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ABSTRACT

We consider closed chains of circles C1, C2, . . . , Cn, Cn+1 = C1 such that two neighbouring circles
Ci, Ci+1 intersect or touch each other with Ai being a common point. We formulate conditions such
that a polygon with vertices Xi on Ci, and Ai on the (extended) side XiXi+1, is closed for every
position of the starting point X1 on C1. Similar results apply to open chains of circles. It turns out
that the intersection of the sides XiXi+1 and XjXj+1 of the polygon lies on a circle Cij through Ai

and Aj with the property that Cij , Cjk and Cki pass through a common point. The six circles theorem
of Miquel and Steiner’s quadrilateral Theorem appear as special cases of the general results.

Keywords: Closing theorems, circle chains, Miquel’s six circles theorem, Steiner’s quadrilateral theorem

AMS Subject Classification (2020): Primary: 51M04; Secondary: 51M15.

1. Introduction

The treasure trove of geometry contains a wide spectrum of closing theorems. Among the best known are
Steiner’s closing theorem (Figure 1(a), [3, § 6.5]), which belongs to the Möbius geometry, and Poncelet’s porism
(Figure 1(b), [4, 6, 8]), one of the deepest results of projective geometry.

Other examples are the classical theorems of Pappus and Desargues, which have been known for a long time
and are fundamental to the axiomatics of geometry. These theorems can be formulated in the same style as
the theorems of Steiner and Poncelet. They then show their closing character much more clearly than usual.
Figure 2(a) illustrates this using the example of the Pappus hexagon theorem. In this formulation, the theorem
has very universal generalizations (see [2, 12]). Another well-known closing result is the Butterfly theorem in
Figure 2(b). This theorem is also only a special case of a much more general closing result (see [10]). Other
examples are the closing theorem of Emch [5], and the zig-zag theorem [1]. In this article we investigate a
family of new closing theorems for circle chains.

2. A closing theorem for circle chains

We will use the notation C1 C2 for two circles C1 and C2 that intersect either in two points or that touch each
other. To describe and prove the closing theorem, we will use the following map.

Definition 1. Let C1 C2 be two intersecting or touching circles and A a common point of C1 and C2. Then
φA : C1 → C2, X 7→ φA(X), is defined as follows: If X ̸= A, then the points X,φA(X), and A are collinear. If
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(a) (b)

Figure 1. (a) Steiner’s closing theorem: Two blue support circles are given, into which a chain of circles is fitted so that neighbouring circles touch
each other. If the chain closes in a certain position (red), it closes in every position (dashed). (b) Poncelet’s porism: A chain of tangents to a conic
(green) with vertices on a second conic (blue) is drawn. If the chain closes in a certain position (red), it closes in every position (dashed).
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Figure 2. (a) The hexagon theorem of Pappus formulated as closing theorem. If the Pappus hexagon (red) closes for one position of the starting
point X on the line ℓ, it closes for any other starting point (dashed). (b) The Butterfly theorem. If the quadrangle (red) with starting point X on a
conic C and passing through the four points on a line ℓ is closed, then it closes for any other starting point (dashed).

X = A, then the line through the points A and φA(X) is the tangent to C1 in A. In particular, if C1 and C2 touch
at A, then the image of X = A is the point φA(X) = A (see Figure 3). The point A will be called pivot of the pivot
map φA.

Using such pivot maps we can state the first theorem for a closed chain of n circles as follows. Notice that
indices will be read cyclically throughout.

Theorem 2. Let C1 C2 C3 · · · Cn C1 be a closed chain of circles. For i = 1, . . . , n let Ai be a common point of
Ci and Ci+1. Let φ := φAn ◦ · · · ◦ φA2 ◦ φA1 . Then the following holds: If φ(X) = X for one point X ∈ C1, then φ is the
identity map on C1.

The statement of Theorem 2 can be formulated in a geometric way visually as follows: Let X1 = X ∈ C1

and iteratively Xi+1 := φAi
(Xi) ∈ Ci+1, for i = 1, 2, . . . n. Then we have: If X = Xn+1, then the corresponding

polygon X1X2 . . . XnX1 through the pivots A1, A2, . . . , An closes for every starting point X1 on C1 (see Figure 4).

dergipark.org.tr/en/pub/iejg 260

https://dergipark.org.tr/en/pub/iejg


N. Hungerbühler

A

C1

C2

X

φA(X)

A = X

C1

C2

φA(X)

C1

C2

X = A = φA(X)

Figure 3. The map φA : C1 → C2, X 7→ φA(X).
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Figure 4. Theorem 2 for five circles. If the polygon with starting point X1 on C1 closes, it closes for every starting point on C1 (dashed).

Proof of Theorem 2. Let Mi denote the center of the circle Ci (see Figure 5). Take two chains Xi+1 := φAi
(Xi),

and X ′
i+1 := φAi

(X ′
i) for i = 1, 2, . . . n, for two initial points X1, X

′
1 on C1. Then we have that for all i the angles

∢XiMiX
′
i have the same size, namely 2∢X1A1X

′
1 =: 2ε. Then, from ∢Xn+1M1X

′
n+1 = 2ε and X1 = Xn+1 it

follows that X ′
1 = X ′

n+1. q.e.d.

The proof of Theorem 2 was straightforward. The next result is more surprising.

Theorem 3. Let C1 C2 C3 · · · Cn C1 be a closed chain of circles. Let Ai, Bi be the intersection points of Ci and
Ci+1, where Ai = Bi if Ci touches Ci+1. Let φA := φAn ◦ · · · ◦ φA2 ◦ φA1 and φB := φBn ◦ · · · ◦ φB2 ◦ φB1 . Then the
following holds: If φA(X) = X holds for one point X ∈ C1, then φB is the identity map on C1.
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Figure 5. Proof of Theorem 2.

Geometrically speaking, this means, that if the polygon through the pivots A1, A2, . . . , An closes for one starting
point X on C1, then the polygon through the pivots B1, B2, . . . , Bn closes for each starting point on C1 (see
Figure 6).
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Figure 6. Theorem 3 for six circles. If the red polygon through the pivots Ai with a starting point X1 on C1 closes, then the blue polygon through
the pivots Bi closes for every starting point X′

1 on C1.

Before we get to the proof, let us introduce a useful concept which will allow us to formulate an explicit
condition on the circle chain for the polygons constructed in this way to close.

Definition 4. Let C1 C2 be two circles with centers M1 and M2, and A a common point of C1 and C2. Let X
be a point on C1 and φA(X) on C2. Let X ′ be the point on C2 such that M1X and M2X

′ are parallel in the sense
that the vector

−−−→
M2X

′ equals λ
−−−→
M1X for a λ > 0 (see Figure 7). Then µA := ∢X ′M2φA(X) is called the transfer

angle of the pivot map φA.

Notice that the transfer angle is well defined as it does not depend on the choice of the point X . It turns out
that the transfer angle can be computed in the following way.
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Lemma 5. Let C1 C2 be two circles with centers M1 and M2, and A,B the intersection points of C1 and C2. Let
δA := ∢AM1B, γA := ∢BM2A. Then the transfer angle µA of the map φA is given by

µA = π − 1

2
(δA + γA).

Proof. We choose the point X on C1 in such a way that the point X ′ in Definition 4 agrees with A (see Figure 7).
Then we have the following for the green angles in Figure 8:

∢φA(X)AM2 =
1

2
(π − µA)

∢M2AB =
1

2
(π − γA)

∢BAM1 =
1

2
(π − δA)

∢M1AX =
1

2
(π − µA)

In the last line we have used that M1X and M2A are parallel (see Figure 8). Adding these four angles yields

1

2
(π − µA) +

1

2
(π − γA) +

1

2
(π − δA) +

1

2
(π − µA) = π,

from which the formula for µA follows immediately. q.e.d.

The reader is invited to also consider the situation when M1 and M2 lie on the same side of the line AB, as well
as the case of touching circles with A = B.

M1

C1

M2

A

C2

X

φA(X)

µA

X′

Figure 7. The transfer angle µA of the pivot map φA.

The transfer angle can also be interpreted geometrically in another way.

Lemma 6. Let C1 C2 be two circles with centers M1 and M2, and A,B the intersection points of C1 and C2. Let t1 and
t2 be the tangents to C1 and C2 in A. Then the transfer angle µA of the map φA is given by µA = ∢t2t1 (see Figure 9).
Here, t1 is oriented from A towards the inside of C2, and t2 is oriented from A towards the outside of C1.

Proof. Recall that the central angle over a chord of a circle is twice the inscribed angle over the same chord,
and the inscribed angle over the chord equals the supplementary inscribed angle on the opposite arc, which is
also the angle between the chord and the tangent at an endpoint of the chord. In particular, we find the angle
1
2∢δA between t1 and the chord AB (see Figure 9), and the angle 1

2∢γA between the chord BA and t2. Hence,
according to Lemma 5, the transfer angle µA is the angle between t2 and t1. q.e.d.

Using the notion of the transfer angle we can now formulate the following closing condition.
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Figure 8. Proof of the formula for the transfer angle µA of the pivot map φA.
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Figure 9. Lemma 6: The transfer angle µA of the pivot map φA.

Theorem 7. Let C1 C2 C3 · · · Cn C1 be a closed chain of circles with centers M1, . . . ,Mn. Let Ai, Bi be the
intersection points of Ci and Ci+1, where Ai = Bi if Ci touches Ci+1. Let δAi := ∢AiMiBi, γAi := ∢BiMi+1Ai. Then
the map φA := φAn

◦ · · · ◦ φA2
◦ φA1

is the identity map on C1 if and only if the sum of all transfer angles is a multiple
of 2π, i.e.,

nπ − 1

2

n∑
i=1

(δAi
+ γAi

) = 2kπ

for an integer k.

Proof. Clearly, the map φA is the identity on C1 if and only if the sum of all transfer angles is a multiple of
2π. Using the formula from Lemma 5 for the transfer angles µAi

we get the closing condition stated in the
theorem. q.e.d.

Observe that the situation of two circles with centers M1 and M2, intersecting in the points A and B like in
Figure 8 is mirror symmetric with respect to the line M1M2. Hence for the transfer angles of φA and φB we
have

µB = −µA.
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Figure 10. Illustration for Corollary 8 for n = 5 lines l1, . . . , l5. The red polygon through the pivots A1, A2, . . . , An closes for every position of
the starting point X1 on C1.

Now, if the sum of the transfer angles µAi
is a multiple of 2π, then the same is true for the sum of the transfer

angles µBi
= −µAi

. This proves Theorem 3. Another application of the criterion in Theorem 7 is the following.

Corollary 8. Let l1, l2, . . . , ln, ln+1 = l1, ln+2 = l2 be a set of lines such that li−1, li, li+1 form a triangle with circumcircle
Ci (see Figure 10). Let Ai denote the intersection of li and li+1. Then, φ := φAn ◦ φAn−1 ◦ . . . ◦ φA1 is the identity map
on C1, i.e., the resulting n-gon X1, Xi+1 = φAi(Xi) closes for any initial point X1 on C1.

Note that the situation of Corollary 8 corresponds exactly to that in Morley’s Five Circles theorem [9, 17, 18]
and of Miquel’s Pentagon theorem [13, 16].

Proof. Let Ai,i+2 denote the intersection of the lines li and li+2, i.e., Ci is the circumcircle of the triangle
Ai−1AiAi−1,i+1. Consider the point Ai with the transfer angle µAi

of the map φAi
. According to Lemma 6 this

transfer angle is the angle between the tangents ti+1 and ti (see Figure 11). Let εi := ∢Ai−1Ai−1,i+1Ai. This angle
equals the angle between the line li and the tangent ti (see Figure 11). Similarly, the angle εi+1 = ∢AiAi,i+2Ai+1

appears also as angle between the tangent ti+1 and the line li+1. The angle ωi between the lines li+1 and li
is the exterior angle of the polygon A1A2 . . . An in the vertex Ai. We have µAi = ωi + εi + εi+1. Observe that
εi = π − (ωi−1 + ωi), and εi+1 = π − (ωi + ωi+1). Hence, we get µAi

= 2π − (ωi−1 + ωi + ωi+1). Taking the sum
over all transfer angles results in

n∑
i=1

µAi
= 2nπ − 3

n∑
i=1

ωi.

Since the sum of the exterior angles
∑n

i=1 ωi of a polygon is a multiple of 2π, the closing condition of Theorem 7
is satisfied. q.e.d.

We will see in Section 4 that for n = 4 Corollary 8 together with Lemma 14 implies Steiner’s quadrilateral
theorem [19], even in an extended version (see Corollary 17).
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Figure 11. Proof of Corollary 8.

3. Neat special cases

Theorem 9. Let C1 C2 C3 · · · Cn C1 be a closed chain of circles. Let Ai, Bi be the intersection points of Ci

and Ci+1, where Ai = Bi if Ci touches Ci+1. Let φA := φAn
◦ · · · ◦ φA2

◦ φA1
and φB := φBn

◦ · · · ◦ φB2
◦ φB1

. Then
φB ◦ φA(X) = X holds for all points X ∈ C1 (see Figure 12).

Proof. The claim follows immediately from Theorem 7 if we use the fact that the sum of the transfer angles
µAi

+ µBi
= 0 for all i. Therefore the total sum of the transfer angles along the chain vanishes. q.e.d.

X

Figure 12. Illustration for Theorem 9. The red polygon closes for every position of the starting point X on the circle.

Let us now consider chains of touching circles. We will use the notation C1 C2 for two touching circles C1

and C2. Then we have the following.

Theorem 10. Let C1 C2 C3 · · · Cn C1 be a closed chain of touching circles. Let Ai be the common point of Ci

and Ci+1 and φ = φAn ◦ · · · ◦ φA2 ◦ φA1 . Then the following holds: If n is even, then φ is the identity map on C1. If n is
odd, then φ ◦ φ is the identity map on C1 (see Figure 13).
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Note that this situation of a chain of touching circle occurs in particular in Steiner’s closing theorem.

X X

(a) (b)

Figure 13. Illustration for Theorem 10. (a) For an even number of touching circles the red polygon closes for any position of the starting point X .
(b) For an odd number of touching circles the red polygon closes after the second round for any position of the starting point X .

Proof. The claim follows immediately from the fact that we have δAi
= γAi

= 0 in the case of touching circles.
Then, the closing condition in Theorem 7 is trivially satisfied for an even number n. If n is odd then apply the
result to the chain that runs through twice

C1 C2 C3 · · · Cn C1 C2 C3 · · · Cn C1

and we are done. q.e.d.

Miquel’s triangle theorem [16, Théorème I, Planche II, Fig. 1] turns out to be a special case of Theorem 3. To see
this, consider the case of three circles.

Corollary 11. Let C1 C2 C3 C1 be a closed chain of three circles which all pass through a point B. Let Ai be the
other common point of Ci and Ci+1. Then, the map φA3

◦ φA2
◦ φA1

is the identity map on C1 (see Figure 14(a)).

Proof. The points Bi = B and Ai are the common points of Ci and Ci+1. Obviously the map φB3
◦ φB2

◦ φB1
is

the identity map on C1. Hence, according to Theorem 3 this is also the case for φA3
◦ φA2

◦ φA1
. q.e.d.

Notice that the statement of Corollary 11 is true for any number n ≥ 3 of circles which pass through a common
point B (see Figure 14(b)).

It follows from Lemma 6 that the transfer angle, and hence the closing property of a chain, is invariant unter
Möbius transformations. This means also that we can define the following variant of the pivot map φA.

Definition 12. Let C1 C2 be two intersecting or touching circles, A a common point of C1 and C2, and I a point
not on C1 ∪ C2. Then φI

A : C1 → C2, X 7→ φI
A(X), is defined as follows: If X ̸= A, then the points X,φI

A(X), A,
and I are concyclic. If X = A, then the circle through the points A,φI

A(X), and I is the tangent to C1 in A. In
particular, if C1 and C2 touch at A, then the image of X = A is the point φI

A(X) = A (see Figure 15).

The previous results nicely carry over to the map φI
A. As an example we get the six circles theorem of

Miquel [15, Théorème I, Planche III, Fig. 1]:

Corollary 13. Let C1 C2 C3 C1 be a closed chain of three circles which all pass through a point B, and I a point
not on any of the three circles. Let Ai be the other common point of Ci and Ci+1. Then, the map φI

A3
◦ φI

A2
◦ φI

A1
is the

identity map on C1 (see Figure 16).
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Figure 14. (a) Miquel’s triangle theorem. The red triangle through the pivots Ai closes in every position. (b) The closing property for four
concurrent circles.
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Figure 15. The map φI
A : C1 → C2, X 7→ φI

A(X).

We would also like to point out that the previous closing results can be carried over to circle chains that
are not closed. Figure 17 shows such a situation for an open chain of four circles. The red polygon closes
in every position if it closes in one position. This can be seen as follows. Given an open chain of circles
C1 C2 C3 . . . Cn we can applying Theorem 7 to the closed chain

C1 C2 C3 . . . Cn−1 Cn Cn−1 Cn−2 . . . C2 C1.
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Figure 16. Miquel’s six circles theorem follows from Theorem 3 applied to φI
A3

◦ φI
A2

◦ φI
A1

.

Figure 17. A closing configuration for an open chain of circles. The red polygon closes in every position it it closes in one position.

4. Even more incidences

Let us consider a chain C1 C2 C3 · · · of intersecting circles, not necessarily closed, with centers Mi, and let
Ai be a common point of Ci and Ci+1. Take two starting points X1 and X ′

1 on C1, and consider the resulting
polygons Xi+1 = φAi

(Xi), and X ′
i+1 = φAi

(X ′
i). By iterating the argument in the proof of Theorem 2 we have

that ∢X1M1X
′
1 = ∢XiMiX

′
i for all i. An immediate consequence is Lemma 14 below.

Let us first fix some notation that we will use throughout this section. In a situation like the one described
above, we set:

• ℓj is the line through the points Xj , Aj , Xj+1, and ℓ′j is the line through the points X ′
j , Aj , X

′
j+1.

• Xij is the intersection of the lines ℓi and ℓj , and X ′
ij is the intersection of the lines ℓ′i and ℓ′j

• For the circle Ci, we will also use the notation Ci−1,i. Similarly we will write Xi−1,i for the point Xi. The
reason for this notation will become clear below.
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Figure 18. Proof of Lemma 14.

With these conventions we have the following.

Lemma 14. The intersection Xjk of the lines ℓj and ℓk lies on a fixed circle Cjk through the points Aj and Ak, no matter
of the position of the initial point X1. The circles Cij , Cjk, Cki are concurrent in a point Pijk for all triples i, j, k.

Proof. Let X1 and X ′
1 be two initial points on C1 and consider the resulting polygons. Consider the points Xjk

and X ′
jk in the notation introduced above. We have to treat two cases.

1. case: Xjk and X ′
jk lie on the same side of the line AjAk (see Figure 18(a)). Then we have ∢AkXjkAj =

∢AkX
′
jkAj (these angles are denoted by σ in Figure 18) and hence the points Ak, Xjk, X

′
jk, Aj are concyclic.

2. case: Xjk and Xjk lie on the opposite sides of the line AjAk (see Figure 18(b)). In this case the angles σ =
∢AkXjkAj and σ̄ = ∢AjX

′
jkAk are supplementary, and hence the points Ak, Xjk, X

′
jk, Aj are again concyclic.

This proves the first part of the theorem.

To show that the circles Cij , Cjk, Cki are concurrent, consider a situation where the lines ℓi and ℓj meet in the
intersection of Cij and Cjk different from the common point Aj . In this case, the line ℓk passes also through this
point, i.e., Xij = Xjk = Xki. But his means that the circle Cki also passes through that same point. q.e.d.

Figure 19 illustrates Lemma 14 applied to a closed chain C1 C2 C3 · · · C6 C1 with intersection points
A1, . . . , A6 such that φA6

◦ . . . φA1
is the identity on C1. The pivots A1, . . . , A6 are represented only as black

numbers in small circles. It is now convenient to use the alternative notation Ci−1,i for the circle Ci, and
Xi−1,i for the point Xi, since this is more coherent with the combinatorics of the situation. Observe that this
convention is compatible with the general notation Xij for the intersection of the lines ℓi and ℓj . Also note that
Ci−1,i is the circumcircle of the triangle Ai−1, Ai and Xi−1,i. In Figure 19 we drop the letter X in Xij and just
write red indices ij. The common point Pijk of the circles Cij , Cjk and Cki is indicated by light blue indices ijk
in the figure. Then we have:

• The polygon X61X12X23X34X45X56X61 closes for every position of the starting point X61 on the circle
C61.

• The intersection Xij of the lines ℓi and ℓj lies on the circle Cij for every position of the starting point X61

on the circle C61.
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Figure 19. Illustration of Lemma 14.

• For all triples i, j, k the circles Cij , Cjk, Cki meet in a common point.

Note that the points X14, X25 and X36 lie outside the region of the figure on the green circles C14, C25 and C36,
respectively.

Now let us have a look at the special case of three touching circles.

Corollary 15. Let C1 C2 C3 C1 be a closed chain of three touching circles, the contact points being A1 = A4, A2 =
A5, A3 = A6 (see Figure 20). Then the polygon X1X2 . . . X6X1 with vertices Xi+1 = φAi

(Xi) closes for any staring
point X1 on C1. Then, A1 = X14, A2 = X25, A3 = X36. The points X135 := X13 = X35 = X51 and X246 := X24 =
X46 = X62 lie on the circumcircle C of the triangle A1A2A3. The lines ℓi and ℓi+3 are orthogonal, and the midpoint of
the segment X135X246 is the center of this circle C.

Proof. Consider, e.g., the circle C26 through the points A2, A6 = A3, X26. Observe that X26 = A1 if X1 = A1.
Hence C26 is the circumcircle C of the triangle A1A2A3. Similarly C24 = C46 = C13 = C35 = C51 = C. It follows
that X13 = X35 = X51 and X24 = X46 = X62 lie on C.

Finally, the sum of the transfer angles of φA3 ◦ φA2 ◦ φA1 is π, i.e., the segment XiXi+3 is a diameter of the circle
Ci. In particular, in the position where the line X1X2 passes through the centers of C1 and C2 we have that
∢A1A2X2 is a right angle. Hence ℓ2 and ℓ5 are orthogonal, independent of the starting point X1. Similarly, we
have that ℓ1 and ℓ4, and ℓ3 and ℓ6 are orthogonal. In particular, it follows that the center M of C is the midpoint
of the segment X135X246. q.e.d.

The situation of four touching circles is simpler than for three touching circles, since four is an even number
(recall Theorem 10).

Corollary 16. Let C1 C2 C3 C4 C1 be a closed chain of four touching circles, the contact points being
A1, A2, A3, A4 (see Figure 21). Then the polygon X1X2 . . . X4X1 with vertices Xi+1 = φAi(Xi) closes for any staring
point X1 on C1. The points X13 and X24 lie on the circumcircle C of the quadrilateral A1A2A3A4.
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Figure 20. The special case of three touching circles in Corollary 15.
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Figure 21. The special case of four touching circles in Corollary 16.

Proof. First recall that the contact points A1, A2, A3, A4 of four touching circles form always a cyclic
quadrilateral. Observe that X13 = A2 if X2 = X3 = A2. Hence C13 = C. Similarly C24 = C, and we are
done. q.e.d.

Now we can prove an extended version of Steiner’s quadrilateral theorem.

Corollary 17. Consider the complete quadrilateral consisting of four lines l1, l2, l3, l4 such that li−1, li, li+1 form a
triangle with circumcircle Ci for i = 1, 2, 3, 4 (see Figure 22). Let Ai denote the intersection of li and li+1, P the
intersection of l2 and l4, and Q the intersection of l1 and l3. Then, φ := φA4 ◦ φA3 ◦ φA2 ◦ φA1 is the identity map on C1,
i.e., the resulting quadrilateral X1, Xi+1 = φAi(Xi) closes for any initial point X1 on C1. The circles C1, C2, C3, C4 pass
though a common point S, the Steiner point. Moreover we have:
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• The intersection X13 of the lines ℓ1 and ℓ3 runs on a circle C13 through A1, A3 and S.
• The intersection X24 of the lines ℓ2 and ℓ4 runs on a circle C24 through A2, A4 and S.
• The intersection X of the lines X1X3 and X2X4 runs on a circle C through P,Q and S.
• The points X1, X2, X3, X4 are concyclic on a circle D through S

• The points X1, X3 and P , as well as X2, X4 and Q are collinear.

Proof. The fact that the polygon X1X2X3X4 closes for any position of the initial point X1 on C1 follows directly
from Corollary 8. Lemma 14 implies that X13 and X24 lie on circles C13 and C24 through A1, A3 and A2, A4,
respectively. The sum of the angles in the quadrilateral X3PX1X2 is

∢X3PX1 +∢PX1X2 +∢X1X2X3 +∢X2X3P = 2π.

However, by the inscribed angle theorem applied to the circles C1, C2, and C3, the last three of these angles
do not depend on the position of X1. Since ∢X3PX1 = 0 for X1 = A1 it follows that X1, P,X3 are always
collinear (see Figure 23). Similarly, we have that X2, Q,X4 are collinear. Then, again by the inscribed angle
theorem, it follows that the quadrilateral X1X3X2X4 has fixed vertex and diagonal angles. Therefore, all these
quadrilaterals are similar when X1 moves along C1 (see [11], or [14]). If X1 = A1 this is a cyclic quadrilateral
(with circumcircle C2, see Figure 23), so this is always the case. Let D denote the circumcircle of the cyclic
quadrilateral X1X3X2X4 (this is the green, dashed circle in Figure 22). The circles C1 and C3 meet in a point
S. Therefore, if X1 = S then X1 = X3 and hence the quadrilateral X1X3X2X4 with the diagonal points X13 and
X24 degenerates to a point. Therefore, also C2, C4, C13, and C24 meet in S. If we consider the circles C1, C3, C2, C4

and the maps φP , φA2 , φQ, φA4 we see that the polygon X1X3X2X4 is closed for every position of X1 on C1.
Therefore the intersection X of X1X3 and X2X4 lies on a circle C through P and Q. Also the point X collapses
together with the other points Xi when X1 = S. Hence C passes also through S. It remains to show that the
circumcircle D of the points X1, X2, X3, X4 passes through S independent of the position of X1 on C1. This
follows from the fact that the angles ∢A4X1S and ∢SX4A4 are independent of the position of X1. Therefore
this is also the case for ∢X1SX4. Hence X1X3X4S is always a cyclic quadrilateral, since this is the case for the
position X1 = A1 (see Figure 23). q.e.d.
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Figure 22. Steiner’s quadrilateral theorem follows from Corollary 8 and Lemma 14 when we take n = 4.

Figure 24 illustrates Lemma 14 applied to a closed chain of three intersection circles C1, C2, C3 with intersection
points Ai, Bi. It follows from Theorem 9 that φB3

◦ φB2
◦ φB1

◦ φA3
◦ φA2

◦ φA1
is the identity map on C1, i.e., the

corresponding polygon X1X2 . . . X6X1 closes for every position of the starting point X1 on C1. The intersections
Xij of the lines ℓi and ℓj lie on the blue circles Cij , where C24 = C46 = C62 =: C246 and C13 = C35 = C51 =: C135.
Moreover C25, C36 and C14 are touching C246 and C135.
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Figure 24. Lemma 14 applied to a closed chain of three intersecting circles.

As a final remark we mention the following.

Corollary 18. Let C1 C2 C3 · · · Cn C1 be a closed chain of circles. Let Ai, Bi be the intersection points of
Ci and Ci+1, where Ai = Bi is allowed. Let δAi

:= ∢AiMiBi, γAi
:= ∢BiMi+1Ai and φ := φAn

◦ · · · ◦ φA2
◦ φA1

. If
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X

Figure 25. Illustration of Corollary 18 with four circles such that the polygon closes after three runs. Then the vertices on each circle form a regular
triangle. The triangles “dance” synchronized pirouettes when X runs on the circle. If three of the circles are given, it is an easy exercise to construct
a matching fourth circle.

∑n
i=1 δAi

+ γAi
is a rational multiple of π, then there is a natural number k such that the map φk is the identity on C1.

That is, starting with any point X on C1, the resulting polygon will eventually close on X after a finite number of steps.
The points XiXi+nXi+2nXi+kn form a regular polygon in the circle Ci (see Figure 25).

Observe that Corollary 18 can be interpreted as a stacked version of the Lighthouse theorem [7]: Each pair of
points Ai, Ai+1 can be considered as lighthouses while the lines ℓk passing through them correspond to the
light beams.
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