Über Finanzderivate, den Fluch der Dimensionalität und künstliche Intelligenz

Arnulf Jentzen (Departement für Mathematik, ETH Zürich) ETH Zürich, Raum HG E7, Rämistrasse 101, 8092 Zürich 14:00-15:00, 18. Januar 2018

Eine europäische Verkaufsoption ist ein Vertrag zwischen zwei Parteien,

- dem Aussteller der europäischen Verkaufsoption und
- dem Inhaber der europäischen Verkaufsoption,

welche dem Inhaber der Verkaufsoption das Recht, aber nicht die Pflicht, einräumt zu einem vertraglich festgelegten Zeitpunkt T > 0 einen vertraglich festgelegten Wert (Basiswert) zu einem vertraglich festgelegten Preis (Ausübungspreis) K > 0 zu verkaufen.

Beispiele für Basiswerte: Aktien, Indizes, Anleihen, Rohstoffe, Devisen, Zinsen

Profit durch europäische Verkaufsoption: Sei $x_T \ge 0$ Preis des Basiswertes zur Zeit T.

- Der Fall $x_T > K$ liefert Profit $K x_T$.
- Der Fall $x_T \leq K$ liefert Profit 0.

Insgesamt also Profit max{ $K - x_T, 0$ } (Preis der Verkaufsoption zur Zeit *T*).

Eine europäische Verkaufsoption ist ein Vertrag zwischen zwei Parteien,

- dem Aussteller der europäischen Verkaufsoption und
- dem Inhaber der europäischen Verkaufsoption,

welche dem Inhaber der Verkaufsoption das Recht, aber nicht die Pflicht, einräumt zu einem vertraglich festgelegten Zeitpunkt T > 0 einen vertraglich festgelegten Wert (Basiswert) zu einem vertraglich festgelegten Preis (Ausübungspreis) K > 0 zu verkaufen.

Beispiele für Basiswerte: Aktien, Indizes, Anleihen, Rohstoffe, Devisen, Zinsen

Profit durch europäische Verkaufsoption: Sei $x_T \ge 0$ Preis des Basiswertes zur Zeit T.

- Der Fall $x_T > K$ liefert Profit $K x_T$.
- Der Fall $x_T \leq K$ liefert Profit 0.

Insgesamt also Profit max{ $K - x_T, 0$ } (Preis der Verkaufsoption zur Zeit *T*).

Eine europäische Verkaufsoption ist ein Vertrag zwischen zwei Parteien,

- dem Aussteller der europäischen Verkaufsoption und
- dem Inhaber der europäischen Verkaufsoption,

welche dem Inhaber der Verkaufsoption das Recht, aber nicht die Pflicht, einräumt zu einem vertraglich festgelegten Zeitpunkt T > 0 einen vertraglich festgelegten Wert (Basiswert) zu einem vertraglich festgelegten Preis (Ausübungspreis) K > 0 zu verkaufen.

Beispiele für Basiswerte: Aktien, Indizes, Anleihen, Rohstoffe, Devisen, Zinsen

Profit durch europäische Verkaufsoption: Sei $x_T \ge 0$ Preis des Basiswertes zur Zeit T.

- Der Fall $x_T > K$ liefert Profit $K x_T$.
- Der Fall $x_T \leq K$ liefert Profit 0.

Insgesamt also Profit max{ $K - x_T, 0$ } (Preis der Verkaufsoption zur Zeit *T*).

Eine europäische Verkaufsoption ist ein Vertrag zwischen zwei Parteien,

- dem Aussteller der europäischen Verkaufsoption und
- dem Inhaber der europäischen Verkaufsoption,

welche dem Inhaber der Verkaufsoption das Recht, aber nicht die Pflicht, einräumt zu einem vertraglich festgelegten Zeitpunkt T > 0 einen vertraglich festgelegten Wert (Basiswert) zu einem vertraglich festgelegten Preis (Ausübungspreis) K > 0 zu verkaufen.

Beispiele für Basiswerte: Aktien, Indizes, Anleihen, Rohstoffe, Devisen, Zinsen

Profit durch europäische Verkaufsoption: Sei $x_T \ge 0$ Preis des Basiswertes zur Zeit T.

- Der Fall $x_T > K$ liefert Profit $K x_T$.
- Der Fall $x_T \leq K$ liefert Profit 0.

Insgesamt also Profit max{ $K - x_T, 0$ } (Preis der Verkaufsoption zur Zeit *T*).

Eine europäische Verkaufsoption ist ein Vertrag zwischen zwei Parteien,

- dem Aussteller der europäischen Verkaufsoption und
- dem Inhaber der europäischen Verkaufsoption,

welche dem Inhaber der Verkaufsoption das Recht, aber nicht die Pflicht, einräumt zu einem vertraglich festgelegten Zeitpunkt T > 0 einen vertraglich festgelegten Wert (Basiswert) zu einem vertraglich festgelegten Preis (Ausübungspreis) K > 0 zu verkaufen.

Beispiele für Basiswerte: Aktien, Indizes, Anleihen, Rohstoffe, Devisen, Zinsen

Profit durch europäische Verkaufsoption: Sei $x_T \ge 0$ Preis des Basiswertes zur Zeit T.

- Der Fall $x_T > K$ liefert Profit $K x_T$.
- Der Fall $x_T \leq K$ liefert Profit 0.

Insgesamt also Profit max{ $K - x_T, 0$ } (Preis der Verkaufsoption zur Zeit *T*).

Eine europäische Verkaufsoption ist ein Vertrag zwischen zwei Parteien,

- dem Aussteller der europäischen Verkaufsoption und
- dem Inhaber der europäischen Verkaufsoption,

welche dem Inhaber der Verkaufsoption das Recht, aber nicht die Pflicht, einräumt zu einem vertraglich festgelegten Zeitpunkt T > 0 einen vertraglich festgelegten Wert (Basiswert) zu einem vertraglich festgelegten Preis (Ausübungspreis) K > 0 zu verkaufen.

Beispiele für Basiswerte: Aktien, Indizes, Anleihen, Rohstoffe, Devisen, Zinsen

Profit durch europäische Verkaufsoption: Sei $x_T \ge 0$ Preis des Basiswertes zur Zeit T.

• Der Fall $x_T > K$ liefert Profit $K - x_T$.

• Der Fall $x_T \leq K$ liefert Profit 0.

Insgesamt also Profit max{ $K - x_T, 0$ } (Preis der Verkaufsoption zur Zeit *T*).

Eine europäische Verkaufsoption ist ein Vertrag zwischen zwei Parteien,

- dem Aussteller der europäischen Verkaufsoption und
- dem Inhaber der europäischen Verkaufsoption,

welche dem Inhaber der Verkaufsoption das Recht, aber nicht die Pflicht, einräumt zu einem vertraglich festgelegten Zeitpunkt T > 0 einen vertraglich festgelegten Wert (Basiswert) zu einem vertraglich festgelegten Preis (Ausübungspreis) K > 0 zu verkaufen.

Beispiele für Basiswerte: Aktien, Indizes, Anleihen, Rohstoffe, Devisen, Zinsen

Profit durch europäische Verkaufsoption: Sei $x_T \ge 0$ Preis des Basiswertes zur Zeit T.

- Der Fall $x_T > K$ liefert Profit $K x_T$.
- Der Fall $x_T \leq K$ liefert Profit 0.

Insgesamt also Profit max{ $K - x_T, 0$ } (Preis der Verkaufsoption zur Zeit *T*).

Eine europäische Verkaufsoption ist ein Vertrag zwischen zwei Parteien,

- dem Aussteller der europäischen Verkaufsoption und
- dem Inhaber der europäischen Verkaufsoption,

welche dem Inhaber der Verkaufsoption das Recht, aber nicht die Pflicht, einräumt zu einem vertraglich festgelegten Zeitpunkt T > 0 einen vertraglich festgelegten Wert (Basiswert) zu einem vertraglich festgelegten Preis (Ausübungspreis) K > 0 zu verkaufen.

Beispiele für Basiswerte: Aktien, Indizes, Anleihen, Rohstoffe, Devisen, Zinsen

Profit durch europäische Verkaufsoption: Sei $x_T \ge 0$ Preis des Basiswertes zur Zeit T.

- Der Fall $x_T > K$ liefert Profit $K x_T$.
- Der Fall $x_T \leq K$ liefert Profit 0.

Insgesamt also Profit $\max{K - x_T, 0}$ (Preis der Verkaufsoption zur Zeit *T*).

Eine europäische Verkaufsoption ist ein Vertrag zwischen zwei Parteien,

- dem Aussteller der europäischen Verkaufsoption und
- dem Inhaber der europäischen Verkaufsoption,

welche dem Inhaber der Verkaufsoption das Recht, aber nicht die Pflicht, einräumt zu einem vertraglich festgelegten Zeitpunkt T > 0 einen vertraglich festgelegten Wert (Basiswert) zu einem vertraglich festgelegten Preis (Ausübungspreis) K > 0 zu verkaufen.

Beispiele für Basiswerte: Aktien, Indizes, Anleihen, Rohstoffe, Devisen, Zinsen

Profit durch europäische Verkaufsoption: Sei $x_T \ge 0$ Preis des Basiswertes zur Zeit T.

- Der Fall $x_T > K$ liefert Profit $K x_T$.
- Der Fall $x_T \leq K$ liefert Profit 0.

Insgesamt also Profit $\max{\{K - x_T, 0\}}$ (Preis der Verkaufsoption zur Zeit *T*).

Funktionaler Zusammenhang zwischen Preise der Basiswerte und Preis des Derivates. **Wertfunktion**

 $u\colon [0,T] imes \mathbb{R}^d o \mathbb{R}$

für Derivat mit $d \in \mathbb{N} = \{1, 2, 3, \dots\}$ Basiswerten. Preis des Derivats

 $u(t,x) \in \mathbb{R}$

zur Zeit $t \in [0, T]$ in Abhängigkeit der Preise $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ der Basiswerte. Wertfunktion erfüllt **partielle Differentialgleichung**

 $rac{\partial u}{\partial t}(t,x) + f(x,u(t,x),(
abla_x u)(t,x),(ext{Hess}_x u)(t,x)) = 0$ (PDGL)

mit u(T, x) = g(x) für $t \in [0, T)$, $x \in \mathbb{R}^d$ mit geeigneten Funktionen $f : \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^{d \times d} \to \mathbb{R}$ und $g : \mathbb{R}^d \to \mathbb{R}$. Ziel: Näherungsweise lösen von (PDGL). Beispiel: Wärmeleitungsgleichung

 $\frac{\partial u}{\partial t}(t,x) + (\Delta_x u)(t,x) = 0.$

Funktionaler Zusammenhang zwischen Preise der Basiswerte und Preis des

Derivates. Wertfunktion

 $u: [0, T] \times \mathbb{R}^d \to \mathbb{R}$

für Derivat mit $d \in \mathbb{N} = \{1, 2, 3, \dots\}$ Basiswerten. Preis des Derivats

 $u(t,x) \in \mathbb{R}$

zur Zeit $t \in [0, T]$ in Abhängigkeit der Preise $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ der Basiswerte. Wertfunktion erfüllt **partielle Differentialgleichung**

 $rac{\partial u}{\partial t}(t,x) + f(x,u(t,x),(
abla_x u)(t,x),(ext{Hess}_x u)(t,x)) = 0$ (PDGL)

mit u(T, x) = g(x) für $t \in [0, T), x \in \mathbb{R}^d$ mit geeigneten Funktionen $f : \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^{d \times d} \to \mathbb{R}$ und $g : \mathbb{R}^d \to \mathbb{R}$. Ziel: Näherungsweise lösen von (PDGL). Beispiel: Wärmeleitungsgleichung

 $\frac{\partial u}{\partial t}(t,x) + (\Delta_x u)(t,x) = 0.$

Funktionaler Zusammenhang zwischen Preise der Basiswerte und Preis des Derivates. **Wertfunktion**

 $u: [0, T] \times \mathbb{R}^d \to \mathbb{R}$

für Derivat mit $d \in \mathbb{N} = \{1, 2, 3, \dots\}$ Basiswerten. Preis des Derivats

 $u(t,x) \in \mathbb{R}$

zur Zeit $t \in [0, T]$ in Abhängigkeit der Preise $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ der Basiswerte. Wertfunktion erfüllt **partielle Differentialgleichung**

 $rac{\partial u}{\partial t}(t,x) + f(x,u(t,x),(
abla_x u)(t,x),(ext{Hess}_x u)(t,x)) = 0$ (PDGL)

mit u(T, x) = g(x) für $t \in [0, T), x \in \mathbb{R}^d$ mit geeigneten Funktionen $f : \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^{d \times d} \to \mathbb{R}$ und $g : \mathbb{R}^d \to \mathbb{R}$. Ziel: Näherungsweise lösen von (PDGL). Beispiel: Wärmeleitungsgleichung

 $\frac{\partial u}{\partial t}(t,x) + (\Delta_x u)(t,x) = 0.$

Funktionaler Zusammenhang zwischen Preise der Basiswerte und Preis des Derivates. **Wertfunktion**

 $u: [0, T] \times \mathbb{R}^d \to \mathbb{R}$

für Derivat mit $d \in \mathbb{N} = \{1, 2, 3, ...\}$ Basiswerten. Preis des Derivats

 $u(t,x) \in \mathbb{R}$

zur Zeit $t \in [0, T]$ in Abhängigkeit der Preise $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ der Basiswerte. Wertfunktion erfüllt **partielle Differentialgleichung**

 $rac{\partial u}{\partial t}(t,x) + f(x,u(t,x),(
abla_x u)(t,x),(ext{Hess}_x u)(t,x)) = 0$ (PDGL)

mit u(T, x) = g(x) für $t \in [0, T)$, $x \in \mathbb{R}^d$ mit geeigneten Funktionen $f : \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^{d \times d} \to \mathbb{R}$ und $g : \mathbb{R}^d \to \mathbb{R}$. Ziel: Näherungsweise lösen von (PDGL). Beispiel: Wärmeleitungsgleichung

 $\frac{\partial u}{\partial t}(t,x) + (\Delta_x u)(t,x) = 0.$

Funktionaler Zusammenhang zwischen Preise der Basiswerte und Preis des Derivates. **Wertfunktion**

 $u: [0, T] \times \mathbb{R}^d \to \mathbb{R}$

für Derivat mit $d \in \mathbb{N} = \{1, 2, 3, \dots\}$ Basiswerten. Preis des Derivats

 $u(t,x) \in \mathbb{R}$

zur Zeit $t \in [0, T]$ in Abhängigkeit der Preise $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ der Basiswerte. Wertfunktion erfüllt **partielle Differentialgleichung**

 $\frac{\partial u}{\partial t}(t,x) + f(x,u(t,x),(\nabla_x u)(t,x),(\operatorname{Hess}_x u)(t,x)) = 0$ (PDGL)

mit u(T, x) = g(x) für $t \in [0, T)$, $x \in \mathbb{R}^d$ mit geeigneten Funktionen $f : \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^{d \times d} \to \mathbb{R}$ und $g : \mathbb{R}^d \to \mathbb{R}$. Ziel: Näherungsweise lösen von (PDGL). Beispiel: Wärmeleitungsgleichung

 $\frac{\partial u}{\partial t}(t,x) + (\Delta_x u)(t,x) = 0.$

Funktionaler Zusammenhang zwischen Preise der Basiswerte und Preis des Derivates. **Wertfunktion**

 $u: [0, T] \times \mathbb{R}^d \to \mathbb{R}$

für Derivat mit $d \in \mathbb{N} = \{1, 2, 3, \dots\}$ Basiswerten. Preis des Derivats

 $u(t,x) \in \mathbb{R}$

zur Zeit $t \in [0, T]$ in Abhängigkeit der Preise $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ der Basiswerte. Wertfunktion erfüllt **partielle Differentialgleichung**

 $\frac{\partial u}{\partial t}(t,x) + f(x,u(t,x),(\nabla_x u)(t,x),(\operatorname{Hess}_x u)(t,x)) = 0$ (PDGL)

mit u(T, x) = g(x) für $t \in [0, T), x \in \mathbb{R}^d$ mit geeigneten Funktionen $f : \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^{d \times d} \to \mathbb{R}$ und $g : \mathbb{R}^d \to \mathbb{R}$. Ziel: Näherungsweise lösen von (PDGL). Beispiel: Wärmeleitungsgleichung

 $\frac{\partial u}{\partial t}(t,x) + (\Delta_x u)(t,x) = 0.$

Funktionaler Zusammenhang zwischen Preise der Basiswerte und Preis des Derivates. **Wertfunktion**

 $u: [0, T] \times \mathbb{R}^d \to \mathbb{R}$

für Derivat mit $d \in \mathbb{N} = \{1, 2, 3, \dots\}$ Basiswerten. Preis des Derivats

 $u(t,x) \in \mathbb{R}$

zur Zeit $t \in [0, T]$ in Abhängigkeit der Preise $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ der Basiswerte. Wertfunktion erfüllt **partielle Differentialgleichung**

 $\frac{\partial u}{\partial t}(t,x) + f(x,u(t,x),(\nabla_x u)(t,x),(\operatorname{Hess}_x u)(t,x)) = 0$ (PDGL)

mit u(T, x) = g(x) für $t \in [0, T)$, $x \in \mathbb{R}^d$ mit geeigneten Funktionen $f : \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^{d \times d} \to \mathbb{R}$ und $g : \mathbb{R}^d \to \mathbb{R}$. Ziel: Näherungsweise lösen von (PDGL). Beispiel: Wärmeleitungsgleichung

 $\frac{\partial u}{\partial t}(t,x) + (\Delta_x u)(t,x) = 0.$

Funktionaler Zusammenhang zwischen Preise der Basiswerte und Preis des Derivates. **Wertfunktion**

 $u: [0, T] \times \mathbb{R}^d \to \mathbb{R}$

für Derivat mit $d \in \mathbb{N} = \{1, 2, 3, \dots\}$ Basiswerten. Preis des Derivats

 $u(t,x) \in \mathbb{R}$

zur Zeit $t \in [0, T]$ in Abhängigkeit der Preise $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ der Basiswerte. Wertfunktion erfüllt **partielle Differentialgleichung**

 $\frac{\partial u}{\partial t}(t,x) + f(x,u(t,x),(\nabla_x u)(t,x),(\operatorname{Hess}_x u)(t,x)) = 0$ (PDGL)

mit u(T, x) = g(x) für $t \in [0, T)$, $x \in \mathbb{R}^d$ mit geeigneten Funktionen $f : \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^{d \times d} \to \mathbb{R}$ und $g : \mathbb{R}^d \to \mathbb{R}$. Ziel: Näherungsweise lösen von (PDGL). Beispiel: Wärmeleitungsgleichung

 $\frac{\partial u}{\partial t}(t,x) + (\Delta_x u)(t,x) = 0.$

Funktionaler Zusammenhang zwischen Preise der Basiswerte und Preis des Derivates. **Wertfunktion**

 $u: [0, T] \times \mathbb{R}^d \to \mathbb{R}$

für Derivat mit $d \in \mathbb{N} = \{1, 2, 3, \dots\}$ Basiswerten. Preis des Derivats

 $u(t,x) \in \mathbb{R}$

zur Zeit $t \in [0, T]$ in Abhängigkeit der Preise $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ der Basiswerte. Wertfunktion erfüllt **partielle Differentialgleichung**

 $\frac{\partial u}{\partial t}(t,x) + f(x,u(t,x),(\nabla_x u)(t,x),(\operatorname{Hess}_x u)(t,x)) = 0$ (PDGL)

mit u(T, x) = g(x) für $t \in [0, T)$, $x \in \mathbb{R}^d$ mit geeigneten Funktionen $f: \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^{d \times d} \to \mathbb{R}$ und $g: \mathbb{R}^d \to \mathbb{R}$. Ziel: Näherungsweise lösen von (PDGL). Beispiel: Wärmeleitungsgleichung

 $\frac{\partial u}{\partial t}(t,x) + (\Delta_x u)(t,x) = 0.$

Funktionaler Zusammenhang zwischen Preise der Basiswerte und Preis des Derivates. **Wertfunktion**

 $u: [0, T] \times \mathbb{R}^d \to \mathbb{R}$

für Derivat mit $d \in \mathbb{N} = \{1, 2, 3, \dots\}$ Basiswerten. Preis des Derivats

 $u(t,x) \in \mathbb{R}$

zur Zeit $t \in [0, T]$ in Abhängigkeit der Preise $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ der Basiswerte. Wertfunktion erfüllt **partielle Differentialgleichung**

 $\frac{\partial u}{\partial t}(t,x) + f(x,u(t,x),(\nabla_x u)(t,x),(\operatorname{Hess}_x u)(t,x)) = 0$ (PDGL)

mit u(T, x) = g(x) für $t \in [0, T)$, $x \in \mathbb{R}^d$ mit geeigneten Funktionen $f : \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^{d \times d} \to \mathbb{R}$ und $g : \mathbb{R}^d \to \mathbb{R}$. Ziel: Näherungsweise lösen von (PDGL). Beispiel: Wärmeleitungsgleichung

 $\frac{\partial u}{\partial t}(t,x) + (\Delta_x u)(t,x) = 0.$

Funktionaler Zusammenhang zwischen Preise der Basiswerte und Preis des Derivates. **Wertfunktion**

 $u: [0, T] \times \mathbb{R}^d \to \mathbb{R}$

für Derivat mit $d \in \mathbb{N} = \{1, 2, 3, \dots\}$ Basiswerten. Preis des Derivats

 $u(t,x) \in \mathbb{R}$

zur Zeit $t \in [0, T]$ in Abhängigkeit der Preise $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ der Basiswerte. Wertfunktion erfüllt **partielle Differentialgleichung**

 $\frac{\partial u}{\partial t}(t,x) + f(x,u(t,x),(\nabla_x u)(t,x),(\operatorname{Hess}_x u)(t,x)) = 0$ (PDGL)

mit u(T, x) = g(x) für $t \in [0, T)$, $x \in \mathbb{R}^d$ mit geeigneten Funktionen $f \colon \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^{d \times d} \to \mathbb{R}$ und $g \colon \mathbb{R}^d \to \mathbb{R}$. Ziel: Näherungsweise lösen von (PDGL). Beispiel: Wärmeleitungsgleichung

 $\frac{\partial u}{\partial t}(t,x) + (\Delta_x u)(t,x) = 0.$

Funktionaler Zusammenhang zwischen Preise der Basiswerte und Preis des Derivates. **Wertfunktion**

 $u: [0, T] \times \mathbb{R}^d \to \mathbb{R}$

für Derivat mit $d \in \mathbb{N} = \{1, 2, 3, \dots\}$ Basiswerten. Preis des Derivats

 $u(t,x) \in \mathbb{R}$

zur Zeit $t \in [0, T]$ in Abhängigkeit der Preise $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ der Basiswerte. Wertfunktion erfüllt **partielle Differentialgleichung**

 $\frac{\partial u}{\partial t}(t,x) + f(x,u(t,x),(\nabla_x u)(t,x),(\operatorname{Hess}_x u)(t,x)) = 0$ (PDGL)

mit u(T, x) = g(x) für $t \in [0, T), x \in \mathbb{R}^d$ mit geeigneten Funktionen $f: \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^{d \times d} \to \mathbb{R}$ und $g: \mathbb{R}^d \to \mathbb{R}$. Ziel: Näherungsweise lösen von (PDGL). Beispiel: Wärmeleitungsgleichung

 $\frac{\partial u}{\partial t}(t,x) + (\Delta_x u)(t,x) = 0.$

Funktionaler Zusammenhang zwischen Preise der Basiswerte und Preis des Derivates. **Wertfunktion**

 $u: [0, T] \times \mathbb{R}^d \to \mathbb{R}$

für Derivat mit $d \in \mathbb{N} = \{1, 2, 3, \dots\}$ Basiswerten. Preis des Derivats

 $u(t,x) \in \mathbb{R}$

zur Zeit $t \in [0, T]$ in Abhängigkeit der Preise $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ der Basiswerte. Wertfunktion erfüllt **partielle Differentialgleichung**

 $\frac{\partial u}{\partial t}(t,x) + f(x,u(t,x),(\nabla_x u)(t,x),(\operatorname{Hess}_x u)(t,x)) = 0$ (PDGL)

mit u(T, x) = g(x) für $t \in [0, T), x \in \mathbb{R}^d$ mit geeigneten Funktionen $f: \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^{d \times d} \to \mathbb{R}$ und $g: \mathbb{R}^d \to \mathbb{R}$. Ziel: Näherungsweise lösen von (PDGL). Beispiel: Wärmeleitungsgleichung

 $\frac{\partial u}{\partial t}(t,x) + (\Delta_x u)(t,x) = 0.$

 $\frac{\partial u}{\partial t}(t,x)+(\Delta_x u)(t,x)=0.$

Klassische Näherungsverfahren für (PDGL) leiden unter dem **Fluch der** Dimensionalität.

Finite-Differenzen-Methode: Betrachte $N \in \mathbb{N}$, Gitterpunkte

 $x_m = \left(\frac{m_1}{N}, \frac{m_2}{N}, \dots, \frac{m_d}{N}\right)$

für $\textit{m} = (\textit{m}_1, \ldots, \textit{m}_d) \in \mathbb{Z}^d$ (*Räumliche Diskretisierung*) und

 $t_n = \frac{nT}{N}$

für $n \in \{0, 1, 2, \dots, N\}$ (Zeitliche Diskretisierung), Näherungen

 $\mathbb{U}_{n,m} \approx u(t_n, x_m) \in \mathbb{R}$

und *Differenzen-Quotienten* in (PDGL). Diskretisierungsfehler $\exists C > 0 : \forall N \in \mathbb{N}$:

 $\max_{m\in\{0,1,\ldots,N\}^d}|u(t_0,x_m)-\mathbb{U}_{0,m}|\leq C\cdot N^{-1}$

Rechenaufwand versus Diskretisierungsfehler:

$\frac{\partial u}{\partial t}(t,x) + (\Delta_x u)(t,x) = 0.$

Klassische Näherungsverfahren für (PDGL) leiden unter dem **Fluch der Dimensionalität**.

Finite-Differenzen-Methode: Betrachte $N \in \mathbb{N}$, Gitterpunkte $x_m = \left(\frac{m_1}{N}, \frac{m_2}{N}, \dots, \frac{m_d}{N}\right)$ für $m = (m_1, \dots, m_d) \in \mathbb{Z}^d$ (Räumliche Diskretisierung) und $t_n = \frac{nT}{N}$ für $n \in \{0, 1, 2, \dots, N\}$ (Zeitliche Diskretisierung), Näherungen

und *Differenzen-Quotienten* in (PDGL). Diskretisierungsfehler $\exists \ C > 0$: $\forall \ N \in \mathbb{N}$:

$$\max_{m \in \{0,1,...,N\}^d} |u(t_0, x_m) - \mathbb{U}_{0,m}| \le C \cdot N^{-1}$$

Rechenaufwand versus Diskretisierungsfehler:

 $\frac{\partial u}{\partial t}(t,x) + (\Delta_x u)(t,x) = 0.$

Klassische Näherungsverfahren für (PDGL) leiden unter dem Fluch der Dimensionalität.

Finite-Differenzen-Methode: Betrachte $N \in \mathbb{N}$, Gitterpunkte $x_m = \left(\frac{m_1}{N}, \frac{m_2}{N}, \dots, \frac{m_d}{N}\right)$ für $m = (m_1, \dots, m_d) \in \mathbb{Z}^d$ (Räumliche Diskretisierung) und $t_n = \frac{nT}{N}$ für $n \in \{0, 1, 2, \dots, N\}$ (Zeitliche Diskretisierung), Näherungen II. $\simeq u(t, x_n) \in \mathbb{R}$

und *Differenzen-Quotienten* in (PDGL). Diskretisierungsfehler $\exists C > 0 : \forall N \in \mathbb{N}$:

 $\max_{m \in \{0,1,...,N\}^d} |u(t_0, x_m) - \mathbb{U}_{0,m}| \le C \cdot N^{-1}$

Rechenaufwand versus Diskretisierungsfehler:

 $\frac{\partial u}{\partial t}(t,x)+(\Delta_x u)(t,x)=0.$

Klassische Näherungsverfahren für (PDGL) leiden unter dem Fluch der Dimensionalität.

Finite-Differenzen-Methode: Betrachte $N \in \mathbb{N}$, Gitterpunkte $x_m = \left(\frac{m_1}{N}, \frac{m_2}{N}, \dots, \frac{m_d}{N}\right)$ für $m = (m_1, \dots, m_d) \in \mathbb{Z}^d$ (Räumliche Diskretisierung) und $t_n = \frac{nT}{N}$ für $n \in \{0, 1, 2, \dots, N\}$ (Zeitliche Diskretisierung), Näherunger

Ind *Differenzen-Quotienten* in (PDGL). Diskretisierungsfehler \exists C > 0 : \forall $N \in \mathbb{N}$:

 $\max_{m \in \{0,1,...,N\}^d} |u(t_0, x_m) - \mathbb{U}_{0,m}| \le C \cdot N^{-1}$

Rechenaufwand versus Diskretisierungsfehler:

 $\frac{\partial u}{\partial t}(t,x)+(\Delta_x u)(t,x)=0.$

Klassische Näherungsverfahren für (PDGL) leiden unter dem Fluch der Dimensionalität.

Finite-Differenzen-Methode: Betrachte $N \in \mathbb{N}$, Gitterpunkte

 $x_m = \left(\frac{m_1}{N}, \frac{m_2}{N}, \dots, \frac{m_d}{N}\right)$

für $\textit{m} = (\textit{m}_1, \ldots, \textit{m}_d) \in \mathbb{Z}^d$ (Räumliche Diskretisierung) und

 $t_n = \frac{nT}{N}$

für $n \in \{0, 1, 2, \dots, N\}$ (Zeitliche Diskretisierung), Näherungen

 $\mathbb{U}_{n,m} \approx u(t_n, x_m) \in \mathbb{R}$

und *Differenzen-Quotienten* in (PDGL). Diskretisierungsfehler $\exists C > 0 : \forall N \in \mathbb{N}$:

 $\max_{m \in \{0,1,...,N\}^d} |u(t_0, x_m) - \mathbb{U}_{0,m}| \le C \cdot N^{-1}$

Rechenaufwand versus Diskretisierungsfehler:

 $\frac{\partial u}{\partial t}(t,x)+(\Delta_x u)(t,x)=0.$

Klassische Näherungsverfahren für (PDGL) leiden unter dem Fluch der Dimensionalität.

Finite-Differenzen-Methode: Betrachte $N \in \mathbb{N}$, Gitterpunkte

 $x_m = \left(\frac{m_1}{N}, \frac{m_2}{N}, \dots, \frac{m_d}{N}\right)$

für $m = (m_1, \ldots, m_d) \in \mathbb{Z}^d$ (Räumliche Diskretisierung) und

 $t_n = \frac{nT}{N}$

für $n \in \{0, 1, 2, \dots, N\}$ (Zeitliche Diskretisierung), Näherungen

 $\mathbb{U}_{n,m}\approx u(t_n,x_m)\in\mathbb{R}$

und *Differenzen-Quotienten* in (PDGL). Diskretisierungsfehler $\exists C > 0 : \forall N \in \mathbb{N}$:

 $\max_{m \in \{0,1,...,N\}^d} |u(t_0, x_m) - \mathbb{U}_{0,m}| \le C \cdot N^{-1}$

Rechenaufwand versus Diskretisierungsfehler:

 $\frac{\partial u}{\partial t}(t,x)+(\Delta_x u)(t,x)=0.$

Klassische Näherungsverfahren für (PDGL) leiden unter dem Fluch der Dimensionalität.

Finite-Differenzen-Methode: Betrachte $N \in \mathbb{N}$, Gitterpunkte

 $x_m = \left(\frac{m_1}{N}, \frac{m_2}{N}, \dots, \frac{m_d}{N}\right)$

für $m = (m_1, \ldots, m_d) \in \mathbb{Z}^d$ (*Räumliche Diskretisierung*) und

 $t_n = \frac{nT}{N}$

für $n \in \{0, 1, 2, \dots, N\}$ (Zeitliche Diskretisierung), Näherungen

 $\mathbb{U}_{n,m} \approx u(t_n, x_m) \in \mathbb{R}$

und *Differenzen-Quotienten* in (PDGL). Diskretisierungsfehler $\exists C > 0: \forall N \in \mathbb{N}$:

 $\max_{m\in\{0,1,\ldots,N\}^d}|u(t_0,x_m)-\mathbb{U}_{0,m}|\leq C\cdot N^{-1}$

Rechenaufwand versus Diskretisierungsfehler:

 $\frac{\partial u}{\partial t}(t,x)+(\Delta_x u)(t,x)=0.$

Klassische Näherungsverfahren für (PDGL) leiden unter dem Fluch der Dimensionalität.

Finite-Differenzen-Methode: Betrachte $N \in \mathbb{N}$, Gitterpunkte

 $x_m = \left(\frac{m_1}{N}, \frac{m_2}{N}, \dots, \frac{m_d}{N}\right)$

für $m = (m_1, \ldots, m_d) \in \mathbb{Z}^d$ (*Räumliche Diskretisierung*) und

 $t_n = \frac{nT}{N}$

für $n \in \{0, 1, 2, \dots, N\}$ (Zeitliche Diskretisierung), Näherungen

 $\mathbb{U}_{n,m}\approx u(t_n,x_m)\in\mathbb{R}$

und *Differenzen-Quotienten* in (PDGL). Diskretisierungsfehler $\exists C > 0: \forall N \in \mathbb{N}$:

 $\max_{m \in \{0,1,...,N\}^d} |u(t_0, x_m) - \mathbb{U}_{0,m}| \le C \cdot N^{-1}$

Rechenaufwand versus Diskretisierungsfehler:

 $\frac{\partial u}{\partial t}(t,x)+(\Delta_x u)(t,x)=0.$

Klassische Näherungsverfahren für (PDGL) leiden unter dem Fluch der Dimensionalität.

Finite-Differenzen-Methode: Betrachte $N \in \mathbb{N}$, Gitterpunkte

 $x_m = \left(\frac{m_1}{N}, \frac{m_2}{N}, \dots, \frac{m_d}{N}\right)$

für $m = (m_1, \ldots, m_d) \in \mathbb{Z}^d$ (*Räumliche Diskretisierung*) und

 $t_n = \frac{nT}{N}$

für $n \in \{0, 1, 2, \dots, N\}$ (Zeitliche Diskretisierung), Näherungen

 $\mathbb{U}_{n,m}\approx u(t_n,x_m)\in\mathbb{R}$

und *Differenzen-Quotienten* in (PDGL). Diskretisierungsfehler $\exists C > 0 : \forall N \in \mathbb{N}$:

 $\max_{m \in \{0,1,...,N\}^d} |u(t_0, x_m) - \mathbb{U}_{0,m}| \le C \cdot N^{-1}$

Rechenaufwand versus Diskretisierungsfehler:

 N^{d+1} Gitterpunkte versus Diskretisierungsfehler $\varepsilon = C \cdot N^{-1}$.

Also $C^{d+1} \varepsilon^{-(d+1)}$ Gitterpunkte. Rechenaufwand wächst **exponentiell** in *d*.

 $\frac{\partial u}{\partial t}(t,x)+(\Delta_x u)(t,x)=0.$

Klassische Näherungsverfahren für (PDGL) leiden unter dem Fluch der Dimensionalität.

Finite-Differenzen-Methode: Betrachte $N \in \mathbb{N}$, Gitterpunkte

 $x_m = \left(\frac{m_1}{N}, \frac{m_2}{N}, \dots, \frac{m_d}{N}\right)$

für $m = (m_1, \ldots, m_d) \in \mathbb{Z}^d$ (Räumliche Diskretisierung) und

 $t_n = \frac{nT}{N}$

für $n \in \{0, 1, 2, \dots, N\}$ (Zeitliche Diskretisierung), Näherungen

 $\mathbb{U}_{n,m}\approx u(t_n,x_m)\in\mathbb{R}$

und *Differenzen-Quotienten* in (PDGL). Diskretisierungsfehler $\exists C > 0 : \forall N \in \mathbb{N}$:

 $\max_{m \in \{0,1,\ldots,N\}^d} |u(t_0,x_m) - \mathbb{U}_{0,m}| \leq C \cdot N^{-1}$

Rechenaufwand versus Diskretisierungsfehler:

- $ho \in \mathbb{N}$ hinreichend groß,
- Funktion $\mathcal{R} \colon \mathbb{R}^d \to \mathbb{R}^d$ mit $\forall x = (x_1, \dots, x_d) \in \mathbb{R}^d$:

$$\mathcal{R}(x) = (\max\{x_1, 0\}, \ldots, \max\{x_d, 0\}),$$

• $\forall \theta = (\theta_1, \dots, \theta_\rho) \in \mathbb{R}^{\rho}, v \in \mathbb{N}_0, k, l \in \mathbb{N} \text{ mit } v + k(l+1) \leq \rho$ Funktion $A_{k,l}^{\theta,v} \colon \mathbb{R}^l \to \mathbb{R}^k \text{ mit } \forall x = (x_1, \dots, x_l) \in \mathbb{R}^l$:

• $\forall \theta \in \mathbb{R}^{\rho}$ Funktion $\mathcal{U}_{\theta} \colon \mathbb{R}^{d} \to \mathbb{R}$ mit

 $\mathcal{U}_{\theta} = A_{1,d}^{\theta, sd(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, (s-1)d(d+1)} \circ \ldots \circ \mathcal{R} \circ A_{d,d}^{\theta, d(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, 0}$

- $\rho \in \mathbb{N}$ hinreichend groß,
- Function $\mathcal{R} \colon \mathbb{R}^d \to \mathbb{R}^d$ mit $\forall x = (x_1, \dots, x_d) \in \mathbb{R}^d$:

$$\mathcal{R}(x) = (\max\{x_1, 0\}, \ldots, \max\{x_d, 0\}),$$

• $\forall \theta = (\theta_1, \dots, \theta_\rho) \in \mathbb{R}^{\rho}, v \in \mathbb{N}_0, k, l \in \mathbb{N} \text{ mit } v + k(l+1) \leq \rho$ Funktion $A_{k,l}^{\theta,v} \colon \mathbb{R}^l \to \mathbb{R}^k \text{ mit } \forall x = (x_1, \dots, x_l) \in \mathbb{R}^l$:

• $\forall \theta \in \mathbb{R}^{\rho}$ Funktion $\mathcal{U}_{\theta} \colon \mathbb{R}^{d} \to \mathbb{R}$ mit

 $\mathcal{U}_{\theta} = A_{1,d}^{\theta, sd(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, (s-1)d(d+1)} \circ \ldots \circ \mathcal{R} \circ A_{d,d}^{\theta, d(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, 0}$

- $\rho \in \mathbb{N}$ hinreichend groß,
- Funktion $\mathcal{R} \colon \mathbb{R}^d \to \mathbb{R}^d$ mit $\forall x = (x_1, \dots, x_d) \in \mathbb{R}^d$:

 $\mathcal{R}(x) = (\max\{x_1, 0\}, \ldots, \max\{x_d, 0\}),$

• $\forall \theta = (\theta_1, \dots, \theta_\rho) \in \mathbb{R}^{\rho}, v \in \mathbb{N}_0, k, l \in \mathbb{N} \text{ mit } v + k(l+1) \leq \rho$ Funktion $A_{k,l}^{\theta,v} \colon \mathbb{R}^l \to \mathbb{R}^k \text{ mit } \forall x = (x_1, \dots, x_l) \in \mathbb{R}^l$:

• $\forall \theta \in \mathbb{R}^{\rho}$ Funktion $\mathcal{U}_{\theta} \colon \mathbb{R}^{d} \to \mathbb{R}$ mit

 $\mathcal{U}_{\theta} = A_{1,d}^{\theta, sd(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, (s-1)d(d+1)} \circ \ldots \circ \mathcal{R} \circ A_{d,d}^{\theta, d(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, 0}$

- $\rho \in \mathbb{N}$ hinreichend groß,
- Funktion $\mathcal{R} \colon \mathbb{R}^d \to \mathbb{R}^d$ mit $\forall x = (x_1, \dots, x_d) \in \mathbb{R}^d$:

$$\mathcal{R}(x) = (\max\{x_1, 0\}, \dots, \max\{x_d, 0\}),$$

• $\forall \theta = (\theta_1, \dots, \theta_\rho) \in \mathbb{R}^{\rho}, v \in \mathbb{N}_0, k, l \in \mathbb{N} \text{ mit } v + k(l+1) \leq \rho$ Funktion $A_{k,l}^{\theta,v} \colon \mathbb{R}^l \to \mathbb{R}^k \text{ mit } \forall x = (x_1, \dots, x_l) \in \mathbb{R}^l$:

• $\forall \, \theta \in \mathbb{R}^{
ho}$ Funktion $\mathcal{U}_{ heta} \colon \mathbb{R}^{d} o \mathbb{R}$ mit

 $\mathcal{U}_{\theta} = A_{1,d}^{\theta, sd(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, (s-1)d(d+1)} \circ \ldots \circ \mathcal{R} \circ A_{d,d}^{\theta, d(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, 0}$

- $\rho \in \mathbb{N}$ hinreichend groß,
- Funktion $\mathcal{R} \colon \mathbb{R}^d \to \mathbb{R}^d$ mit $\forall x = (x_1, \dots, x_d) \in \mathbb{R}^d$:

$$\mathcal{R}(x) = (\max\{x_1, 0\}, \dots, \max\{x_d, 0\}),$$

• $\forall \theta = (\theta_1, \dots, \theta_\rho) \in \mathbb{R}^{\rho}, v \in \mathbb{N}_0, k, l \in \mathbb{N} \text{ mit } v + k(l+1) \leq \rho$ Funktion $A_{k,l}^{\theta,v} : \mathbb{R}^l \to \mathbb{R}^k \text{ mit } \forall x = (x_1, \dots, x_l) \in \mathbb{R}^l$:

• $\forall \, \theta \in \mathbb{R}^{
ho}$ Funktion $\mathcal{U}_{ heta} \colon \mathbb{R}^{d} o \mathbb{R}$ mit

 $\mathcal{U}_{\theta} = A_{1,d}^{\theta, sd(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, (s-1)d(d+1)} \circ \ldots \circ \mathcal{R} \circ A_{d,d}^{\theta, d(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, 0}$

- $\rho \in \mathbb{N}$ hinreichend groß,
- Funktion $\mathcal{R} \colon \mathbb{R}^d \to \mathbb{R}^d$ mit $\forall x = (x_1, \dots, x_d) \in \mathbb{R}^d$:

$$\mathcal{R}(x) = (\max\{x_1, 0\}, \dots, \max\{x_d, 0\}),$$

• $\forall \theta = (\theta_1, \dots, \theta_\rho) \in \mathbb{R}^{\rho}, v \in \mathbb{N}_0, k, l \in \mathbb{N} \text{ mit } v + k(l+1) \leq \rho$ Funktion $A_{k,l}^{\theta,v} : \mathbb{R}^l \to \mathbb{R}^k \text{ mit } \forall x = (x_1, \dots, x_l) \in \mathbb{R}^l$:

• $\forall \theta \in \mathbb{R}^{\rho}$ Funktion $\mathcal{U}_{\theta} \colon \mathbb{R}^{d} \to \mathbb{R}$ mit

 $\mathcal{U}_{\theta} = A_{1,d}^{\theta, sd(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, (s-1)d(d+1)} \circ \ldots \circ \mathcal{R} \circ A_{d,d}^{\theta, d(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, 0}$

- $\rho \in \mathbb{N}$ hinreichend groß,
- Funktion $\mathcal{R} \colon \mathbb{R}^d \to \mathbb{R}^d$ mit $\forall x = (x_1, \dots, x_d) \in \mathbb{R}^d$:

$$\mathcal{R}(x) = (\max\{x_1, 0\}, \dots, \max\{x_d, 0\}),$$

• $\forall \theta = (\theta_1, \dots, \theta_\rho) \in \mathbb{R}^{\rho}, v \in \mathbb{N}_0, k, l \in \mathbb{N} \text{ mit } v + k(l+1) \leq \rho$ Funktion $A_{k,l}^{\theta, v} \colon \mathbb{R}^l \to \mathbb{R}^k \text{ mit } \forall x = (x_1, \dots, x_l) \in \mathbb{R}^l$:

• $\forall \theta \in \mathbb{R}^{\rho}$ Funktion $\mathcal{U}_{\theta} \colon \mathbb{R}^{d} \to \mathbb{R}$ mit

 $\mathcal{U}_{\theta} = A_{1,d}^{\theta, sd(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, (s-1)d(d+1)} \circ \ldots \circ \mathcal{R} \circ A_{d,d}^{\theta, d(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, 0}$

- $\rho \in \mathbb{N}$ hinreichend groß,
- Funktion $\mathcal{R} \colon \mathbb{R}^d \to \mathbb{R}^d$ mit $\forall x = (x_1, \dots, x_d) \in \mathbb{R}^d$:

$$\mathcal{R}(x) = (\max\{x_1, 0\}, \dots, \max\{x_d, 0\}),$$

• $\forall \theta = (\theta_1, \dots, \theta_\rho) \in \mathbb{R}^{\rho}, v \in \mathbb{N}_0, k, l \in \mathbb{N} \text{ mit } v + k(l+1) \leq \rho \text{ Funktion}$ $A_{k,l}^{\theta,v} \colon \mathbb{R}^l \to \mathbb{R}^k \text{ mit } \forall x = (x_1, \dots, x_l) \in \mathbb{R}^l$:

• $\forall \theta \in \mathbb{R}^{\rho}$ Funktion $\mathcal{U}_{\theta} \colon \mathbb{R}^{d} \to \mathbb{R}$ mit

 $\mathcal{U}_{\theta} = A_{1,d}^{\theta, sd(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, (s-1)d(d+1)} \circ \ldots \circ \mathcal{R} \circ A_{d,d}^{\theta, d(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, 0}$

- $\rho \in \mathbb{N}$ hinreichend groß,
- Funktion $\mathcal{R} \colon \mathbb{R}^d \to \mathbb{R}^d$ mit $\forall x = (x_1, \dots, x_d) \in \mathbb{R}^d$:

$$\mathcal{R}(x) = (\max\{x_1, 0\}, \dots, \max\{x_d, 0\}),$$

• $\forall \theta = (\theta_1, \dots, \theta_\rho) \in \mathbb{R}^{\rho}, v \in \mathbb{N}_0, k, l \in \mathbb{N} \text{ mit } v + k(l+1) \leq \rho$ Funktion $A_{k,l}^{\theta,v} \colon \mathbb{R}^l \to \mathbb{R}^k \text{ mit } \forall x = (x_1, \dots, x_l) \in \mathbb{R}^l$:

• $\forall \, \theta \in \mathbb{R}^{\rho}$ Funktion $\mathcal{U}_{\theta} \colon \mathbb{R}^{d} \to \mathbb{R}$ mit

 $\mathcal{U}_{\theta} = A_{1,d}^{\theta, sd(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, (s-1)d(d+1)} \circ \ldots \circ \mathcal{R} \circ A_{d,d}^{\theta, d(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, 0}$

- $\rho \in \mathbb{N}$ hinreichend groß,
- Funktion $\mathcal{R} \colon \mathbb{R}^d \to \mathbb{R}^d$ mit $\forall x = (x_1, \dots, x_d) \in \mathbb{R}^d$:

$$\mathcal{R}(x) = (\max\{x_1, 0\}, \dots, \max\{x_d, 0\}),$$

• $\forall \theta = (\theta_1, \dots, \theta_\rho) \in \mathbb{R}^{\rho}, v \in \mathbb{N}_0, k, l \in \mathbb{N} \text{ mit } v + k(l+1) \leq \rho$ Funktion $A_{k,l}^{\theta,v} \colon \mathbb{R}^l \to \mathbb{R}^k \text{ mit } \forall x = (x_1, \dots, x_l) \in \mathbb{R}^l$:

$$A_{k,l}^{\theta,\nu}(x) = \begin{pmatrix} \theta_{\nu+1} & \theta_{\nu+2} & \dots & \theta_{\nu+l} \\ \theta_{\nu+l+1} & \theta_{\nu+l+2} & \dots & \theta_{\nu+2l} \\ \vdots & \vdots & \vdots & \vdots \\ \theta_{\nu+(k-1)l+1} & \theta_{\nu+(k-1)l+2} & \dots & \theta_{\nu+kl} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_l \end{pmatrix} + \begin{pmatrix} \theta_{\nu+kl+1} \\ \theta_{\nu+kl+2} \\ \vdots \\ \theta_{\nu+kl+k} \end{pmatrix}$$

,

• $\forall \theta \in \mathbb{R}^{\rho}$ Funktion $\mathcal{U}_{\theta} \colon \mathbb{R}^{d} \to \mathbb{R}$ mit

 $\mathcal{U}_{\theta} = A_{1,d}^{\theta, sd(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, (s-1)d(d+1)} \circ \ldots \circ \mathcal{R} \circ A_{d,d}^{\theta, d(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, 0}$

- $\rho \in \mathbb{N}$ hinreichend groß,
- Funktion $\mathcal{R} \colon \mathbb{R}^d \to \mathbb{R}^d$ mit $\forall x = (x_1, \dots, x_d) \in \mathbb{R}^d$:

$$\mathcal{R}(x) = (\max\{x_1, 0\}, \dots, \max\{x_d, 0\}),$$

• $\forall \theta = (\theta_1, \dots, \theta_\rho) \in \mathbb{R}^{\rho}, v \in \mathbb{N}_0, k, l \in \mathbb{N} \text{ mit } v + k(l+1) \leq \rho$ Funktion $A_{k,l}^{\theta,v} \colon \mathbb{R}^l \to \mathbb{R}^k \text{ mit } \forall x = (x_1, \dots, x_l) \in \mathbb{R}^l$:

• $\forall \theta \in \mathbb{R}^{\rho}$ Funktion $\mathcal{U}_{\theta} \colon \mathbb{R}^{d} \to \mathbb{R}$ mit

 $\mathcal{U}_{\theta} = A_{1,d}^{\theta, sd(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, (s-1)d(d+1)} \circ \ldots \circ \mathcal{R} \circ A_{d,d}^{\theta, d(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, 0}$

- $\rho \in \mathbb{N}$ hinreichend groß,
- Funktion $\mathcal{R} \colon \mathbb{R}^d \to \mathbb{R}^d$ mit $\forall x = (x_1, \dots, x_d) \in \mathbb{R}^d$:

$$\mathcal{R}(x) = (\max\{x_1, 0\}, \dots, \max\{x_d, 0\}),$$

• $\forall \theta = (\theta_1, \dots, \theta_\rho) \in \mathbb{R}^{\rho}, v \in \mathbb{N}_0, k, l \in \mathbb{N} \text{ mit } v + k(l+1) \leq \rho$ Funktion $A_{k,l}^{\theta,v} \colon \mathbb{R}^l \to \mathbb{R}^k \text{ mit } \forall x = (x_1, \dots, x_l) \in \mathbb{R}^l$:

$$\mathbf{A}_{k,l}^{\theta,\nu}(\mathbf{x}) = \begin{pmatrix} \theta_{\nu+1} & \theta_{\nu+2} & \dots & \theta_{\nu+l} \\ \theta_{\nu+l+1} & \theta_{\nu+l+2} & \dots & \theta_{\nu+2l} \\ \vdots & \vdots & \vdots & \vdots \\ \theta_{\nu+(k-1)l+1} & \theta_{\nu+(k-1)l+2} & \dots & \theta_{\nu+kl} \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_l \end{pmatrix} + \begin{pmatrix} \theta_{\nu+kl+1} \\ \theta_{\nu+kl+2} \\ \vdots \\ \theta_{\nu+kl+k} \end{pmatrix}$$

,

• $\forall \theta \in \mathbb{R}^{\rho}$ Funktion $\mathcal{U}_{\theta} \colon \mathbb{R}^{d} \to \mathbb{R}$ mit

 $\mathcal{U}_{\theta} = A_{1,d}^{\theta, sd(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, (s-1)d(d+1)} \circ \ldots \circ \mathcal{R} \circ A_{d,d}^{\theta, d(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, 0}$

- $\rho \in \mathbb{N}$ hinreichend groß,
- Function $\mathcal{R} \colon \mathbb{R}^d \to \mathbb{R}^d$ mit $\forall x = (x_1, \dots, x_d) \in \mathbb{R}^d$:

$$\mathcal{R}(x) = (\max\{x_1, 0\}, \dots, \max\{x_d, 0\}),$$

• $\forall \theta = (\theta_1, \dots, \theta_\rho) \in \mathbb{R}^{\rho}, v \in \mathbb{N}_0, k, l \in \mathbb{N} \text{ mit } v + k(l+1) \leq \rho$ Funktion $A_{k,l}^{\theta,v} \colon \mathbb{R}^l \to \mathbb{R}^k \text{ mit } \forall x = (x_1, \dots, x_l) \in \mathbb{R}^l$:

$$\mathbf{A}_{k,l}^{\theta,\nu}(\mathbf{x}) = \begin{pmatrix} \theta_{\nu+1} & \theta_{\nu+2} & \dots & \theta_{\nu+l} \\ \theta_{\nu+l+1} & \theta_{\nu+l+2} & \dots & \theta_{\nu+2l} \\ \vdots & \vdots & \vdots & \vdots \\ \theta_{\nu+(k-1)l+1} & \theta_{\nu+(k-1)l+2} & \dots & \theta_{\nu+kl} \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_l \end{pmatrix} + \begin{pmatrix} \theta_{\nu+kl+1} \\ \theta_{\nu+kl+2} \\ \vdots \\ \theta_{\nu+kl+k} \end{pmatrix}$$

,

• $\forall \theta \in \mathbb{R}^{\rho}$ Funktion $\mathcal{U}_{\theta} \colon \mathbb{R}^{d} \to \mathbb{R}$ mit

$$\mathcal{U}_{\theta} = A_{1,d}^{\theta, sd(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, (s-1)d(d+1)} \circ \ldots \circ \mathcal{R} \circ A_{d,d}^{\theta, d(d+1)} \circ \mathcal{R} \circ A_{d,d}^{\theta, 0}$$

Sowohl numerische Simulationen als auch erste theoretischen Ergebnisse legen die Vermutung nahe, dass künstliche neuronale Netze in vielen Fällen den Fluch der Dimensionalität überwinden.

100-dimensionale Allen-Cahn Gleichung

 $\frac{\frac{\partial u}{\partial t}(t,x)}{\left(1-x\right)^{2}} = (\Delta_{x}u)(t,x) + u(t,x) - [u(t,x)]^{3}$ mit $u(0,x) = \frac{1}{(2+0.4||x||^{2})}$ für $t \in [0, \frac{3}{10}], x \in \mathbb{R}^{100}.$

Fehler: 0.3%, **Laufzeit:** 647 **Sekunden**. PYTHON, TENSORFLOW, MACBOOK PRO 2.9 GHz (INTEL i5, 16 GB RAM)

Details finden sich in

- C. Beck, W. E, & A. Jentzen. Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations. *arXiv* (2017).
- R. E. Bellman. Dynamic programming. *Princeton University Press* (1957).
- W. E, J. Han, & A. Jentzen. Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. *Comm. Math. Stat.* (2017).
- J. Han, A. Jentzen, & W. E. Overcoming the curse of dimensionality: Solving high-dimensional partial differential equations using deep learning. arXiv (2017).
- D. J. Higham. An introduction to financial option valuation. *Cambridge University Press* (2004).
- J. Kallsen. Option pricing. In T. Andersen, R. Davis, J. Kreiß, and T. Mikosch, Handbook of Financial Time Series, *Springer* (2009).

und in den dort genannten Referenzen.

Vielen Dank für Ihre Aufmerksamkeit!

Details finden sich in

- C. Beck, W. E, & A. Jentzen. Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations. *arXiv* (2017).
- R. E. Bellman. Dynamic programming. *Princeton University Press* (1957).
- W. E, J. Han, & A. Jentzen. Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. *Comm. Math. Stat.* (2017).
- J. Han, A. Jentzen, & W. E. Overcoming the curse of dimensionality: Solving high-dimensional partial differential equations using deep learning. arXiv (2017).
- D. J. Higham. An introduction to financial option valuation. *Cambridge University Press* (2004).
- J. Kallsen. Option pricing. In T. Andersen, R. Davis, J. Kreiß, and T. Mikosch, Handbook of Financial Time Series, *Springer* (2009).

und in den dort genannten Referenzen.

Vielen Dank für Ihre Aufmerksamkeit!