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ABSTRACT

We consider closed chains of circles C,Cy,...,C,,C, 1 = C; such that two neighbouring circles
C;, Ciy1 intersect or touch each other with A; being a common point. We formulate conditions such
that a polygon with vertices X; on C;, and A; on the (extended) side X;X;,, is closed for every
position of the starting point X; on ;. Similar results apply to open chains of circles. It turns out
that the intersection of the sides X; X, ; and X, X, of the polygon lies on a circle C;; through A;
and A; with the property that C;;, C;; and C}; pass through a common point. The six circles theorem
of Miquel and Steiner’s quadrilateral Theorem appear as special cases of the general results.
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1. Introduction

The treasure trove of geometry contains a wide spectrum of closing theorems. Among the best known are
Steiner’s closing theorem (Figure 1(a), [3, § 6.5]), which belongs to the Mobius geometry, and Poncelet’s porism
(Figure 1(b), [4, 6,8]), one of the deepest results of projective geometry.

Other examples are the classical theorems of Pappus and Desargues, which have been known for a long time
and are fundamental to the axiomatics of geometry. These theorems can be formulated in the same style as
the theorems of Steiner and Poncelet. They then show their closing character much more clearly than usual.
Figure 2(a) illustrates this using the example of the Pappus hexagon theorem. In this formulation, the theorem
has very universal generalizations (see [2,12]). Another well-known closing result is the Butterfly theorem in
Figure 2(b). This theorem is also only a special case of a much more general closing result (see [10]). Other
examples are the closing theorem of Emch [5], and the zig-zag theorem [1]. In this article we investigate a
family of new closing theorems for circle chains.

2. A closing theorem for circle chains

We will use the notation C; X C; for two circles C; and C, that intersect either in two points or that touch each
other. To describe and prove the closing theorem, we will use the following map.

Definition 1. Let Cy X C; be two intersecting or touching circles and A a common point of ¢y and Cs. Then
pa:C1— Co, X — pa(X), is defined as follows: If X # A, then the points X, p4(X), and A are collinear. If
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(b)

Figure 1. (a) Steiner’s closing theorem: Two blue support circles are given, into which a chain of circles is fitted so that neighbouring circles touch
each other. If the chain closes in a certain position (red), it closes in every position (dashed). (b) Poncelet’s porism: A chain of tangents to a conic
(green) with vertices on a second conic (blue) is drawn. If the chain closes in a certain position (red), it closes in every position (dashed).

Figure 2. (a) The hexagon theorem of Pappus formulated as closing theorem. If the Pappus hexagon (red) closes for one position of the starting
point X on the line ¢, it closes for any other starting point (dashed). (b) The Butterfly theorem. If the quadrangle (red) with starting point X on a
conic C' and passing through the four points on a line £ is closed, then it closes for any other starting point (dashed).

X = A, then the line through the points A and ¢ 4 (X) is the tangent to C; in A. In particular, if C; and C; touch
at A, then the image of X = A is the point ¢ 4(X) = A (see Figure 3). The point A will be called pivot of the pivot
map pa.

Using such pivot maps we can state the first theorem for a closed chain of n circles as follows. Notice that
indices will be read cyclically throughout.

Theorem 2. Let C; X Co X C3 X --- X C,, X C be a closed chain of circles. For i = 1,...,n let A; be a common point of
C;and Ciyq. Let p := a4, 0---0@a, o@a,. Then the following holds: If (X)) = X for one point X € C, then ¢ is the
identity map on C;.

The statement of Theorem 2 can be formulated in a geometric way visually as follows: Let X; = X € ()
and iteratively X, 1 := ¢a,(X;) € Ciyy, for i =1,2,...n. Then we have: If X = X,,,;, then the corresponding
polygon X X, ... X,, X, through the pivots A;, As, ..., A,, closes for every starting point X; on C; (see Figure 4).
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Figure 3. Themap ¢4 : C1 — C2, X — pa(X).

Figure 4. Theorem 2 for five circles. If the polygon with starting point X; on C; closes, it closes for every starting point on C; (dashed).

Proof of Theorem 2. Let M, denote the center of the circle C; (see Figure 5). Take two chains X1 := ¢4, (X;),
and Xj,, := pa,(X]) fori=1,2,...n, for two initial points X;, X on C;. Then we have that for all i the angles
<X;M;X] have the same size, namely 2<X; A4, X| =: 2¢. Then, from <X, (1M X] | =2¢ and X; = X, it
follows that X} = X ;. g.ed.

The proof of Theorem 2 was straightforward. The next result is more surprising.

Theorem 3. Let C; X Co X C3 X --- X C,, X C4 be a closed chain of circles. Let A;, B; be the intersection points of C; and
Ciy1, where A; = B; if C; touches Ci1. Let o4 := 4, 0 -0pa, 0pa, and ¢p = pp, 0 -0 pp, o pp,. Then the
following holds: If . 4(X) = X holds for one point X € C1, then g is the identity map on C;.
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Figure 5. Proof of Theorem 2.

Geometrically speaking, this means, that if the polygon through the pivots A;, As, ..., A,, closes for one starting
point X on C}, then the polygon through the pivots By, Bs,. .., B, closes for each starting point on C; (see
Figure 6).

X3

Figure 6. Theorem 3 for six circles. If the red polygon through the pivots A; with a starting point X; on C1 closes, then the blue polygon through
the pivots B; closes for every starting point X; on C1.

Before we get to the proof, let us introduce a useful concept which will allow us to formulate an explicit
condition on the circle chain for the polygons constructed in this way to close.

Definition 4. Let C X C; be two circles with centers M; and M,, and A a common point of C; and Cs. Let X
be a point on C; and ¢ 4(X) on Cs. Let X’ be the point on C; such that M; X and M, X' are parallel in the sense

that the vector M, X’ equals AM; X foraA>0 (see Figure 7). Then p4 := <X'Mspa(X) is called the transfer
angle of the pivot map ¢4.

Notice that the transfer angle is well defined as it does not depend on the choice of the point X. It turns out
that the transfer angle can be computed in the following way.
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Lemma 5. Let Cy X Cy be two circles with centers My and M, and A, B the intersection points of Cy and Cs. Let
04 = <AM B, v4 := <BM,A. Then the transfer angle p of the map ¢ is given by

1
pa =m— 5(514 +74)-

Proof. We choose the point X on C; in such a way that the point X’ in Definition 4 agrees with A (see Figure 7).
Then we have the following for the green angles in Figure 8:

Cpa(X)AM; = L (7 — jua)
<IM3AB = %(77 —v4)
<BAM, = %(77 —64)
<MAX = %(77 — 1)

In the last line we have used that M; X and M, A are parallel (see Figure 8). Adding these four angles yields

1 1 1 1
i(W—NA)‘F 5(7T—W’A)+ 5(7T—5A) + §(W—HA) =,
from which the formula for 4 follows immediately. g.ed.

The reader is invited to also consider the situation when M; and M, lie on the same side of the line AB, as well
as the case of touching circles with A = B.

Figure 7. The transfer angle 11 4 of the pivot map ¢ 4.

The transfer angle can also be interpreted geometrically in another way.

Lemma 6. Let Cy X C; be two circles with centers M,y and Mo, and A, B the intersection points of Cy and Cs. Let t1 and
to be the tangents to Cy and Cs in A. Then the transfer angle pa of the map ¢ 4 is given by 4 = <tot; (see Figure 9).
Here, t is oriented from A towards the inside of Cs, and to is oriented from A towards the outside of C.

Proof. Recall that the central angle over a chord of a circle is twice the inscribed angle over the same chord,
and the inscribed angle over the chord equals the supplementary inscribed angle on the opposite arc, which is
also the angle between the chord and the tangent at an endpoint of the chord. In particular, we find the angle
%45 A between ¢; and the chord AB (see Figure 9), and the angle %<I’yA between the chord BA and t,. Hence,
according to Lemma 5, the transfer angle ;4 is the angle between ¢, and ;. g.ed.

Using the notion of the transfer angle we can now formulate the following closing condition.
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Figure 8. Proof of the formula for the transfer angle j 4 of the pivot map ¢ 4.

Figure 9. Lemma 6: The transfer angle 1 4 of the pivot map ¢ 4.

Theorem 7. Let C1 X Co X C5X--- X C,, X Cy be a closed chain of circles with centers My, ..., M,. Let A;, B; be the
intersection points of C; and Ciy1, where A; = B; if C; touches Ci1. Let §4, := <A, M;B;, 4, 1= <{B;M;+14;. Then
the map pa := pa, o---0@a, 0 pa, is the identity map on C if and only if the sum of all transfer angles is a multiple
of 2m, i.e.,

1 n

nmw — 5 Z((SAl + 'yAi) = 2km
=1

for an integer k.

Proof. Clearly, the map ¢4 is the identity on C) if and only if the sum of all transfer angles is a multiple of
27. Using the formula from Lemma 5 for the transfer angles 114, we get the closing condition stated in the
theorem. g.ed.

Observe that the situation of two circles with centers M; and M>, intersecting in the points A and B like in
Figure 8 is mirror symmetric with respect to the line M, M>. Hence for the transfer angles of 4 and ¢p we
have

HB = —HA-
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Figure 10. Illustration for Corollary 8 for n = 5lines l1, . . ., I5. The red polygon through the pivots Ay, A2, ..., A, closes for every position of
the starting point X; on C1.

Now, if the sum of the transfer angles 114, is a multiple of 2, then the same is true for the sum of the transfer
angles up, = —p4,. This proves Theorem 3. Another application of the criterion in Theorem 7 is the following.

Corollary 8. Let 1,1y, ..., ln, lnt1 = U1, oo = o beaset of lines such that 1;_+,1;, ;1 form a triangle with circumcircle
C; (see Figure 10). Let A; denote the intersection of I; and ;1. Then, ¢ := @4, 0 pa, , ©...0pa, is the identity map
on C, i.e., the resulting n-gon X1, X;+1 = @a,(X;) closes for any initial point X; on C.

Note that the situation of Corollary 8 corresponds exactly to that in Morley’s Five Circles theorem [9,17, 18]
and of Miquel’s Pentagon theorem [13,16].

Proof. Let A, ;12 denote the intersection of the lines I; and l;;», i.e.,, C; is the circumcircle of the triangle
A;_1A;A;_1,i+1. Consider the point A; with the transfer angle 114, of the map ¢ 4,. According to Lemma 6 this
transfer angle is the angle between the tangents ¢,.1 and ¢; (see Figure 11). Let¢; := <4;_1A4;_1 ;41 4;. This angle
equals the angle between the line /; and the tangent ¢; (see Figure 11). Similarly, the angle ¢;41 = <A4;4; ;424i+1
appears also as angle between the tangent ¢, and the line /;1;. The angle w; between the lines {;, and ;
is the exterior angle of the polygon A; A, ... A, in the vertex A;. We have p4, = w; +¢; + €;41. Observe that
gi =7 — (wi—1 +w;), and €;41 = 7™ — (w; + wit1). Hence, we get 14, = 27 — (wi—1 + w; + w;y1). Taking the sum

over all transfer angles results in
n n
Z’u“‘i =2nm — 32%—.
i=1 i=1

Since the sum of the exterior angles >_"_, w; of a polygon is a multiple of 2, the closing condition of Theorem 7
is satisfied. g.ed.

We will see in Section 4 that for n = 4 Corollary 8 together with Lemma 14 implies Steiner’s quadrilateral
theorem [19], even in an extended version (see Corollary 17).
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Figure 11. Proof of Corollary 8.

3. Neat special cases

Theorem 9. Let C; X Co X C3X--- X C, X Cy be a closed chain of circles. Let A;, B; be the intersection points of C;
and C;y1, where A; = B; if C; touches Ciy1. Let pa :=pa, 0---0@a, 0pa, and ¢ 1= pp, o---0@p, o pp,. Then
wB ©wa(X) = X holds for all points X € C (see Figure 12).

Proof. The claim follows immediately from Theorem 7 if we use the fact that the sum of the transfer angles
pa, + pp, = 0 for all i. Therefore the total sum of the transfer angles along the chain vanishes. g.ed.

X

Figure 12. Illustration for Theorem 9. The red polygon closes for every position of the starting point X on the circle.

Let us now consider chains of touching circles. We will use the notation C; X Cs for two touching circles Cy
and Cs. Then we have the following.

Theorem 10. Let C; XX Cy X C3 XC--- X C,, X Cy be a closed chain of touching circles. Let A; be the common point of C;
and Ciy1and ¢ = @4, 0+ 0pa, o pa,. Then the following holds: If n is even, then  is the identity map on Cy. If n is
odd, then ¢ o ¢ is the identity map on C4 (see Figure 13).
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Note that this situation of a chain of touching circle occurs in particular in Steiner’s closing theorem.

(a) (b)

Figure 13. Illustration for Theorem 10. (a) For an even number of touching circles the red polygon closes for any position of the starting point X.
(b) For an odd number of touching circles the red polygon closes after the second round for any position of the starting point X.

Proof. The claim follows immediately from the fact that we have §4, = v4, = 0 in the case of touching circles.
Then, the closing condition in Theorem 7 is trivially satisfied for an even number n. If n is odd then apply the
result to the chain that runs through twice

Ci XCy X C3X--- X, XCy X Cy X C3X---XCy, XCy

and we are done. g.ed.

Miquel's triangle theorem [16, Théoréme I, Planche II, Fig. 1] turns out to be a special case of Theorem 3. To see
this, consider the case of three circles.

Corollary 11. Let C; X Cy X C3 X Cy be a closed chain of three circles which all pass through a point B. Let A; be the
other common point of C; and C;11. Then, the map ¢ 4, o 4, o pa, is the identity map on C1 (see Figure 14(a)).

Proof. The points B; = B and A; are the common points of C; and C;1;. Obviously the map ¢p, 0 ¢p, 0 ¢p, is
the identity map on C;. Hence, according to Theorem 3 this is also the case for v 4, © w4, 0 @a4,. g.ed.

Notice that the statement of Corollary 11 is true for any number n > 3 of circles which pass through a common
point B (see Figure 14(b)).

It follows from Lemma 6 that the transfer angle, and hence the closing property of a chain, is invariant unter
Mobius transformations. This means also that we can define the following variant of the pivot map 4.

Definition 12. Let C; X C5 be two intersecting or touching circles, A a common point of C; and C5, and I a point
not on C; U Cy. Then ¢/ : C1 — Ca, X — ¢!, (X), is defined as follows: If X # A, then the points X, ¢4 (X), 4,
and I are concyclic. If X = A, then the circle through the points 4, ¢/, (X), and I is the tangent to C; in A. In
particular, if C; and C5 touch at A, then the image of X = A is the point ¢/, (X) = A (see Figure 15).

The previous results nicely carry over to the map ¢/,. As an example we get the six circles theorem of
Miquel [15, Théoréme I, Planche III, Fig. 1]:

Corollary 13. Let Cy X Cy X C3 X Cy be a closed chain of three circles which all pass through a point B, and I a point
not on any of the three circles. Let A; be the other common point of C; and Ciy1. Then, the map o'y o !y ol is the
identity map on Cy (see Figure 16).
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Figure 14. (a) Miquel’s triangle theorem. The red triangle through the pivots A; closes in every position. (b) The closing property for four
concurrent circles.

Cy

Cy

Ch

Figure 15. The map ¢, : C1 — Ca, X — ¢4 (X).

We would also like to point out that the previous closing results can be carried over to circle chains that
are not closed. Figure 17 shows such a situation for an open chain of four circles. The red polygon closes
in every position if it closes in one position. This can be seen as follows. Given an open chain of circles
C1XCXC3X...XC), we can applying Theorem 7 to the closed chain

CirICXC3X...Cr1 XC,XC,_ 1 XCha.. . XC LY.
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Figure 17. A closing configuration for an open chain of circles. The red polygon closes in every position it it closes in one position.

4. Even more incidences

Let us consider a chain C; X C, X C3 X - - - of intersecting circles, not necessarily closed, with centers M;, and let
A; be a common point of C; and C;;,. Take two starting points X; and X on 4, and consider the resulting
polygons X; 1 = ¢4,(X;), and X | = ¢4, (X]). By iterating the argument in the proof of Theorem 2 we have
that <X M, X| = <X; M, X/ for all i. An immediate consequence is Lemma 14 below.

Let us first fix some notation that we will use throughout this section. In a situation like the one described
above, we set:

* /; is the line through the points X;, A;, X 11, and ¢/ is the line through the points X}, A;, X7 ;.
* X, is the intersection of the lines ¢; and ¢;, and X ;18 the intersection of the lines ¢, and é;-

¢ For the circle C;, we will also use the notation C;_; ;. Similarly we will write X;_; ; for the point X;. The
reason for this notation will become clear below.
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Figure 18. Proof of Lemma 14.

With these conventions we have the following.

Lemma 14. The intersection X j;, of the lines ¢; and y, lies on a fixed circle C}jy, through the points A; and Ay, no matter
of the position of the initial point X,. The circles C;j;, C;i, Cy; are concurrent in a point Py, for all triples i, j, k.

Proof. Let X7 and X be two initial points on C; and consider the resulting polygons. Consider the points X
and X7, in the notation introduced above. We have to treat two cases.

1. case: Xj; and X7, lie on the same side of the line A;A; (see Figure 18(a)). Then we have <A4;X;,4; =
<A X} A;j (these angles are denoted by o in Figure 18) and hence the points Ay, X, X7, A; are concyclic.

2. case: Xj;, and X, lie on the opposite sides of the line A; A, (see Figure 18(b)). In this case the angles ¢ =
<A XA and 6 = <A; X7, Ay are supplementary, and hence the points Ay, X, X7, A; are again concyclic.
This proves the first part of the theorem.

To show that the circles C;;, Cji, Ck; are concurrent, consider a situation where the lines ¢; and ¢; meet in the
intersection of C;j; and C};, different from the common point A;. In this case, the line ¢;, passes also through this
point, i.e., X;; = X, = Xj;. But his means that the circle Cy; also passes through that same point. g.ed.

Figure 19 illustrates Lemma 14 applied to a closed chain C; XCy X C3 X - - - X Cs X C; with intersection points
Aq, ..., Ag such that @4, 0... ¢4, is the identity on C;. The pivots Ay, ..., Ag are represented only as black
numbers in small circles. It is now convenient to use the alternative notation C;_;; for the circle C;, and
X;_1,; for the point X, since this is more coherent with the combinatorics of the situation. Observe that this
convention is compatible with the general notation X;; for the intersection of the lines ¢; and ¢;. Also note that
C;_1,; is the circumcircle of the triangle A;_;, A; and X;_; ;. In Figure 19 we drop the letter X in X;; and just
write red indices ij. The common point P, of the circles C;;, C;i and Cy; is indicated by light blue indices ijk
in the figure. Then we have:

¢ The polygon X1 X12X23X34X45X56X61 closes for every position of the starting point X¢; on the circle
Cé1.

* The intersection X;; of the lines ¢; and /; lies on the circle C;; for every position of the starting point Xs;
on the circle Cg;.
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Figure 19. Illustration of Lemma 14.

e For all triples 4, j, k the circles C;;, Cjx, Ci; meet in a common point.

Note that the points X4, Xo5 and X3¢ lie outside the region of the figure on the green circles C14, Ca5 and Csg,
respectively.

Now let us have a look at the special case of three touching circles.

Corollary 15. Let C; XX Cy XX C5 X C4 be a closed chain of three touching circles, the contact points being Ay = Ay, Ao =
As, A3 = Ag (see Figure 20). Then the polygon X1 X, ... Xe¢X:1 with vertices X;11 = pa,(X;) closes for any staring
point X1 on Cl. Then, A1 = X14, A2 = X25, A3 = X36. The points X135 = X13 = X35 = X51 and X246 = X24 =
X6 = Xgo lie on the circumcircle C of the triangle Ay AsAs. The lines {; and {; 3 are orthogonal, and the midpoint of
the segment X135 X046 is the center of this circle C.

Proof. Consider, e.g., the circle Cys through the points As, Ag = A3, Xo6. Observe that Xo6 = Ay if X = A;.
Hence Cy is the circumcircle C of the triangle A; A3 A3. Similarly Cyy = Cy = C13 = Cs5 = Cs1 = C. It follows
that X13 = X35 = X51 and X24 = X46 = X62 lie on C.

Finally, the sum of the transfer angles of w4, © ¢4, 0 ¢4, is 7, i.e., the segment X, X, 5 is a diameter of the circle
C;. In particular, in the position where the line X; X, passes through the centers of C; and C> we have that
<A Ay X, is a right angle. Hence /5 and /5 are orthogonal, independent of the starting point X;. Similarly, we
have that ¢; and ¢4, and ¢3 and ¢ are orthogonal. In particular, it follows that the center M of C is the midpoint
of the segment X35 X46. g.ed.

The situation of four touching circles is simpler than for three touching circles, since four is an even number
(recall Theorem 10).

Corollary 16. Let C; X Cy X C3X Cy X Cy be a closed chain of four touching circles, the contact points being
Ay, As, As, Ay (see Figure 21). Then the polygon X1 X, ... X4 X; with vertices X, 11 = pa,(X;) closes for any staring
point Xy on Cy. The points X135 and Xo4 lie on the circumcircle C of the quadrilateral A1 As AsAy.
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Figure 21. The special case of four touching circles in Corollary 16.

Proof. First recall that the contact points Ay, As, A3, A4 of four touching circles form always a cyclic
quadrilateral. Observe that X33 = Ay if Xy = X3 = Ay. Hence Cy3 = C. Similarly Co = C, and we are
done. ged.

Now we can prove an extended version of Steiner’s quadrilateral theorem.

Corollary 17. Consider the complete quadrilateral consisting of four lines l1,l2,1s,14 such that l;_q,1;,li+1 form a
triangle with circumcircle C; for i =1,2,3,4 (see Figure 22). Let A; denote the intersection of I; and l;11, P the
intersection of lo and 1y, and Q the intersection of Iy and l3. Then, ¢ := pa, 0 pa, © Ya, © a, is the identity map on C1,
i.e., the resulting quadrilateral X1, X, 11 = pa,(X;) closes for any initial point X, on Cy. The circles Cy, C2, Cs, Cy pass
though a common point S, the Steiner point. Moreover we have:
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The intersection X3 of the lines {1 and {3 runs on a circle Cy3 through Ay, Az and S.

The intersection Xo4 of the lines £y and ¢4 runs on a circle Cay through Ay, Ay and S.
The intersection X of the lines X1 X3 and XX, runs on a circle C through P, Q and S.
The points X1, Xo, X3, X4 are concyclic on a circle D through S

The points X1, X3 and P, as well as Xo, X4 and Q) are collinear.

Proof. The fact that the polygon X; X» X3X, closes for any position of the initial point X; on C; follows directly
from Corollary 8. Lemma 14 implies that X3 and Xy, lie on circles Ci3 and Ca4 through A, A3 and A, A4,
respectively. The sum of the angles in the quadrilateral X3PX; X5 is

X3 PX1 + <PX1 X + <X1 X2 X5 + <Xo X3P = 27

However, by the inscribed angle theorem applied to the circles Cy, Cs, and Cj, the last three of these angles
do not depend on the position of X;. Since <X3PX; =0 for X; = A, it follows that X;, P, X3 are always
collinear (see Figure 23). Similarly, we have that X, Q, X, are collinear. Then, again by the inscribed angle
theorem, it follows that the quadrilateral X, X3X, X, has fixed vertex and diagonal angles. Therefore, all these
quadrilaterals are similar when X; moves along C; (see [11], or [14]). If X; = A this is a cyclic quadrilateral
(with circumcircle C5, see Figure 23), so this is always the case. Let D denote the circumcircle of the cyclic
quadrilateral X; X35X, X, (this is the green, dashed circle in Figure 22). The circles C; and C5 meet in a point
S. Therefore, if X; = S then X; = X3 and hence the quadrilateral X; X3X,X, with the diagonal points X35 and
X4 degenerates to a point. Therefore, also Cs, Cy, C13, and Co4 meet in S. If we consider the circles Cy, C3, Ca, Cy
and the maps ¢p, ¢4,, g, pa, we see that the polygon X X3X>X, is closed for every position of X; on Cj.
Therefore the intersection X of X; X3 and X, X, lies on a circle C through P and Q. Also the point X collapses
together with the other points X; when X; = S. Hence C passes also through S. It remains to show that the
circumcircle D of the points X, X3, X3, X4 passes through S independent of the position of X; on Cy. This
follows from the fact that the angles <A4,X;S and <SX4A, are independent of the position of X;. Therefore
this is also the case for <X.5X4. Hence X; X35X4S is always a cyclic quadrilateral, since this is the case for the
position X; = A; (see Figure 23). g.ed.

Figure 22. Steiner’s quadrilateral theorem follows from Corollary 8 and Lemma 14 when we take n = 4.

Figure 24 illustrates Lemma 14 applied to a closed chain of three intersection circles C1, Cs, C's with intersection
points A;, B;. It follows from Theorem 9 that v, 0 ¢, 0 YB, © Y4, © Y4, © Y4, is theidentity map on (1, i.e., the
corresponding polygon X; X, ... X¢ X closes for every position of the starting point X, on C. The intersections
X;; of the lines ¢; and /; lie on the blue circles C;;, where Cay = Ci6 = Cg2 =: Cass and Ci3 = Cs5 = C51 =: Cli35.
Moreover Css, C36 and C14 are touching Cos and C3s.
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Figure 23. Proof of Corollary 17. The special case X; = A;.

Figure 24. Lemma 14 applied to a closed chain of three intersecting circles.

As a final remark we mention the following.

Corollary 18. Let C; X Co X CsX--- X C, X Cy be a closed chain of circles. Let A;, B; be the intersection points of
C; and Ciyq, where A; = B; is allowed. Let 64, == <A;M;B;,va, := <B;M;11A; and ¢ := @4, 0---0pa, 0pa,. If
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Figure 25. Illustration of Corollary 18 with four circles such that the polygon closes after three runs. Then the vertices on each circle form a regular
triangle. The triangles “dance” synchronized pirouettes when X runs on the circle. If three of the circles are given, it is an easy exercise to construct
a matching fourth circle.

S 84, + va, is a rational multiple of m, then there is a natural number k such that the map " is the identity on C;.
That is, starting with any point X on C1, the resulting polygon will eventually close on X after a finite number of steps.
The points X; X;1nXitonXitkn form a reqular polygon in the circle C; (see Figure 25).

Observe that Corollary 18 can be interpreted as a stacked version of the Lighthouse theorem [7]: Each pair of
points A;, A; 41 can be considered as lighthouses while the lines ¢ passing through them correspond to the
light beams.
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