [6, Prop. 2.11,
p. 28]). In the particular case studied here we find an explicit formula for γ:

Lemma 2.3. There exists a family of loops γ ∈ C∞([0, 2π]×S1,R2) satisfying
γ(t, ·) ∈ Rt,ε and such that

1

2π

∮

S1

γ(t, s) ds = ( #x(t), #z(t)), (1)

for all t ∈ [0, 2π].

Proof. The map γ := (γ1, γ2), where

γ1(t, s) := r cos s+ #x(t)

and

γ2(t, s) := γ1(t, s)

(

y(t) +
2( #z(t)− y(t) #x(t))

r2 + 2 #x(t)2
γ1(t, s)

)

satisfies (1) for every r > 0. If r is large enough one obtains γ(t, ·) ∈ Rt,ε,
where r can be chosen independently of t by compactness of [0, 2π].

We now have:

Proof of Proposition 2.1. With the definitions above we obtain

b(t) :=
#c(t)

#a(t)
= y(t) +

2( #z(t)− y(t) #x(t))

r2 + 2 #x(t)2
γ1(t, nt).

We are left to show that |(a, c)− (x, z)| ! ε provided n is large enough. This
follows from the following estimate

‖(a, c)− (x, z)‖C0([0,2π]) !
4π2

n
‖γ‖C1([0,2π]×S1). (2)

The estimate is in fact a geometric property of the derivative and can be in-
terpreted as follows: Since ( #a, #c) and ( #x, #z) coincide “in average" on shorter
and shorter intervals when n gets bigger and bigger, (a, c) and (x, z) tend to
become close: Let

Ik :=

[

2πk

n
,
2π(k + 1)

n

]

for k = 0, . . . ,

⌊

nt

2π

⌋

− 1 and J :=

[⌊

nt

2π

⌋

2π

n
, t

]

.
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Then we can estimate D = |(a(t), c(t))− (x(t), z(t))|:

D =

∣

∣

∣

∣

∫ t

0

γ(u, nu) du−
∫ t

0

( #x, #z)(u) du

∣

∣

∣

∣

!

( nt

2π)−1
∑

k=0

∣

∣

∣

∣

∫

Ik

γ(u, nu) du−
∫

Ik

1

2π

∫ 2π

0

γ(u, v) dv du

∣

∣

∣

∣

+

∫

J

(

|γ(u, nu)|+ ‖γ‖C0([0,2π]×S1)

)

du

!

( nt

2π)−1
∑

k=0

∣

∣

∣

∣

1

n

∫ 2π

0

γ

(

v + 2kπ

n
, v

)

dv −
∫

Ik

1

2π

∫ 2π

0

γ(u, v) dv du

∣

∣

∣

∣

+
4π

n
‖γ‖C0([0,2π]×S1)

!

( nt

2π)−1
∑

k=0

∣

∣

∣

∣

1

2π

∫

Ik

∫ 2π

0

(

γ

(

v + 2kπ

n
, v

)

− γ(u, v)

)

dv du

∣

∣

∣

∣

+
4π

n
‖γ‖C0([0,2π]×S1)

!

⌊

nt

2π

⌋

4π2

n2
‖∂tγ‖C0([0,2π]×S1) +

4π

n
‖γ‖C0([0,2π]×S1)

!
4π

n

(

π‖∂tγ‖C0([0,2π]×S1) + ‖γ‖C0([0,2π]×S1)

)

.

By construction, the curve (a, b, c) is Legendrian and the desired approximation
of (x, y, z).

Next we show that we can approximate closed curves by closed Legendrian
curves.

Proposition 2.4. Let υ ∈ C0(S1,R3). For every ε > 0 there exists a Legen-
drian curve η ∈ C∞(S1,R3) such that ‖υ − η‖C0(S1) ! ε.

Proof. Using standard regularization, let the curve we wish to approximate
be given by (x, y, z) ∈ C∞([0, 2π],R3), where the values of (x, y, z) in 0 and
2π agree to all orders. Define g(t) := γ2

1(t, nt). Since ‖g‖L1([0,2π]) = O(r2) as
r → ∞, we can choose r > 0 large enough such that f := g/‖g‖L1([0,2π]) is
well-defined. With the notation

I2 :=

∫ 2π

0

γ2(u, nu) du,
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we define η = (a, b, c) as follows:

(a(t), c(t)) := (x(0), z(0)) +

∫ t

0

[

γ(u, nu)− (0, I2f(u))

]

du, (3)

b(t) :=
#c(t)

#a(t)
= y(t) + γ1(t, nt)

(

2( #z(t)− y(t) #x(t))

r2 + 2 #x(t)2
− I2

‖g‖L1([0,2π])

)

. (4)

A straightforward computation shows that the values of (a, b, c) in 0 and 2π
agree to all orders, hence η ∈ C∞(S1,R3) and it is Legendre by construction.
Using (2) we obtain |I2| ! 4π2

n
‖γ2‖C1([0,2π]×S1), hence we find using (4) as r →

∞:

‖b− y‖C0([0,2π]) ! ‖γ1‖C0([0,2π]×S1)

(

1 +
1

n
‖γ‖C1([0,2π]×S1)

)

O(r−2).

For the remaining components we find find using (2) and (3) the uniform bound

|(a(t), c(t))− (x(t), z(t))| !
4π2

n
‖γ‖C1([0,2π]×S1) +

|I2|
‖g‖L1([0,2π])

∫ t

0

g(u) du

!
8π2

n
‖γ‖C1([0,2π]×S1).

Choosing r large enough and n ∼ r2 concludes the proof.

We show now how to glue together two local approximations of a curve Γ in M
on two intersecting coordinate neighborhoods. Let therefore Uσ and Uτ in M
be coordinate patches such that U = Uσ ∩ Uτ "= ∅. Let Iσ and Iτ be compact
intervals such that I = Iσ ∩ Iτ contains an open neighborhood of t = 0 (after
shifting the variable t if necessary) and such that Γ(Iσ) ⊂ Uσ, Γ(Iτ ) ⊂ Uτ .
Assume without restriction that Γ is smooth and let (x, y, z) represent Γ on U .
Suppose that (x, y, z) is approximated by Legendrian curves σ : Iσ → R3 and
τ : Iτ → R3 such that

‖σ − (x, y, z)‖C0(I) < ε2, ‖τ − (x, y, z)‖C0(I) < ε2 (5)

for some fixed 0 < ε < 1
2 . For r > 0, define R(r) to be the smallest number

such that B̄r(0) ⊂ conv
(

R0,ε ∩ B̄R(0)
)

. Note that R depends continuously on
r and if r > r0 :=

ε√
1+y(0)2

, then

R(r) =
r

ε

√

(1 + y(0)2) (1 + (|y(0)|+ ε)2) =:
r

ε
w(y(0), ε). (6)

Choose 0 < δ < ε2 such that [−δ, δ] ⊂ I and such that δ‖(x, y, z)‖C1(I) ! ε2

and define

p1 := (σ1(−δ),σ3(−δ)),

#p1 := ( #σ1(−δ), #σ3(−δ)),

p2 := (τ1(δ), τ3(δ)),

#p2 := ( #τ1(δ), #τ3(δ)).
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From (5) and the choice of δ we obtain #p1, #p2 ∈ Cε :=
{

(u, v) ∈ R2, |v−y(0)u| !

ε|u|
}

and

p2 − p1
2δ

=: p ∈ Br̄(0), where r̄ =
2ε2

δ
.

Since 3r̄ > r0, we can express R(3r̄) by means of formula (6). This will be used
in computation (9). We construct a path γ = (γ1, γ2) : [−δ, δ] → Cε as follows:
For ρ < δ/2, let γ|[−δ,−δ+ρ] be a continuous path from #p1 to 0 and let γ|[δ−ρ,δ] be
a continuous path from 0 to #p2. We construct γ such that the quotient γ2/γ1
is well-defined on [−δ,−δ + ρ] ∞ [δ − ρ, δ] and equals y(0) in t = −δ + ρ and
t = δ − ρ. Moreover, we require that

∫

−δ+ρ

−δ

|γ(t)| dt < δε

2
and

∫ δ

δ−ρ

|γ(t)| dt < δε

2
. (7)

On [−δ,−δ + ρ], such a path is for example given by

t ∈→
(

1− δ + t

ρ

)k
(

#σ1(−δ)

y(0) #σ1(−δ) + ( #σ3(−δ)− y(0) #σ1(−δ))
(

1− δ+t
ρ

)k

)

provided k ∈ N is sufficiently large. We obtain

1

2(δ − ρ)

(

2δp−
∫

−δ+ρ

−δ

γ(t) dt−
∫ δ

δ−ρ

γ(t) dt

)

=: p̄ ∈ B3r̄(0)

and hence p̄ ∈ int conv(BR(3r̄)(0) ∩ R0,ε). Using the fundamental lemma of
convex integration we let γ|[−δ+ρ,δ−ρ] be a continuous closed loop in BR(3r̄)(0)∩
R0,ε based at 0 such that

1

2(δ − ρ)

∫ δ−ρ

−δ+ρ

γ(t) dt = p̄.

With these definitions we obtain

1

2δ

∫ δ

−δ

γ(t) = p.

Now we define η = (a, b, c) : [−δ, δ] → R3 by letting b(t) := #c(t)/ #a(t), where

(a, c)(t) := p1 +

∫ t

−δ

γ(u)du.

The curve η is well-defined and Legendrian by construction. It satisfies η(−δ) =
σ(−δ) and η(δ) = τ(δ). Moreover, (a, c) and (σ1,σ3) agree to first order in
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t = −δ and so do (a, c) and (τ1, τ3) in t = δ. From γ([−δ, δ]) ∈ Cε and the
choice of δ we find

|b(t)− y(t)| ! |b(t)− y(0)|+ |y(t)− y(0)| ! ε+ δ‖y‖C1(I) < 2ε. (8)

Using (5), (6), (7) and the choice of δ we obtain for the remaining components
the uniform bound

|(a, c)(t)− (x, z)(t)| ! |p1 − (x, z)(−δ)|+
∫ t

−δ

(|γ(u)|+ |( #x, #z)(u)|) du

! ε2 + δε+

∫ δ−ρ

−δ+ρ

|γ(u)| du+ 2δ‖(x, z)‖C1(I)

! 2ε+ 2δR(3r̄)

! ε

(

14 + 12

(

|y(0)|+ 1

2

)2
)

.

(9)

Finally, suppose υ is a continuous curve from a compact 1-manifold N (that
is, N is a compact interval or S1) into a contact 3-manifold (M, ξ). We fix
some Riemannian metric g on M . Then it follows with the bounds (8,9) and
the compactness of the domain of υ that for every ε > 0 there exists a ξ-
Legendrian curve η such that

sup
t∈N

dg(υ(t), η(t)) < ε,

where dg denotes the metric on M induced by the Riemannian metric g. In
particular, every open neighborhood of υ ∈ C0(N,M) – equipped with the
uniform topology – contains a Legendrian curve N → M . Since N is assumed
to be compact the uniform topology is the same as the Whitney C0-topology,
thus proving Theorem 1.1.

3. Examples

Example 3.1 (Parallel Parking). The trajectory of a car moving in the
plane can be thought of as a curve [0, 2π] → S1×R2. Denoting by (ϕ, a, c) the
natural coordinates on S1×R2, the angle coordinate ϕ denotes the orientation
of the car with respect to the a-axis and the coordinates (a, c) the position of
the car in the plane. Admissible motions of the car are curves satisfying

#a sinϕ = #c cosϕ.

The manifold S1×R2 together with the contact structure defined by the kernel
of the 1-form θ := sinϕ da− cosϕ dc is a contact 3-manifold. Indeed, we have

θ → dθ = − cos2ϕ dϕ → da → dc− sin2ϕ dϕ → da → dc = −dϕ → da → dc "= 0.
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Figure 3.1: The front (top) and the Lagrangian projection (bottom) of the
Legendrian approximation of η.

Applying Theorem 1.1 with b = tanϕ gives an explicit approximation of the
curve

t ∈→ (x(t), y(t), z(t)) = (0, 0, t).

Lemma 2.3 gives the loop

γ(t, s) = 2(r cos s, cos2 s),

and hence the desired Legendrian curve

(arccot(r sec(nt)), 2rt sinc(nt), t+ t sinc(2nt)) ,

provided r is large enough and n ∼ r2.

Example 3.2 (Legendrian Helix). The Legendrian approximation of the
helix

υ : [0, 2π] → R
3, t ∈→ (t, cos(5t), sin(5t)),

with n = 2
9r

2 and r = 30 is given by

a(t) = t+
3

20
sin(200t)

b(t) =
455

451
cos(5t) +

120

451
cos(5t) cos(200t)

c(t) = sin(5t) +
459

5863
sin(195t) +

1377

18491
sin(205t)

+
180

35629
sin(395t) +

20

4059
sin(405t).

and produces the zig-zags and the small loops in its front and Lagrangian
projections (see Figure 3.1).
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