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1. INTRODUCTION 

Let M and N be compact smooth Riemannian manifolds without boundaries with metrics y 
and g, respectively. Let m and n denote the dimensions of A4 and N. For a Cl-map f: A4 + N 
the p-energy density is defined by 

and the p-energy by 

(1) 

E(f) := e(f) G. (2) 
A4 

Here, p denotes a real number in [2, oo[, Idf,l is the Hilbert-Schmidt norm with respect to y 
and g of the differential df, E T*(M) 0 Tf(,,(N) and p is the measure on M which is induced 
by the metric. For concrete calculations we need an expression for E(f) in local coordinates: 

E,(f) = ; 
s 

n (r”‘?sii ~f)&xf’a,f’Y’zfi dx. 

Here, U c A4 and Q c R” denote the domain and the range of the coordinates on A4 and it is 
assumed that f(u) is contained in the domain of the coordinates chosen on N. Upper indices 
denote components, whereas a, denotes the derivative with respect to the coordinate variable 
xa. We use the usual summation convention. 

Variation of the energy-functional yields the Euler-Lagrange equations of the p-energy 
which are 

A,+ -(Y*Bgija,fiagfj)p'a-lysbr~ao,fia,fj 
in local coordinates. The operator 

(3) 

A,f:= $aB(fi(y"Bgija,fiasfj)P'2-'ya@a.fi) 

is called p-Laplace operator (for p = 2 this is just the Laplace-Beltrami operator and does not 
depend on N). On the right-hand side of (3) the I$ denote the Christoffel-symbols related to 
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the manifold N. According to Nash’s embedding theorem we can think of N as being 
isometrically embedded in some Euclidean space lRk since N is compact. Then, if we denote 
by F the function f regarded as a function into NC lRk, equation (3) admits a geometric 
interpretation, namely 

A,FI T,N 

with AP being the p-Laplace operator with respect to the manifolds M and lRk. 
For p > 2 the p-Laplace operator is degenerate elliptic. (Weak) solutions of (3) are called 

(weakly) p-harmonic maps. Compactness results for weakly p-harmonic maps have been 
obtained by Luckhaus [l] and Toro and Wang [2] (see also Section 4). One possibility to 
generate p-harmonic maps is to investigate the heat flow related to the p-energy, i.e. to look at 
the heat-flow equation 

or explicitly for (4) 

kf- - Apf -L TfN (4) 

flt=o =.A (5) 

a,f - A,f = (Pe(f )Ywf )(Vfs Vf) (6) 

where A(f)( -, *) is the second fundamental form on N. For p = 2 Eells and Sampson showed 
in their famous work [3] of 1964, that there exist global solutions of (4) provided N has 
nonpositive sectional curvature and that the flow tends for suitable tk -+ 0~ to a harmonic map. 
For p = 2 the general problem has been solved by Chen and Struwe in [4]. For p > 2 only little 
is known about existence and regularity of solutions of (4): If the target manifold N is a sphere 
there exists a global weak solutionfof thep-harmonic flow with f E L”(0, 00; F@‘(M, N)) and 
f, E L’(O, GO; L?(M)) for arbitrary initial data in W’VP(A4, N) (see [5]). Here W1lP(M, N) denotes 
the nonlinear Sobolev space of functions g E W’*P(A4, mk) with g(x) E N for almost every 
x E it4. In the conformal case, i.e. if p = dim(M), there exists (again for initial data in 
W’9p(A4, N)) a global weak solution which is partially regular in the sense that Vf E Copa in 
space-time up to finitely many singular times T, < T2 < ... < TK I 00 (and K is a priori 
bounded in terms of the initial p-energy). Moreover, solutions in L”(0, T; W’*“(M, N)) are 
known to be unique (see [6]). 

Recently considerable progress has been achieved in different geometric motivated problems 
if homogeneous spaces are assumed as targets: e.g. [2, 7 or 81. Here, inspired by Toro and 
Wang [2], we want to consider the p-harmonic flow for compact targets N which are 
homogeneous spaces, i.e. N = G/N is the quotient of a connected Lie group G by a closed 
discrete subgroup H. We will investigate weak solutions of (4)-(5) in the space 

v(M, N) := k E L-(0, T; Wisp(M, N)) : &g E ~~(0, T; Lo)] 

equipped with the norm 

Ml v(M,N) := ess sup II& 9II WI~P(~,N) + Ilg~ll~~~Mx~o,m~~. ost 
Recall that L-(0, T; W’,p(M)) is the dual space of L’(0, Z W-‘*p’(M)). 
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2. THE FLOW EQUATION FOR HOMOGENEOUS TARGET 

Let X be a killing field on N, that is the generator of an isometry of N, satisfying 

V”X(P), f4 = 0 forallpEN,uETpN, (7) 

where V, denotes the covariant derivative in direction u and ( *, . > is the inner product on 
TpN C qlRk, that is the scalar product in iRk restricted to T,N. 

For the sake of simplicity we assume in the sequel that Mis the flat torus lRm/Zm (a justifica- 
tion will be given in the remark towards the end of this section). Hence, if f E V is a weak 
solution of the p-flow, we have 

with [ being a smooth cutoff function. Differentiating the product on the left-hand side, 
we obtain 

m 

=- 

$5 

(W,x(f), k!fl”-%xf> + @,0(x(f), k-!flp-2a,f>) dp di 
0 M 

co 
=- 

IS 
h ad) + ctmwf ), Idf r2am f >) dp dt 

0 M 
= 0 by (7) 

=- @,Obf Ip-*Mf 1, a,f) dp dt. 
M 

Hence we have 
dMidfIp-2CVf), Vf>) = (&fJ(f)> (8) 

in the sense of distributions. Let n denote the dimension of N. HClein [7] observed that on a 
homogeneous space of dimension n there exist n linearly independent Killing vector fields Xi. 
In fact, if N is represented as a quotient N = G/H of a connected Lie group by a closed, 
discrete subgroup H, we may choose as (X,)i S i S n a basis of the Lie algebra g of G. Thus, we 
conclude that (4) is equivalent to the system of equations 

div(ldflP-2CG(f), vf>) = <a,f,XAf)> for i = 1, . . . . n. (9) 

Notice that, since f E V(M, N), there are test functions IJJ E V(M, R) allowed in (9). The point 
is that (9) does, in contrast to (6), no longer contain a term of order [Vf Ip and this will allow 
to prove the desired compactness result as an application of lemma 1 below. (This is very similar 
to the geometric argument in [5] in case N = S”.) 
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Remark. There remains to justify that (V a,fX(f), a,f) = 0 also in case of a general domain 
manifold M. In fact, for general A4 the corresponding expression is 

n3J~(f), aof> = (Y+(f), PQj3f). 
Using orthogonal coordinates, we have that the vector fields ayand a,f are parallel and the 
desired result follows by applying (7) for every (Y separately. 

3. WEAK COMPACTNESS OF THE SOLUTIONS OF THE FLOW 

Let l&J be a bounded sequence in V(M, N) of weak solutions of the p-harmonic flow 
from A4 to N. We may pass to a subsequence (again denoted (&)) of functions converging as 
distributions to f: M x (0, 00) + N, i.e. 

fk -.f in D’(M X (0, T)), (10) 

Vfk + Vf in a)‘(Mx (0, T)), (11) 

atfk - a,f weakly in t’(A4 x (0, T)). (12) 

Let us recall a compactness lemma from [5]. 

LEMMA 1. Fork = l,2, . . . . ktfk = (fi , . . ., f:+') be vector functions of (x, t) on M x [0, Tl 
satisfying the equation 

&fk - A.pfk = gk, 0nMx [0, T] 

in the sense of distribution. Here, Ap denotes the p-Laplace operator related to the manifolds 
Mand ll?+’ . Assume further that ( fk)k E N is bounded in L-(0, T; W’*p(M, R”+l)), 18, fklk E M is 
bounded in L’(O, T; L2(M, R”+‘)), and (gk]k E M is bounded in L’(0, T, L’(M, iR”+t)). Then, 
(fkjke M is precompact in Lq(O, T, W’Pq(M, lF?+t)) for each 1 I q C p. 

Notice that, since (fk) is bounded in V(M, N), by the explicit form of (4), we actually have 
an L’ bound for the right-hand side of (6). Thus, applying lemma 1 we conclude that after 
passing to a suitable subsequence 

fk +f a.e. on A4 x (0, T) and in Lq(O, T; Lq(M, N)) (13) 
for 1 I q < p and hence that 

Idfklpm2 dfk - ldf(p-2 df in P’(0, cLP’(M)). (14) 
Due to (12) and (14) it is now possible to pass to the limit in equation (9) if we use the following 
general fact. 

LEMMA 2. If 
fk -f weakly in tq(Q) 

gk -+ g boundary a.e. on Q (i.e. [l&-on I C for all k) 
then 

fkgk - fg weakly in Lq(sZ). 
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Proof. The proof is a straightforward consequence of the theorems of Lebesgue and 
Egorov. n 

Now in fact, if p is a smooth test function we have for each i = 1, . . . , n : 
co 

0 = lim 
1s 

a Hatfk 3 xi(f/c)W dt + 
k-03 0 M ss 

(a,~,)IdfkIP-‘(Xi(fk), aafk) dp dt 
0 M 

O5 = datf, xi(f )> dp dt + 
ss 

(aaV)Idf IP-2(Xi(f 1s aaf > 4u dt* 
0 h4 

Thus, we have proved the following theorem. 

THEOREM 1. If the target manifold N is a homogeneous space, then the space of weak solutions 
of (4) is weakly compact in the following sense: If (gkj is a bounded sequence in V(M, N) of 
solutions of the p-harmonic flow then there exists a subsequence {fk] such that 

%fk - &f weakly in L’(O, T, L2(M)) 

fk Lf weakly* in L”(0, T, W’Sp(M, N)) 

and then, f is a weak solution of (4). 

4. THE STATIONARY CASE 

If we apply theorem 1 to the stationary case (i.e. vanishing time derivative in (4)) we obtain 
as a corollary the following theorem. 

THEOREM 2. If the target manifold N is a homogeneous space, and if fk E W1*p(M, N) is a 
sequence of weaklyp-harmonic maps with fk - fin WISP(M, N), then f is a weaklyp-harmonic 
map from A4 to N. 

This result was proved by Toro and Wang for A4 = Q c lRm in [2, theorem l] by using 
the observation that the right-hand side of (4) lies (due to the additional structure of the 
target manifold N) in the Hardy-space X~,,, and then using the duality of X1 and BMO. 
Here, we could avoid this argument by directly using the geometrically motivated form (9) of 
equation (4). 

However, unlike in the time independent situation where existence of weakly p-harmonic 
maps is easily derived by the direct method of the calculus of variation, existence of weak 
solutions of the p-harmonic flow into homogeneous spaces (which will be proved in a forth- 
coming paper) is not an automatic consequence of our compactness result. 

Acknowledgements-I would like to thank Professor Michael Struwe for his encourangement and for several remarks 
which allowed me to shorten the proof considerably, and Professor Stefan Miiller for his useful comments and valuable 
suggestions. I am grateful to the Mathematisches Institut of the Albert-Ludwigs Universitiit Freiburg (Germany) for the 
hospitality and to the Swiss National Science Foundation for supporting this research. 



798 N. HUNGERBUHLER 

REFERENCES 

1. LUCKHAUS S., Convergence of minimizers for the p-Dirichlet integral, Math. 2. 213, 449-456 (1993). 
2. TORO T. & WANG C., Compactness properties of weakly p-harmonic maps into homogeneous spaces. Preprint 

(1994). 
3. EELLS J. & SAMPSON H. J., Harmonic mappings of Riemannian manifolds, Am. .I. Math. 86, 109-169 (1964). 
4. CHEN Y. & STRUWE M., Existence and partial regularity results for the heat flow for harmonic maps, Math. 2. 

201, 83-103 (1989). 
5. CHEN Y., HONG M.-C. & HUNGERBUHLER N., Heat flow of p-harmonic maps with values into spheres, 

Math. Z. 215, 25-35 (1994). 
6. HUNGERBUHLER N., Conformal p-harmonic flow. Preprint (1994). 
7. HELEIN F., Regularity of weakly harmonic maps from a surface into a manifold with symmetries, Munuscriptu 

math. 70, 203-218 (1991). 
8. STRUWE M., Weak compactness of harmonic maps from (2 + 1)-dimensional Minkowsky space to symmetric 

spaces. Preprint (1994). 


