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Abstract: Given a real function f on an interval [a, b] satisfying mild regularity conditions, we determine the
number of zeros of f by evaluating a certain integral. The integrand depends on f , f ′ and f ′′. In particular, by
approximating the integral with the trapezoidal rule on a �ne enough grid, we can compute the number of
zeros of f by evaluating �nitely many values of f , f ′ and f ′′. A variant of the integral even allows to determine
the number of the zeros broken down by their multiplicity.
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1 Introduction
Counting the zeros of a given function f in a certain region belongs to the basic tasks in analysis. If f : C→ C
is holomorphic, the Argument Principle and Rouché’s Theorem are tools which allow to �nd the number of
zeros of f , countedwithmultiplicity, in a boundeddomain ofCwith su�ciently regular boundary (see, e.g. [4]
for an overview of methods used for analytic functions). Descartes’ Sign Rule is a method of determining
the maximum number of positive and negative real roots (counted with multiplicity) of a polynomial. The
Fourier-Budan Theorem yields the maximum number of roots (counted with multiplicity) of a polynomial in
an interval. Sturm’s Theorem, a re�nement of Descartes’ Sign Rule and the Fourier-Budan Theorem, allows
to count the exact number of distinct roots of a polynomial on a real interval (see, e.g., [5], [2], [8]). The
mentioned methods are restricted to holomorphic functions and polynomials, respectively. On the other end
of the regularity spectrum, for amerely continuous function f , the Theorem of Bolzano yields the information
that at least one zero exists on an interval [a, b] if f has opposite signs at its endpoints, though, it does not
count the zeros. Here, wewant to construct amethodwhich gives the number of zeros of a real function under
only mild regularity assumptions. More precisely, we want to express the number of zeros of a function f by a
certain integral (and boundary terms). The integrand depends on f , f ′ and f ′′. If f is su�ciently regular, the
integral (and hence the number of zeros of f ) can be expressed by evaluating the integrand on a su�ciently
�ne partition of [a, b]. Modi�cations of the integral even allow to determine the number of the zeros broken
down by their multiplicity.

To explain the basic idea, we consider the following elementary connection between the number of zeros
of a periodic function and the winding number of the related kinematic curve in the state space with respect
to the origin:

Lemma 1.1. Let f : R→ Rbea2π-periodic C2 functionwith only simple zeros, i.e. points x with f (x) = 0 ≠ f ′(x).
Then, the number n of zeros of f in [0, 2π) equals twice the winding number of the curve γ : [0, 2π)→ R2, x 7→
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(f ′(x), f (x)) with respect to the origin. Hence

n = 1
π

2π∫
0

f ′(x)2 − f (x)f ′′(x)
f (x)2 + f ′(x)2 dx.

Figure 1 illustrates a heuristic proof without words: Each colored arc between two zeros of f adds 1
2 to the

winding number of γ. In the sequel, we will rigorously provemuchmore general versions and variants of this
result. We will develop integrals that count the number of zeros with and without multiplicity, and we will
even be able to determine the number of zeros of a givenmultiplicity. As a byproduct, a coherent de�nition of
a fractional multiplicity of zeros will be possible. To start with, it is necessary to analyze the nature of zeros
of a function.

Figure 1: Number of zeros of f vs. winding number of (f ′ , f ).
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2 Zeros of Functions
A function f : (a, b)→ Rmay, in general, show a quite pathological behavior in the neighborhood of one of
its zeros (see, e.g., Examples 2.2.3 and 2.9 below). To exclude such exotic cases but still be su�ciently general
to cover most of the relevant cases, we use the following de�nition.

De�nition 2.1. A zero x0 ∈ (a, b) of a function f ∈ C0(a, b) ∩ C1((a, b) \ {x0}) will be called admissible
provided

lim
x↗x0

f ′(x)
f (x) = −∞ and lim

x↘x0

f ′(x)
f (x) = ∞. (2.1)

If f extends continuously to a (or b) and f (a) = 0 (or f (b) = 0), we will say that f has an admissible zero in a
(or b) if

lim
x↘a

f ′(x)
f (x) = ∞

(
or lim

x↗b

f ′(x)
f (x) = −∞

)
.

Remarks.

1. An admissible zero is necessarily an isolated zero. In fact, if the zero x0 is an accumulation point of zeros
of f then, by Rolle’s Theorem, it is also an accumulation point of zeros of f ′ and the limits in De�nition 2.1
cannot be plus or minus in�nity.

2. The condition on the limits given in (2.1) is in fact equivalent to

lim
x→x0

∣∣∣∣ d
dx ln |f (x)|

∣∣∣∣ = ∞. (2.2)
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Indeed, if (2.2) holds true, it follows that x0 is an isolated zero of f , hence f does not change its sign
on (x0, x0 + ε) and on (x0 − ε, x0) for ε > 0 small enough. Moreover 0 < |f (x)| < |f ′(x)| on a punctured
neighborhood of x0. Hence, f ′ cannot change sign and the claim follows by distinction of cases. The
condition (2.2) is slightly more compact than (2.1), however, (2.1) is easier to handle in the calculations
below.

3. A simple zero x0 ∈ (a, b) of f ∈ C1(a, b), i.e. f (x0) = 0 and f ′(x0) ≠ 0 is admissible. It su�ces to consider
x0 = 0:

lim
x↘0

f ′(x)
f (x) = lim

x↘0
f ′(0) + o(1)

f (0) + xf ′(0) + o(x) = lim
x↘0

1
x ·

f ′(0) + o(1)
f ′(0) + o(1) = ∞.

The limit x ↗ 0 is analogous.
4. If f (x0) = f ′(x0) = 0 and f ′ is monotone on (x0, x0 + ϵ) and on (x0 − ϵ, x0) for some ϵ > 0, then x0 is an

admissible zero: Indeed, for x0 < x < x0 + ϵ and f ′ non-decreasing (if f ′ is non-increasing consider −f ) on
(x0, x0 + ϵ), we have f (x) =

∫ x
x0
f ′(t) dt ≤ (x − x0)f ′(x) and thus f ′(x)

f (x) ≥
1

x−x0
→∞ for x ↘ x0. The argument

for the limit x ↗ x0 is analogous.
5. If f ∈ Ck(a, b) and x0 ∈ (a, b) is a zero of multiplicity k > 1, i.e. f (`)(x0) = 0 for all ` = 0, . . . , k − 1 and
f (k)(x0) ≠ 0, then x0 is admissible. This follows easily by an iterated application of L’Hôpital’s rule. Hence
the zeros of real-analytic functions and a fortiori zeros of polynomials are admissible.

6. If f (x) = |x − x0|αg(x) for a C1-function g with g(x0) ≠ 0 and 0 < α ∈ R, then x0 is an admissible zero of f .
7. Every f ∈ C1([a, b]) can be extended to f̃ ∈ C1(I), where I ⊃ [a, b] is an open interval and the limits

lim
x↗a

f ′(x)
f (x) and lim

x↘b

f ′(x)
f (x) (2.3)

can be de�ned via f̃ , provided f (a), f (b) ≠ 0. If f has an admissible zero in a (or b), f can be extended
antisymmetrically with respect to a (or b) to an extension f̃ for which a (or b) is an admissible zero. We
will henceforth use this particular extension when computing limits like in (2.3).

Example 2.2. 1. The function f1 ∈ C0(R) ∩ C∞(R \ {0}), x 7→
√
|x| has an admissible zero in x = 0 (see

Remark 6 above).
2. The C∞-function

f2(x) :=
{

exp
(
− 1
x2
)
, x ≠ 0

0, x = 0,

has an admissible zero of in�nite multiplicity at x = 0 (see Remark 4 above).
3. An example of an isolated zero which is not admissible is given by the C∞-function

f3(x) := f2(x)
(

sin
( 1
x3

)
+ 2
)
,

which vanishes (together with all derivatives) in 0 but the corresponding limits (2.1) do not exist.

De�nition 2.3. A function f : [a, b]→ R belongs toAk([a, b]), k ∈ N, if the following holds:

1. f ∈ C0([a, b]).
2. f has only admissible (and therefore �nitely many) zeros x1 < . . . < xn and f |(xi ,xi+1) (i = 1, . . . , n − 1),
f |(a,x1) and f |(xn ,b) are of class Ck+1.

3. There exists a partition a = y1 < y2 < . . . < ym = b such that f |(yi ,yi+1) is of class Ck+2 for all i = 1, . . . ,m−1.

If f ∈ A0([a, b]), f will be called admissible.

Remarks.

1. Observe thatAk+1([a, b]) ⊂ Ak([a, b]) for all k ∈ N by construction.
2. Every analytic function is inA∞([a, b]).
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3. f : [−1, 1]→ R, x 7→
√
|x| is inA∞([a, b]).

4. If f is admissible, then x 7→ (f ′(x), f (x)) is not necessarily a continuous curve.

As a building block of the intended results we need the following: For σ ∈ [−∞,∞], let

H(x) =
x∫
σ

h(t) dt, (2.4)

where h : R→ R is any piecewise continuous function such that the improper integral
∫∞
−∞ h(x) dx = 1. Then

we have the following theorem (recall (2.3) in order to make sense of the limits that appear).

Theorem 2.4. Let f ∈ A0([a, b]). The number of zeros n(f ) of f in [a, b] is given by

n(f ) =
b∫
a

h
(
f ′(x)
f (x)

)
f ′(x)2 − f (x)f ′′(x)

f (x)2 dx + lim
x↘b

H
(
f ′(x)
f (x)

)
− lim
x↗a

H
(
f ′(x)
f (x)

)

and the number of zeros n̊(f ) of f in (a, b) by

n̊(f ) =
b∫
a

h
(
f ′(x)
f (x)

)
f ′(x)2 − f (x)f ′′(x)

f (x)2 dx + lim
x↗b

H
(
f ′(x)
f (x)

)
− lim
x↘a

H
(
f ′(x)
f (x)

)
.

Proof. Consider �rst the case, where f (a), f (b) ≠ 0. Then the zeros of f are given by a < x1 < x2 < . . . < xn(f ) <
b. The integrand of

b∫
a

h
(
f ′(x)
f (x)

)
f ′(x)2 − f (x)f ′′(x)

f (x)2 dx =:
b∫
a

I(x) dx

is a priori unde�ned whenever f vanishes or whenever f ′′ is unde�ned. We decompose the integral and
compute the resulting improper integrals using unilateral limits. Since f is admissible, we have

xj+1∫
xj

I(x) dx = lim
x↘xj

Hx − lim
x↗xj+1

Hx = 1

for all j = 1, . . . , n(f ) − 1, where Hx := H(f ′(x)/f (x)). Integrating over a neighborhood of a point y where f ′′ is
unde�ned does not introduce further boundary terms since limx↘y Hx − limx↗y Hx = 0. Hence

b∫
a

I(x) dx =
x1∫
a

I(x) dx +
n(f )−1∑
j=1

xj+1∫
xj

I(x) dx +
b∫

xn(f )

I(x) dx =

= Ha − lim
x↗x1

Hx + (n(f ) − 1) + lim
x↘xn(f )

Hx − Hb

(2.5)

and therefore

n(f ) =
b∫
a

I(x) dx + Hb − Ha . (2.6)

The computation above suggests that n(f ) > 1 but one can check that formula (2.6) holds true for n(f ) = 1
and n(f ) = 0 as well.

If f has zeros in a and b and therefore x1 = a, xn(f ) = b, computation (2.5) gives

n(f ) =
b∫
a

I(x) dx + 1. (2.7)
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According to (2.3), lim
x↘b

Hx − lim
x↗a

Hx = 1 and (2.7) becomes

n(f ) =
b∫
a

I(x) dx + lim
x↘b

Hx − lim
x↗a

Hx (2.8)

and hence (2.8) counts the zeros of f in [a, b] since it reduces to (2.6) if f (a), f (b) ≠ 0 and one can check that
the remaining cases f (a) = 0 ≠ f (b) and f (a) ≠ 0 = f (b) are also covered. Let now

n̊(f ) =
b∫
a

I(x) dx + lim
x↗b

Hx − lim
x↘a

Hx .

Since
n(f ) − n̊(f ) = lim

x↘b
Hx − lim

x↗a
Hx −

(
lim
x↗b

Hx − lim
x↘a

Hx

)
=

=


0, if f (a), f (b) ≠ 0
1, if either f (a) = 0 or f (b) = 0
2, if f (a) = f (b) = 0

we conclude that n̊(f ) counts the zeros of f in (a, b).

Remarks.

1. Putting g(x) := f ′(x)/f (x), the integrand in Theorem 2.4 reads −(h ◦ g)(x)g′(x). With respect to the signed
Borel-Lebesgue-Stieltjes-Measure dg(x) := g′(x) dx (see [9]), the integral can be written more compactly
as

−
b∫
a

h(g) dg.

2. If h(x) := 1/(π(1 + x2)), i.e. h equals the Cauchy Density and f is an admissible 2π-periodic function, then
the number n of zeros of f in [0, 2π) equals

n = 1
π

[ 2π∫
0

f ′(x)2 − f (x)f ′′(x)
f (x)2 + f ′(x)2 dx + lim

x↗2π
arctan

(
f ′(x)
f (x)

)
− lim
x↗0

arctan
(
f ′(x)
f (x)

)]
=

= 1
π

2π∫
0

f ′(x)2 − f (x)f ′′(x)
f (x)2 + f ′(x)2 dx, (2.9)

since the integral-free terms cancel out in this case. In this way we obtain Lemma 1.1 as a corollary of
Theorem 2.4. Observe that a 2π-periodic C2 function with an odd number of zeros on [0, 2π) gives rise
to a curve x 7→ (f ′(x), f (x)) having a half-integer valued winding number. This idea, further developed,
leads to a generalized version of the Residue Theorem (see [3]).

Observe, that for a C2 function f with only zeros of multiplicity one, the integrand in (2.9) is continuous
provided h is continuous. This remains true for zeros of higher multiplicity in the following way:

Proposition 2.5. Let h : R→ R be continuous and h(x) ∼ C
x2 for |x| →∞. Then, the integrand in Theorem 2.4

I := h
(
f ′
f

)
f ′2 − f f ′′
f 2

is continuous if f ∈ Cn([a, b]), n ≥ 2, has only zeros of multiplicity ≤ n.
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Proof. It su�ces to show that I is continuous in 0 if x = 0 is a zero of f of multiplicity n. Then, by Taylor
expansion, we have

f (x) =
(
f (n)(0)
n! + r0(x)

)
xn

f ′(x) =
(
f (n)(0)

(n − 1)! + r1(x)
)
xn−1

f ′′(x) =
(
f (n)(0)

(n − 2)! + r2(x)
)
xn−2

where ri are continuous functions with limx→0 ri(x) = 0. Using these expressions in I, we get

I(x) = h
(
s1(x)
x

)
s2(x)
x2

for continuous functions si with limx→0 si(x) = n. Thus

I(x) ∼ Cx2

s2
1(x)

s2(x)
x2 → C

n

for x → 0.

If we only assume that h(x) = O(1/x2) for |x| →∞ in the previous proposition, the proof shows that then I is
at least bounded.

As a corollary of Proposition 2.5 we obtain that if h is continuous and h(x) ∼ C
x2 , then I is in C0 provided f

is analytic. Nontheless, the function f may behave in the neighborhood of a zero in such a pathological way,
that I becomes unbounded (see Example 2.7.3). This is why, in general, the integrals in Theorem 2.4 have to
be interpreted as improper integrals. This means that the concrete computation requires the zeros of f to be
known a priori in order to evaluate the improper integrals. It is therefore of practical importance to formulate
conditions (see Propositions 2.8 and 2.10) with additional assumptions which guarantee that I is in L1: To
this end we will slightly sharpen the admissibility condition for a function and impose some conditions on
the behaviour of the zeros of f ′′ in neighborhoods of the zeros of f . Furthermore we will require h to have at
least quadratic decay at in�nity.

The proof of Proposition 2.5 for the case C = 1 indicates, howwe can generalize the notion of multiplicity
of zeros in a natural manner:

De�nition 2.6. The multiplicity µf (x0) of a zero x0 of f ∈ A0 is de�ned to be

µf (x0) = lim
x→x0

f ′(x)2

f ′(x)2 − f (x)f ′′(x) .

Since the zeros of functions inA0 are admissible, it follows that µf (x0) ≥ 0 whenever it exists, however, it can
take values in [0,∞] (see Example 2.7.3 and 2.7.4 below). This de�nition of the multiplicity of a zero will be
useful for a variant of Theorem 2.4 that takes the multiplicities of the zeros into account.

Example 2.7. 1. A function f ∈ Cn, n ≥ 2 with 0 = f (x0) = f ′(x0) = . . . = f (n−1)(x0) ≠ f (n)(x0) has a zero of
multiplicity n in x0: the De�nition 2.6 is compatible with the usual notion of multiplicity.

2. The function f (x) = |x|r , r > 0 has a zero of multiplicity r in x = 0.
3. The function

f (x) =


1

ln |x| , x ≠ 0

0, x = 0

has a zero of multiplicity 0 in x = 0.
4. The function f2 in Example 2.2.2 has a zero in x = 0 with µf2 (0) = ∞.
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Proposition 2.8. Let h : R→ R be a piecewise continuous function such that h(x) = O(1/x2) for |x| →∞ and
let f ∈ A0([a, b])∩W2,1(a, b) have only zeros of positive multiplicity in the sense of De�nition 2.6. Furthermore
we assume that for each zero x0 we have a neighborhood U such that either f ′′(x) ≡ 0 on U \ {x0} or

∞∑
k=1
|zk − x0| < ∞,

where z1, z2, . . . denote the countably many zeros of f ′′ in U. Then

I := h
(
f ′
f

)
f ′2 − f f ′′
f 2 ∈ L1(a, b).

Proof. Choose neighborhoods U1, . . . , Un of the n zeros of f , which do not (with the possible exception of the
respective zero itself) contain singular points of f ′′ or zeros of f ′ and let

U =
n⋃
i=1
Ui .

Since |f | ≥ η for some η > 0 on the complement Uc andW2,1(a, b) ↪→ C1([a, b]) we can estimate∫
Uc

|I(x)|dx = η−2‖h‖L∞(R)
(
‖f ′2‖C0([a,b])|b − a| + ‖f‖C0([a,b])‖f

′′‖L1(a,b)
)
< ∞.

Consider now wlog the neighborhood Ui of the zero xi = 0 and assume Ui = (−ε, ε) for some ε > 0. We need
to show that I|(−ε,ε) ∈ L1. Since h(x) = O(1/x2) for |x| →∞, there exists a constant C > 0 such that

|I(x)| ≤ C
(

1 +
∣∣∣∣ f (x)f ′′(x)
f ′(x)2

∣∣∣∣) . (2.10)

Note that � ′′/f ′2 ∈ L1(−ε, ε) if and only if N ∈ BV(−ε, ε), where N(x) = x − f (x)/f ′(x) denotes the Newton-
Operator of f and BV(−ε, ε) denotes the space of functions g : (−ε, ε) → R of bounded variation. It follows
from the admissibility of the zero that N : (−ε, ε) \ {0} → R can be continuously extended to N(0) = 0 and it
holds that

N′(x) = f (x)f ′′(x)
f ′(x)2 ,

for x ≠ 0. Let µ > 0 denote the multiplicity of the zero according to De�nition 2.6. It holds that

lim
x→0

N′(x) =


µ − 1
µ , µ < ∞

1, µ = ∞.

According to the mean value theorem we have N(x)/x = N′(ξ ) for some ξ between 0 and x and deduce that
N ∈ C1(−ε, ε). The Taylor expansion of N around x = 0 is given by

N(x) =


µ − 1
µ x + o(x), µ < ∞

x + o(x), µ = ∞.

In any case there exists a constant K > 0 such that

|N(x)| ≤ K|x|, |x| < ε. (2.11)

We will now show that N ∈ BV([0, ε)), the argument on (−ε, 0] being similar. We start by noticing that N
is absolutely continuous on [δ, ε) for every 0 < δ < ε since x, f (x) and f ′(x) are absolutely continuous and
f ′(x) ≠ 0 on [δ, ε). In particular, N ∈ BV([δ, ε)) for every 0 < δ < ε.

We will now distinguish two cases: If f ′′ ≡ 0 on (0, ε), then N ≡ 0 and we are done. In the remaining
case we �rst consider the case when the set of zeros of f ′′ in (0, ε) is empty: Then N is monotone on [0, ε) and
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hence N ∈ BV([0, ε)). Otherwise the zeros of f ′′ in [0, ε) are given by z1 > z2 > . . . and we may set δ := z1.
According to (2.11) and since the zeros of f ′′ are precisely the zeros of N′ we can estimate the total variation of
N on (zk+1, zk) by

zk∫
zk+1

|N′(x)|dx ≤ 2Kzk .

The total variation of N on [0, ε) is bounded by

∞∑
k=1

zk∫
zk+1

|N′(x)|dx +
ε∫
δ

|N′(x)|dx ≤ 2K
∞∑
k=1

zk +
ε∫
δ

|N′(x)|dx,

where the series converges by assumption and the integral is �nite since N ∈ BV([δ, ε)). We conclude that
N ∈ BV([0, ε)), which �nishes the proof.

Remark. The key estimate (2.11) in the proof above follows from the admissibility and the positive multiplicity
of the zeros. We will however formulate a variant of Proposition 2.8 below (Proposition 2.10), which covers
admissible functions that have zeros of ill-de�ned multiplicity for which (2.11) still holds true: Take e.g. the
C1 function f : x 7→ x3 (sin(1/x) + 2

)
+ x which has an admissible zero in x = 0, but for which µf (0) does not

exist, however, (2.11) holds true since f (x)/(xf ′(x)) is bounded near 0 – in fact

lim
x→0

f (x)
xf ′(x) = 1.

Example 2.7.3 shows an admissible function for which (2.11) does not hold true. In the mentioned example,
the �rst derivative is unbounded. But even functionswith higher regularitymay behave in such a pathological
way near an admissible zero, that (2.11) does not hold true, as the following example shows:

Example 2.9. Let

k(x) =

x
3 +
(√
|x|7 − x3

)
cos (π log2 |x|) , if x ≠ 0

0, if x = 0.

Then f (x) =
∫ x

0 k(t) dt is of class C3 and has an admissible zero in x = 0 but f (x)/(xf ′(x)) is unbounded near
0.

Proposition 2.10. Let h : R→ R be a piecewise continuous function such that h(x) = O(1/x2) for |x| →∞ and
let f ∈ A0([a, b])∩W2,1(a, b) be such that that for every zero x0 of f there exists a relatively open neighborhood
U ⊂ [a, b] such that

0 <
∣∣∣∣ f (x)

(x − x0)f ′(x)

∣∣∣∣ < K̃ (2.12)

on U \ {x0} and such that either f ′′ ≡ 0 on U \ {x0}, or

∞∑
k=1
|zk − x0| < ∞,

where z1, z2, . . . denote the countably many zeros of f ′′ in U \ {x0}. Then

I := h
(
f ′
f

)
f ′2 − f f ′′
f 2 ∈ L1(a, b).

Proof. Choose neighborhoods U1, . . . , Un of the n zeros of f , which do not (with the possible exception of
the respective zero itself) contain singular points of f ′′ or zeros of f ′ such that (2.12) holds on each punctured
neighborhood. As in the proof of Proposition 2.8 we obtain ‖I‖L1(Uc) < ∞, where U = U1 ∪ . . . ∪ Un and the
estimate (2.10). Let wlog 0 be a zero of f and let (−ε, ε) be its respective neighborhood for some ε > 0. As in
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the proof of Proposition 2.8, we are done if we show that N ∈ BV([0, ε)). The condition 0 < |f (x)/(xf ′(x))| < K̃
on (−ε, ε) \ {0} implies that

0 <
∣∣∣∣ f (x)
f ′(x)

∣∣∣∣ < K̃|x|, (2.13)

from which we conclude that N extends continuously to [0, ε) (where N(0) = 0) and

|N(x)| ≤ (K̃ + 1) x, x ∈ [0, ε). (2.14)

This is just estimate (2.11) with K = K̃ + 1. The rest of the proof is exactly the same as the one of Proposition
2.8.

3 Counting Zeros with Multiplicities
Let again h : R → R be a piecewise continuous function such that

∫∞
−∞ h(x) dx = 1 and de�ne H as before

in (2.4). Moreover, let

Ig(x) = h
(
f ′(x)
f (x)

)
g(x) f

′(x)2 − f (x)f ′′(x)
f (x)2 − H

(
f ′(x)
f (x)

)
g′(x),

g1(x) = f ′(x)2

f ′(x)2 − f (x)f ′′(x) + cf (x)2 ,

g2(x) = exp
(
f ′(x)2 − f (x)f ′′(x)
f ′(x)2 + f (x)2

)
,

where c ∈ R. Note that if x0 is a zero of multiplicity µf (x0), then g1(x) → µf (x0) as x → x0 for every value c
in the de�nition of g1 and if µf (x0) > 0, then g2(x)→ exp

( 1
µf (x0)

)
as x → x0.

Lemma 3.1. Let all the zeros of f ∈ A0([a, b]) ∩ C2([a, b]) have well-de�ned multiplicities. Then there exists
c ∈ R such that g1 has no poles.

Proof. If x0 is a zero of f , wehave that g1(x)→ µf (x0) as x → x0. In otherwords g1 extends continuously to the
zeros of f . Hence there are open neighborhoods of the zeros of f , where g1 has no poles. On the complement
of these neighborhoods, there exists a number δ > 0 such that |f (x)| ≥ δ. Hence f ′(x)2 + cf (x)2 ≥ f ′(x)2 + cδ2.
If we choose c > δ−2‖f f ′′‖C0([a,b]), then g1 has no poles. In particular, if f is analytic, this choice of c ensures
that g1 is analytic as well.

We have the following theorem for analytic functions f : [a, b]→ R:

Theorem 3.2. Let f : [a, b] → R be an analytic function and choose c in the de�nition of g1 such that g1 is
analytic. If h(x) = O(1/x2) for |x| → ∞, then Ig1 , Ig2 ∈ L∞(a, b) and if f has n` zeros of multiplicity ` in [a, b]
and n̊` zeros of mutliplicity ` in (a, b), then

b∫
a

Ig1 (x) dx + lim
x↘b

[
H
(
f ′(x)
f (x)

)
g1(x)

]
− lim
x↗a

[
H
(
f ′(x)
f (x)

)
g1(x)

]
=

∞∑
`=1

n``,

b∫
a

Ig1 (x) dx + lim
x↗b

[
H
(
f ′(x)
f (x)

)
g1(x)

]
− lim
x↘a

[
H
(
f ′(x)
f (x)

)
g1(x)

]
=

∞∑
`=1

n̊``,

b∫
a

Ig2 (x) dx + lim
x↘b

[
H
(
f ′(x)
f (x)

)
g2(x)

]
− lim
x↗a

[
H
(
f ′(x)
f (x)

)
g2(x)

]
=

∞∑
`=1

n` exp
(1
`

)
,

b∫
a

Ig2 (x) dx + lim
x↗b

[
H
(
f ′(x)
f (x)

)
g2(x)

]
− lim
x↘a

[
H
(
f ′(x)
f (x)

)
g2(x)

]
=

∞∑
`=1

n̊` exp
(1
`

)
.
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Proof. We �rst prove the L∞-bounds: It su�ces to show that Ig1 and Ig2 are bounded near the zeros of f . Let
x0 be a zero of multiplicity k and write (locally) f (x) = (x − x0)k j(x), where j is analytic and j(x0) ≠ 0. Since

lim
x→x0

g′1(x) = 2j′(x0)
j(x0)

we �nd the limits
lim
x↘x0

H
(
f ′(x)
f (x)

)
g′1(x) = 2j′(x0)

j(x0)

lim
x↗x0

H
(
f ′(x)
f (x)

)
g′1(x) = 0.

If
h
(
f ′(x)
f (x)

)
g(x) f

′(x)2 − f (x)f ′′(x)
f (x)2

is bounded near x0, the claim follows. Since
∣∣h (f ′(x)/f (x)

)∣∣ ≤ C · f (x)2/f ′(x)2 and

lim
x→x0

C|g1(x)| f
′(x)2 + |f (x)f ′′(x)|

f ′(x)2 = C(2k − 1),

we obtain Ig1 ∈ L∞(a, b). For Ig2 , observe that

lim
x→x0

g′2(x) = −
2 exp

(1
k
)
j′(x0)

k2j(x0)

and therefore
lim
x↘x0

H
(
f ′(x)
f (x)

)
g′2(x) = −

2 exp
(1
k
)
j′(x0)

k2j(x0)

lim
x↗x0

H
(
f ′(x)
f (x)

)
g′2(x) = 0.

Proceeding as for g1 we �nd

lim
x→x0

C|g2(x)| f
′(x)2 + |f (x)f ′′(x)|

f ′(x)2 = C exp
(1
k
) 2k − 1

k

and hence Ig2 ∈ L∞(a, b). The computation of the integrals is done as in the proof of Theorem 2.4.

Remark. If f ∈ A1([a, b]) ∩ C2([a, b]) only has zeros of well-de�ned multiplicities and if the set of zeros of f
in (a, b) is given by N̊ and the set of zeros of f in [a, b] by N, then

b∫
a

Ig1 (x) dx + lim
x↘b

[
H
(
f ′(x)
f (x)

)
g1(x)

]
− lim
x↗a

[
H
(
f ′(x)
f (x)

)
g1(x)

]
=
∑
x∈N

µf (x),

b∫
a

Ig1 (x) dx + lim
x↗b

[
H
(
f ′(x)
f (x)

)
g1(x)

]
− lim
x↘a

[
H
(
f ′(x)
f (x)

)
g1(x)

]
=
∑
x∈N̊

µf (x).

Lemma 3.3. Let N be the set of sequences with natural entries of which only �nitely many are non-zero. Then
the map F : N→ R de�ned by F(k1, . . .) = ∑∞

`=1 k` exp
(1
`

)
is injective.

Proof. The di�erence F(k1, . . .) − F(k′1, . . .) is equal to the �nite sum
∞∑
`=1

(k` − k′`) exp
(1
`

)
.

If this sum vanishes, k` = k′` for all ` by the von Lindemann-Weierstrass theorem (see [7, §3]).
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Corollary 3.4. Let f : [a, b] → R be analytic. If f has n` zeros of multiplicity ` in [a, b] and n̊` zeros of
mutliplicity ` in (a, b), then

(n1, . . .) = F−1

 b∫
a

Ig2 (x) dx + lim
x↘b

[
H
(
f ′(x)
f (x)

)
g2(x)

]
− lim
x↗a

[
H
(
f ′(x)
f (x)

)
g2(x)

]
(n̊1, . . .) = F−1

 b∫
a

Ig2 (x) dx + lim
x↗b

[
H
(
f ′(x)
f (x)

)
g2(x)

]
− lim
x↘a

[
H
(
f ′(x)
f (x)

)
g2(x)

] .

Example 3.5. Let f (x) = cos(2x) + x2 sin(2x) − 1
2
√

ex + x−2
4 . Using Theorem 2.4 and 3.2 on [0, 2π] we obtain

∞∑
`=1

n` = 3,
∞∑
`=1

n̊` = 2,
∞∑
`=1

n`` = 4,
∞∑
`=1

n̊`` = 2.

and we conclude that f has two zeros in (0, 2π) and a double zero on the boundary of [0, 2π].

Example 3.6. Let f (x) = x7 − 2x6 + x5 − x3 + 2x2 − x have n` zeros of multiplicity ` onR. By Theorem 2.4 and
3.2 on R (observe that the boundary terms of the integrals cancel out in this case) we �nd that

∞∑
`=1

n` = 3 and
∞∑
`=1

n`` = 5.

Hence (n1, . . .) either equals (1, 2, 0, . . .) or (2, 0, 1, . . .). In particular n` = 0, for ` ≥ 4. Using again Theorem
3.2 we get

3∑
i=1

ni exp
(1
i
)
≈ 6.8322.

Since 1 · e + 2 ·√e ≈ 6.0157 and 2 · e + 1 · 3√e ≈ 6.8322 we conclude that f has two simple zeros and one of
multiplicity 3.

4 Numerical Aspects
The number of zeros of a function f in a given interval [a, b] is of course an integer. Therefore is su�ces to
compute the integral in Theorem 2.4 with an error ε < 1

2 . In particular, for the trapezoidal rule

TN(I) := b − a
N

( I(a) + I(b)
2 +

N−1∑
k=1

I
(
a + k b−aN

))
with N + 1 equidistant grid points, the error ε(N) is estimated by

ε(N) =
∣∣∣ b∫
a

I(x) dx − TN(I)
∣∣∣ ≤ (b − a)3

12N2 ‖I
′′‖L∞

(see, e.g., [6] or [1]). Thus we have

Theorem 4.1. Let f satisfy the assumptions in Theorem 2.4. If

N >
√

(b − a)3

6 ‖I′′‖L∞ ,

then one can replace the integral in Theorem 2.4 by the �nite sum TN(I) and round the result to the closest integer
to get the values n(f ) and n̊(f ), respectively.
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This theorem is quite remarkable: It allows to compute the number of zeros of a function f on [a, b] by
evaluating �nitely many values of f , f ′ and f ′′.

Example 4.2. Let f : R → R, x 7→ J0(x), be the zeroth Bessel function of the �rst kind. If h is the Cauchy
density, one can verify that ‖I′′‖L∞ < 1

π . We want to compute the number of zeros of J0 on [0, 2π] by Theorem
4.1. It su�ces to employ the trapezoidal rule with only

N =
⌈

2π√
3

⌉
= 4

equidistant intervals. We �nd

T4(I) = π
2

(
I(0) + I(2π)

2 +
3∑
k=1

I
(
k π2
))
≈ 1.76479

and thus
T4(I) − 1

π arctan
(
J1(2π)
J0(2π)

)
≈ 1.76479 + 0.24419 = 2.00898

and hence, J0 has two zeros on [0, 2π].
If we compute the number of zeros of J0 on [0, 100π], we have to choose

N =
⌈

500
√

6
3 · π

⌉
= 1283.

(Actually, a �ner analysis shows that a much smaller N su�ces). In this case, we get

T1283(I) = 100π
1283

(
I(0) + I(100π)

2 +
1282∑
k=1

I
(
k100π

1283
))
≈ 99.75013

and
T1283(I) − 1

π arctan
(
J1(100π)
J0(100π)

)
≈ 99.75013 + 0.24987 = 100,

hence we conclude that J0 has n = 100 zeros on [0, 100π], in accordance with the well known distribution of
zeros of J0. Surprisingly, the routine CountRoots of Mathematica™ is giving up on this simple problem after
giving it some thought.

From a practical point of view, it is desirable to keep ‖I′′‖L∞ (and hence N) as small as possible. This can be
achieved in several ways: First of all, we have the freedom to choose the function h. Below there is a small
table of possible choices of h and the resulting function H in Theorem 2.4 (in each case, the integrand I turns
out rather nicely).

Moreover, with smooth functions γ and κ that satisfy sign γ(x) = sign κ(x) = sign x for all x ≠ 0 and
γ(x) ∼ C1|x|α sgn x and κ(x) ∼ C2|x|β sgn x as x → 0, where 0 < α ≤ β, one can modify the integrand I as
follows and the proof of Theorem 2.4 still goes through:

I(x) = h
(
γ(f ′(x))
κ(f (x))

)(
γ(f ′(x))f ′(x)κ′(f (x)) − γ′(f ′(x))f ′′(x)κ(f (x))

κ(f (x))2

)
.

In this case the boundary terms in a and b have to be taken with the function

H
(
γ(f ′(x))
κ(f (x))

)
.

Acknowledgement: We would like to thank the referees for their valuable remarks which greatly helped to
improve this article.



An integral that counts the zeros of a functions | 1633

h(x) H(x)

1
π(1 + x2)

arctan x
π

1
2
(
x2 + 1

)3/2
x

2
√
x2 + 1

exp
(
−x2)
√
π

1
2 erf(x)

1
4x2 −

1
4x2
√

4x2 + 1

√
4x2 + 1 − 1

4x

sech(2x)2 1
2 tanh(2x)

ex
(1 + ex)2 − 1

1 + ex

UnitBox(x)


0 if 2x < −1
x + 1

2 if − 1
2 < x ≤ 1

2
1 if 2x > 1

UnitTriangle(x)


0 if x ≤ −1
1
2 (1 + x)2 if − 1 < x ≤ 0
−1

2 (1 − x)2 + 1 if 0 < x ≤ 1
1 if 1 < x
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