

Name	
Vorname	
Klasse	
Note	

Maturitätsprüfung 2008

Mathematik Schriftliche Prüfung

Prüfungsentwurf

Eingang 2 3. Jan. 2008

Visum

Prüfungsdauer:

Total: 180 Minuten (1. Teil: 75 Minuten; 2. Teil: 105 Minuten)

Hilfsmittel:

1. Teil: Formelbuch "Fundamentum"

2. Teil: Formelbuch "Fundamentum", Taschenrechner

Total Seiten:

3

Anzahl Punkte:

Total: 40 (1. Teil: 16 Punkte; 2. Teil: 24 Punkte)

Hinweise zur Prüfung:

Die Aufgaben müssen sauber dargestellt werden.

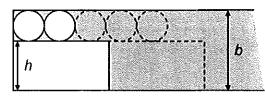
Der Lösungsweg muss klar ersichtlich sein.

Jede richtig gelöste Aufgabe ergibt 8 Punkte. 37 der möglichen 40 Punkte

ergeben die Note 6.

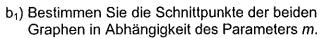
Matura 2008 Mathematik 1.Teil ohne Taschenrechner

- Die Aufgaben müssen sauber dargestellt werden.
- Der Lösungsweg muss klar ersichtlich sein.
- Jede richtig gelöste Aufgabe ergibt 8 Punkte.
- 37 der möglichen 40 Punkte ergeben die Note 6.
- Erlaubte Hilfsmittel: Formelsammlung (kein Taschenrechner)
- Zeit: 75 Minuten


Aufgabe 1 (Vektorgeometrie)

Gegeben ist der Mittelpunkt M(4/1/2) einer Kugel und die Punkte A(7/5/2) und B(4/1/7), welche auf der Kugeloberfläche liegen.

- a) [1] Zeigen Sie, dass $\alpha = \angle AMB = 90^{\circ}$ gilt.
- Berechnen Sie den Flächeninhalt des Dreiecks AMB. b) [1]
- c) [1] Spiegelt man A am Punkt M, so erhält man den liegt. Bestimmen Sie die Koordinaten von A'.
- Punkt A', welcher ebenfalls auf der Kugeloberfläche d) [3.5] Gegeben ist die Gerade g:
 - d_1) Berechnen Sie den 2.Spurpunkt von g (Schnittpunkt mit der yz-Ebene).
 - d₂) In welchen Punkten C und D schneidet die Gerade g die Kugeloberfläche?
- e) [1.5] P(3/-1/4) liegt im Innern der Kugel. Bestimmen Sie die Koordinatengleichung der Ebene E, welche P enthält und aus der Kugel den kleinstmöglichen Kreis herausschneidet.


(Differenzial- und Integralrechnung) Aufgabe 2

Aus einem Blechstreifen der Breite b sollen a) [3] Dosendeckel und -mäntel wie in der Figur rechts ausgeschnitten werden.



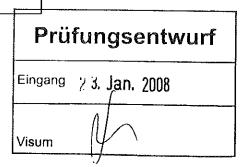
Wie sind die Höhe h und der Radius r einer solchen Dose zu wählen, damit diese ein möglichst grosses Volumen hat?

Gegeben sind die Funktionsgleichungen $y = x^2$ und y = mxb) [5] mit 0 < m < 1. Man betrachtet die Graphen dieser Funktionen im Bereich $0 \le x \le 1$ (vgl. Skizze).

- b₂) Für welchen Parameterwert m haben die beiden grauen Flächen A₁ und A₂ den gleichen Flächeninhalt?
- b₃) Für welchen Parameterwert m ist die Summe der Inhalte A₁ und A₂ minimal?

Matura 2008 Mathematik 2.Teil mit Taschenrechner

- Die Aufgaben müssen sauber dargestellt werden.
- Der Lösungsweg muss klar ersichtlich sein.
- Jede richtig gelöste Aufgabe ergibt 8 Punkte.
- 37 der möglichen 40 Punkte ergeben die Note 6.
- Erlaubte Hilfsmittel: Formelsammlung und Taschenrechner
- Zeit: 105 Minuten

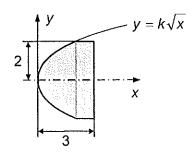

Aufgabe 3 (Wahrscheinlichkeit)

Eine Spielzeugfabrik stellt 3 Arten von Plüschtieren her: Elefanten, Kängurus und Pandabären. 50% aller hergestellten Tiere sind Elefanten, 15% Kängurus und 35% Pandabären.

- a) [2.5] Ich ziehe zufällig 4 Tiere aus der Gesamtproduktion. Mit welcher Wahrscheinlichkeit
 - a₁) sind es 4 Elefanten?
 - a₂) ist mindestens ein Känguru dabei?
 - a₃) sind es 2 Elefanten, 1 Känguru und 1 Pandabär?

Man weiss, dass 1% der Elefanten, 3% der Kängurus und 2% der Pandabären mangelhaft gefertigt sind und nicht verkauft werden können.

- b) [1.5] Aus der Gesamtproduktion wird zufällig ein Plüschtier gezogen. Mit welcher Wahrscheinlichkeit
 - b₁) ist es ein tadellos gefertigter Pandabär?
 - b₂) ist das Tier mangelhaft gefertigt?
- c) [2] Aus der Gesamtproduktion wird zufällig ein Plüschtier gezogen.
 - c₁) Man stellt fest, dass das Tier mangelhaft gefertigt ist. Mit welcher Wahrscheinlichkeit ist es ein Elefant?
 - c₂) Man stellt fest, dass das Tier tadellos gefertigt ist. Mit welcher Wahrscheinlichkeit ist es ein Känguru oder ein Pandabär?
- d) [1] Aus der Gesamtproduktion werden 50 Pandabären zufällig ausgewählt. Mit welcher Wahrscheinlichkeit können genau 2 davon nicht verkauft werden?
- e) [1] Aus der Gesamtproduktion werden 5 Elefanten, 5 Kängurus und 5 Pandabären zufällig ausgewählt. Mit welcher Wahrscheinlichkeit ist genau ein Tier mangelhaft gefertigt?


Prüfungsentwurf Eingang 23. Jan. 2008

Visum

Aufgabe 4 (Differenzial- und Integralrechnung)

Gegeben ist die Funktion $f(x) = k\sqrt{x}$ mit k > 0.

- a) [3] Bestimmen Sie für k = 1 die Normale n im Punkt P(4/2) des Graphen von f und berechnen Sie den Inhalt der Fläche, welche vom Graphen von f, der Normalen n und der x-Achse eingeschlossen wird.
 (Können Sie n nicht bestimmen, so verwenden Sie als Normalengleichung n: y = -3x + 14.)
- b) [0.5] Bestimmen Sie k so, dass der Graph von f durch den Punkt Q(9/12) verläuft.
- c) [1] Bestimmen Sie k so, dass der Graph von f bei x = 4 die Steigung 0.5 hat.
- d) [3.5] Ein bezüglich der x-Achse rotationssymmetrischer Körper hat den in der Figur schraffierten Längsschnitt mit den eingetragenen Massen. Berechnen Sie k so, dass sein Volumen 4π beträgt.

Aufgabe 5 (Kurzaufgaben)

- a) [3] Aufgrund von Beobachtungen über die Eigenwärme der Erde stellte man fest, dass die Wärme der Erde in 25 m Tiefe etwa mit der mittleren Jahrestemperatur des Beobachtungsortes übereinstimmt. Dringt man tiefer in die Erde ein, so erhöht sich alle 32 m die Temperatur um 1°C. In Luzern, wo die mittlere Jahrestemperatur 10°C beträgt, wird ein tiefes Loch gebohrt.
 - a₁) In welcher Tiefe herrschen 25°C?
 - a₂) Wie hoch ist die Temperatur in 1145 m Tiefe?
- b) [3] Mathilda will am Anfang jeden Jahres 3000 Fr. zu ihrem Sparguthaben von 6515 Fr. einzahlen. Wie viele Jahre dauert es bei einem Jahreszinssatz von 2.5%, bis Mathildas Vermögen 60 000 Fr. beträgt?
- c) [2] Metzgermeister Rugeli möchte ein "Spiessli" machen aus 2 gleichgrossen Lammstücken, 1 Cipollatawürstchen und 3 gleichgrossen grünen Peperonistücken.
 - c₁) Wie viele Möglichkeiten hat er, dieses Spiessli zusammenzustecken?
 - c₂) Wie viele Möglichkeiten hat er, falls die Peperonistücke nicht nebeneinander sein sollen?