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A MATHEMATICAL MODEL FOR LEVITATION IN A
MAGNETIC STIRRER

Jonathan Hungerbiihler! and Norbert Hungerbiihler?

We describe and discuss a mathematical model for the magnetic stirrer
which explains the magnetic levitation of the stir-bar which has recently been
reported in an experimental setting. The model explains the main experimental
observations.
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1. Introduction

In [1] Baldwin et al. describe the stunning phenomenon of magnetic levitation
in a magnetic stirrer. Recall that according to Earnshaw’s theorem [4], a static
magnetic or electric field is not capable of maintaining an electrically charged body
or a magnetic dipole in a stable equilibrium. However, magnetic levitation has been
realised in many ways if the levitated object is dynamically stabilised (see [1] and the
references therein). It is surprising that magnetic levitation in magnetic stirrers has
only recently been discovered and described in [1], in particular, because this standard
laboratory tool is in worldwide use since its invention in 1942". The authors of [1]
describe that the magnetic stir-bar, submerged in a fluid of suitable viscosity and
driven at an angular velocity above a critical threshold, jumps up to levitate stably
up to several centimetres above the base of the container. Very recently, the effect
has also been documented in water and even in air: see [5], and the supplementary
video [6] showing the experiment. Other approaches to overcome the limitations of
Earnshaw’s theorem have recently been dicussed in [9], namely the levitation of a
rapidly oscillating magnetic dipole above a metallic sheet, or in [8] where a rotating
saddle trap is used. On a much smaller scale, rotating magnetic nanorods in a viscous
liquid are very sensitive to an ambient magnetic field: In [7] it is shown that any
ambient field stabilizes the synchronous precession of the nanorod, and this allows to
control the precession. In this way, rotating magnetic nanorods can detect minute
fluctuations of a magnetic field such that they can be used henceforth as sensors of
very weak magnetic fields, for microrheology, and generally for magnetic levitation.
It is the aim of this paper to develop and discuss a simple mathematical model for
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levitation in a magnetic stirrer which explains the main experimental observations
which have been reported in [1] (see also the supplemental material [2]).

2. A mathematical model of the magnetic stirrer

In this section we consider a simplified mathematical model of the magnetic
stirrer. The situation is shown in Figure [l We make certain simplifying assump-
tions in the modelling, so that a mathematical analysis is still easily possible, but
nonetheless all aspects of the experiment are captured.

zs3

Q2

FIGURE 1. The geometrical representation of the magnetic stirrer.

The motor-driven magnet (red) rotates in the (z1,x2) plane at an angular
velocity of w > 0. Its one end P, has at time ¢t the position

cos(wt)
P, = | sin(wt)
0

in Cartesian coordinates (z1,z2,23). Here, we assume that the length of the red
motor-driven magnet is 2. This defines the unit length. The position of the other end
of the red magnet is P, = —P;. The green dumbbell-shaped stir-bar, the so called
flea, rotates at height h above the (x1,z2) plane likewise with the angular velocity w
but with a phase shift §. Its two ends have at time ¢ the positions

cos(wt — 9) — cos(wt — 0)
Q1 = | sin(wt —9) |, Q2 = | —sin(wt — 0)
h h

Now we calculate the forces acting on the dumbbell head Q1:
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e The gravitational force reduced by the buoyancy force amounts to

0
FG:_mg 0 3
1

where m is the mass of the dumbbell head minus the mass of the fluid it
displaces.

e We assume that the frictional force exerted by the viscous fluid on the dumbbell
is proportional to the velocity vector @1 with proportionality factor A > 0.
The frictional force is therefore

Fp=-)\Qi.

The constant A\ is greater the higher the viscosity of the liquid is.
e The force exerted by the red magnet on the green magnet: As a simplified
model, we assume that the force exerted by P, on @ is attracting with

:Epl_Ql
|P1Q1]?

(attraction between north pole and south pole). & > 0 is a proportionality
factor that indicates the strength of the magnets. If P; and ()1 were opposite
electrical point charges, the denominator would be |P1Q1|? instead of |P1Q1]?.
However, here we calculate with the square in order to simplify the model and
the calculations (see also [3] for a discussion of this approach). Accordingly,
the force Py exerts on ()1 is repulsive and equal to

Fy

Q1 — P

F = 87]P2Q1|2 .

The distances are
|P1Q1\:\/2—20055+h2, |P2Q1|:\/2—|—2cos5+h2.
e The force that the green dumbbell bar exerts on the dumbbell head @ is
cos(wt — )
Fz = —p | sin(wt —9) |,
0

with a constant p which is to be determined.

The green magnetic stir-bar rotates in an equilibrium if and only if
Foe+Fr+ P+ Fo+ Fz=0. (1)

In fact, if the sum of the forces in (1) were not 0, the flea would not maintain its
height or angular velocity. If we use the above expressions for the forces, we find

for :

e(1—cosd) g(cosd+1) . _
V1 2—2cos d+h? 2+2 cos +h2 Awsind — p1cos o 0
L : 4¢e cos _ _
vy | = sin § (—(h2+2)274 oz T Aw €os § =10]. (2)
U3 —mg — 4he cos 0

(h2+2)2—4cos? §

Note that for symmetry reasons it is sufficient to consider the time t = 0.
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We decompose the resulting force in a radial, tangential and vertical
component, i.e., in the direction of the vectors

cosd sin & 0
—sind |,|cosd]|,[0],
0 0 1
and get
w1 1 2h%e cos § — pc ' 0
wy | = — 2(h? + 2)esiné — we =(0], (3)
w3 € \4mg cos? § — 4he cos § — mg(h? + 2)? 0

where ¢ := (h? + 2)? — 4cos? §. Observe that ¢ > 0 for A > 0, and also for h = 0
provided 0 € (0, 7). For a real magnetic stirrer we have h > 0, and we will assume
this from now on. Observe also that p occurs only in the first equation in , and
only linearly. This means that for any solution (h, §) of the second and third equation
in (3)) the first equation can also be fulfilled. Hence the flea levitates in an equilibrium
at height A with phase shift § if and only if the two equations

2(h* 4 2)psin§ + w(4 cos® § — (k% + 2)2) =0 (4)
4cos® 5 — 4hgcosd — (h2 +2) = 0 (5)
hold with
€ oand e £
p:=+ and ¢: mg’

In Section E we will discuss the equilibria of the system, i.e., the solutions of f.
In Section [4| we examine under which conditions the jump of the flea can take place,
and in Section [5| we will determine which equilibria are stable or unstable: Only
stable solutions can be realised experimentally. Observe that a model where the two
magnets are replaced by idealised magnetic dipoles have only unstable solutions. It
is therefore essential that the magnets are modelled as extended bars.

3. Discussion of the equilibrium condition

Before we discuss the equilibrium conditions , mathematically, we make
some heuristic physical considerations: If the angular velocity w and thus the friction
force is small, the phase shift ¢ is also small. Then the distance of the attracting
magnetic poles is smaller than the distance of the repelling magnetic poles. Together
with the gravitational force we have a resulting force in negative xs-direction: The
flea rotates on the bottom of the container and the normal force compensates for
the resulting vertical force. If we increase w, the friction and thus the phase shift
increases. If § exceeds 7, the distance between the attracting poles is greater than
the distance of the repulsive poles. As soon as the resulting repulsion is greater
than the weight force, the flea rises from the bottom of the container and floats at
the height, where the weight force and the repulsion cancel out each other. If w
becomes too large, the friction becomes so large that the coupling force with the
driving magnet is no longer sufficient and the driving magnet overtakes the flea.

Let us first determine the threshold value dy so that for all phase shifts § < dg
no stable levitation can occur:
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Proposition 3.1. Let 0 < g < 7w be such that

\/ 64 — 144¢% — 27¢* + /2 + 8 (9¢2 + 8)*/* ©
8v2 '

Then, the vertical force component vs < 0 is strictly negative for all values § € [0,dp).

For 6 = dq there is a unique value h = hg such that vs = 0, and v3 < 0 for all other

values of h > 0. This means that for values 0 < § < &g no stable levitation can occur.

™

The function q — 60(q) is decreasing, with lim do(q) = 7, and lim dy(q) = 5.
q—0 q—00

cosdg = —

2

Proof. The function v3(h) is clearly negative for 0 < ¢ < 7, and for § < 6 < 7 it has

exactly one maximum for A > 0: In fact, the derivative dﬂ has only one positive

zero at
h = \/g\/\/ll—?)cos?é—l.

If this value h = h is used in vz and the expression thus obtained is set equal to 0,
the resulting equation for cosd yields the value specified by @ U

For all values of § in the interval (dp, 7] the equation v3 = 0 has solutions:

Lemma 3.1. Let 0 < h < il, where h is the positive root of h(4 + h?) = 4q. Then
equation (@ is satisfied for the value

cosd = %(hq — /(2 + h2)2 + h2¢?), (7)

with g < § < w. Levitation at height h > h cannot occur. The function q — iL(q) 18
increasing, with lim h(q) =0, and lim h(q) = oco.
q—0 q—00

Proof. Equation , i.e. v3 = 0, is a quadratic equation for cosd. It has two real
solutions for 6 € (8o, 7], one of them is given by (7). A positive sign in front of the
root in ([7)) gives a value > 1 which is impossible. Hence is the only remaining
solutlon For 0 < h < h the expression on the right hand 81de of takes values

n [—1,0), hence there is a corresponding solution ¢ € (g, 7]. For h > h the value
of the expression is < —1. For h = h it follows from vz = 0 that § = 7, but this

violates . O

It is remarkable that the relation between the phase shift § and the altitude
h only depends on q = mig, but not on the parameter A for the viscosity.
For the function

Fil0,00) 5 R, his = (hq—\/(2+h2)2+h2q2)

which is given by equation we have:

e f is concave

e f(0)=-1, f/(0) > 0, limp_,o f(h) = —00

e f has a maximum at

VVEF B F98) - 3¢2 - 8
ho = o (8)
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e f(hg) = cos(dp) (see Lemma [3.1)).
e f(h) =—1 (see Lemma .
This means that there are always two values h in the interval [0, il] which yield

the same value in for §. Figure [2/shows the points (J, h) which satisfy , and
hence , for the numerical value ¢ = 7.

ho T--mmmmmmmmnn-

FiGURE 2. The set of solutions of equation forq=1.

Now, we are able to parametrize all solutions of f:
Proposition 3.2. Let p,q > 0, h be the positive oot of h(4 + h?) = 4q, and
C:(0,h) = R, hw/(2+h2)?2+ n2¢2.

Suppose that the values § € (5, 7) and w > 0 satisfy 7(@) for a given h € (0, h).
Then we have

§ = arccos(3(hq—¢(h))) 9)
~ p(hg+((h))\/4— (hg—((h))? (10)
Yo 2qh(2 + h2) '

Proof. The relation @ between ¢ and h has been established in Lemma Since
is linear in w it can have only one solution for a given pair (0, ). It can be checked
by hand that the value is this solution of if 6 is given by @ O

The function h — w(h) given by is strictly decreasing. So this is also true
for the inverse function w — h(w): The levitation height h decreases with increasing
w. This is in accordance with the observations in the real experiment, as reported
in [1]. Figure |3|shows the graph of the function w — h(w) for the numerical values
p=1,g = 3. We will see in Section [p] that all equilibria for a levitation height h
below a certain critical threshold hs are unstable and are hence not observed in a
physical experiment. This is in agreement with the results in [1].

In the experiment, the flea first rotates for small angular velocity at the bottom
of the container at some fixed height hy > 0. As the angular velocity w increases,
the phase shift § increases until it reaches a critical value §y where it jumps to the
certain height. However, it has been observed in [1], that this phenomenon only
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occurs if hy is not too high. So our next aim is to investigate the conditions under
which the jump of the flea is actually possible.

FicURE 3. The levitation height h in function of the angular velocity
w for p = 1,q = 3. Stable levitation is only possible for h > hy (see

Section .

4. The jump of the flea

Suppose the flea rotates at the bottom of the container at height h; > 0. Then,
the relation between the angular velocity and the phase shift § is given by and
we have:

Lemma 4.1. Suppose the flea rotates at height hy > 0 at the bottom of the container,
i.e., v3 < 0. Then the angular velocity is given by
_ 2p(hi +2) sin(9)
Y= (hZ +2)% —4cos? 6’

(11)

The function 6 — w(d) has the following properties:
e w(0) =w(m)=0.
e w(0) >0 for0<d<m.

o If hy < /2 (\/5— 1) =: H =0.91018. . then the function has two maxima

on the interval [0, 7] at the values sin 6 = %, /4 + hZ. In these points w assumes

the mazximum value
p (hi +2)

2hp\/h3 + 4

w has a local minimum at § = g with value

(2):

(12)

2p
hi+2

(Ij:

TRecall that the unit length is half of the length of the flea.
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o If hy > H, then the function w(d) has only one maximum at 5 on the interval
[0, 7] with value

. 2p
W= .
hZ + 2
Proof. Solve with fixed value h = hy, for w. This yields . It is then elementary
to determine the extrema. g

Figure E shows the graph of the function ¢ — w(d) given by for two values
hy, one below H, one above H.

FIGURE 4. Angular velocity w as a function of the phase shift §, on
the left for hy, < H, on the right for hy, > H. We will see in Lemma 4.2
that the dotted branches correspond to unstable solutions of .

Let us first consider the case hy > H with only one maximum: Here, the phase
shift increases continuously together with the angular velocity. At the maximum
value w the phase shift reaches the value § = 7. If w is increased further, the coupling
between the flea and the driving magnet breaks down: Equation has no solution
in this regime. The driving magnet laps the flea which begins to waggle. This effect
is reported [1]. Lemma [4.2 shows that solutions on the dotted branch cannot be
realized physically, because they correspond to unstable equilibria. A phase shift
0 > g can therefore not be attained and levitation does not occur.

In the case hy < H the phase shift also increases together with w. When w
reaches the value @, the phase shift jumps to the second maximum dy. If d9 > g the
vertical force vg is strictly positive (see Proposition and the flea will jump to the
height which is given by the solution of and for w = w. If, on the other hand
d2 < dp, we are in the same situation as in the case hy > H: The flea will waggle
and no levitation occurs. The critical value hgrit with the property that a jump to

levitation occurs for hy < hgrit solves dg = &2 which yields

Tt = \/5\/\/2 — arccos?(dp) — 1.

Recall that arccos(dg) is given by @ and depends only on ¢, i.e., not on the viscosity.
Observe that h§™ is monotonically increasing in ¢ and has limit H as g tends to oo
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(see Proposition . Summarizing, we see that the angular velocity w(hs) at which
the jump occurs is given by for 0 < hy < hlc)rit. w(hyp) is monotonically decreasing:
The higher hy, the smaller the angular velocity @ at which the flea jumps. This
phenomenon, and a critical threshold hf)rit, has also been reported in [1]. Figure
shows the graph of the function w(hy).

FIGURE 5. Angular velocity @ at which the flea jumps when rotating
at the bottom of the container at height hy,.

Lemma 4.2. Suppose that the flea rotates at the bottom of the container at height

hy > 0,H > hy, with angular velocity w and phase shift . Let 0 < 0 < § and

5 < 0 < be the values for which sind; = %\/4 + h? (these are the values, for which
w assumes its maximum according to Lemma . Then, the rotation is stable if
0 <4 <61 or 5 <6< da. The rotation is unstable if 01 <6 < § or 5 <6 <m. If
hy > H the rotation is stable for 0 < 6 < 5 and unstable for 5 <o <.

Proof. The stability condition is dd% > 0, because then the resulting tangential force
points towards the equilibrium (see the third component of ) We find

dwy  2(2+ h?)ecos§(ht + 4h* — 4sin? §)

ds ((2 + h2)2 — 4cos? )2 '
The denominator is obviously positive. The numerator is positive if and only if § lies
in the intervals stated in the lemma. g

5. Stability of the levitation equilibria

It turns out that not all solutions of correspond to stable equilibria. To see
this, we consider the vector field in R? given by

e () (o)

according to . If the Jacobian matrix of F' in an equilibrium point, i.e., a point
where F' vanishes, has only eigenvalues with strictly negative real part, then this
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equilibrium is asymptotically stable. The next lemma shows, that we can replace
the vector field F' by the vector field

o ) o 2(h? + 2)psind + w(4cos? § — (h? + 2)?)
“\h 4cos?§ — 4hqcosd — (h2 + 2)2

given by and for the stability discussion, which is slightly simpler.

Lemma 5.1. Let F : R™ — R" be a C! vector field with F(z¢) =0 and c: R® — R

a Ct function with c(xg) > 0. Then the Jacobian matriz Jr(xo) has only eigenvalues

with strictly negative real part if and only if the same is true for the Jacobian matrix

Ja(zo) of the vector field G = cF'.

Proof. We have
0G;(x)
( oz, ) 9z, a(z) + Fi(zx)
_ OF;(z)
a am)<3% >
and the claim follows. OJ

The eigenvalues of Jg evaluated for § and w given by @ and converge for
h — 0 to the values

<8Fi(:z) aa(x)>

T=x0

T=x0

2(p+aq*lp—ql) >0
On the other hand, both eigenvalues of Jg are strictly negative in the point (0, h) =
(m, fL) This can be seen as follows: By observing that h3 = 4q — 4h one gets for the
eigenvalues of Jg in § =7

—2p(h? +2) and 8h — 12¢.

The first of these two values is obviously strictly negative, but this is also true for
the second, since ﬁ(4 + iLQ) = 4q. This means that equilibria are unstable for small i
and stable (and hence physically observable) for h close to h. So, our next goal is to
determine the value hg such that the equilibria are stable for h > hg and unstable for
h < hs. The stability condition for complex eigenvalues is trace Jg < 0. The next
proposition addresses this question.

Proposition 5.1. Let p,q > 0, and h be the positive root of h(4 + h?) = 4q. Then
the system of the three equations , @ and trace Jo = 0 has exactly one zero
(0s, hs,ws) in the set (0,7) x (0,h) x (0,00).

Proof. In view of the previous remarks, we already know, that for solutions of ,
trace Jg takes positive and negative values. So, for continuity reasons there must
be at least one point with trace Jg = 0. To see that there is at most one zero, we
proceed as follows: First, we eliminate w from equation and trace Jg = 0. This
yields an equation in § and h with parameters p and ¢g. Using @ such that
is automatically satisfied, we can eliminate § form this equation, resulting in an
equation for h alone:

h*((R) (p (B* +2) (h* +2¢> +4) +4q (B* + ¢* + 2)) =
=2hq (p (h* +2) (K" + 1% (¢ +4) +2) + ¢ (3h* + 2h* (¢* +4) +4)) (13)
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The quotient (left hand side of divided by right hand side) is a strictly monoton-
ically increasing function. Indeed, its derivative has the strictly positive denominator
24¢(h) (p (K2 +2) (h* + 1% (¢ +4) +2) + q (30" + 202 (¢ +4) +4))* > 0
and the numerator is an even polynomial with exclusively positive coefficients. This

proves the claim. O

The critical value hs can numerically be computed by solving . It turns out
that in the point (ds, hs,ws) det Jg > 0, i.e., the eigenvalues in this point are indeed
complex. We end this discussion with stream plots of the forces (wq, w3) given by
in the (4, h) plane for a stable and for an unstable equilibrium in Figure [6]

h h

NS
A\ \\ N\
\r\ :\}‘\\ \\\:Q\; '

X

FIGURE 6. Stream plots of the forces (ws,ws) in the (d, h) plane for
the parameter values p = 4,q = 7. The red line is the locus of all
solutions of w3 = 0 as in Figure[2| Solutions of (w2, w3) = (0,0) below
the green line h = hg are unstable (figure on the left), above the green
line, they are stable (figure on the right). Observe that hg # hy.

Conclusion. In summary, the proposed model of the magnetic stirrer exhibits the
following characteristics which are consistent with the corresponding experimental
findings observed in [1]:

e At the beginning of the experiment, the flea rotates at the bottom of the
container at height hy: The phase shift § increases with the angular velocity
w. If w reaches a critical value @ the flea jumps if Ay < hgrit and it starts to
waggle if hy > hgrit.

e The angular velocity @ at which the jump occurs is monotonically decreasing
as a function of hy.

e Levitation at height h > h cannot occur.

e The levitation height h is decreasing as a function of w and becomes unstable
for h below a threshold hg.

The formulas we developed for the values w, dg, fL, hgrit show how they depend on the

3

parameters p = § and ¢ = R This opens a door for further research: It would be

interesting to check whether the corresponding model predictions can be verified in
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experiments. E.g., @ is proportional to p. Or: &g is monotonically decreasing, and h
and h§™* are monotonically increasing in g.

Furthermore it would be interesting to extend the proposed model to the regime

in which the driving magnet and the flea spin asynchronously, since this phenomenon
has also been experimentally investigated in [1].
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