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Plan of the talk

• Main ideas of thetheory of modified differential equations
for the study of geometric integrators.

• We derive efficient high-orderrigid body integrators .
Preprocessed Discrete Moser–Veselov algorithm.

• Reducinground-off errors in long time integration.
algorithm based on Jacobi elliptic functions.
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Geometric Numerical Integration

A two-dimensional Hamiltonian system,

q̇ = p

ṗ = −∇V (q)

with aquartic potentialV (q) = (q2 − 1)2.

HamiltonianH(q, p) = 1

2
p2 + (q2 − 1)2.

→ animation

Studied recently in the context of the computation of conjugate points for the

Martinet case in optimal control.

M. Chyba, E. Hairer, G. Vilmart,The role of symplectic integrators in
optimal control , to appear in Optimal control, applications and methods,
2008 – p. 3/11



Free rigid body equations

ẏ = ŷ I−1y, Q̇ = Q Î−1y, â =




0 −a3 a2

a3 0 −a1

−a2 a1 0




whereI = diag(I1, I2, I3) are the moments of inertia.

y = (y1, y2, y3)
T angular momentum, Q orthogonal matrix.
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whereI = diag(I1, I2, I3) are the moments of inertia.
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T angular momentum, Q orthogonal matrix.

First integrals: Qy,
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(HamiltonianandCasimir)
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Discrete Moser–Veselov algorithm

ẏ = ŷ I−1y, Q̇ = Q Î−1y, â =




0 −a3 a2

a3 0 −a1

−a2 a1 0




DMV (1991)We considerD = diag(d1, d2, d3) where
d1 + d2 = I3, d2 + d3 = I1, d3 + d1 = I2,

For given(yn, Qn), compute an orthogonal matrixωn from

ωT
n D − Dωn = h ŷn

The numerical solution after one step is then given by

ŷn+1 = ωn ŷn ωT
n , Qn+1 = Qn ωT

n .

It is symmetric, symplectic, Poisson, and it exactly preserves all
first integrals.The only drawback is its low order2.
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Preprocessed DMV algorithm

Apply the DMV algorithm (order2) with Ij replaced bỹIj

where
1

Ĩj

=
1

Ij

(
1 + h2s3(yn) + . . . + h2r−2s2r−1(yn)

)

+h2d3(yn) + . . . + h2r−2d2r−1(yn)

to get an integrator oforder2r.

s3(yn) = −1

3

( 1

I1

+
1

I2

+
1

I3

)
H(yn) +

I1 + I2 + I3

6 I1 I2 I3

C(yn),

d3(yn) =
I1 + I2 + I3

6 I1 I2 I3

H(yn) −
1

3 I1 I2 I3

C(yn).

E. Hairer, G. Vilmart,Preprocessed Discrete Moser-Veselov algorithm for
the full dynamics of the free rigid body, J. Phys. A, 2006. – p. 6/11



Numerical experiment
asymmetric rigid body:I1 = 0.6, I2 = 0.8, I3 = 1.0
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Numerical experiment
asymmetric rigid body:I1 = 0.6, I2 = 0.8, I3 = 1.0
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blue: splitting methods of orders2, 4, 6 (composition methods)
black: preprocessed DMV of orders2, 4, 6, 8, 10
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Study of roundoff errors propagation: the DMV algorithm

Probabilistic model (Henrici, 1962): in the absence of a
deterministic source of errors, roundoff errors behave like a
random walk:

Hamiltonian error= O(eps
√

h
√

t)

0 1 2 3 4 5

−2

−1

0

1

2

0 1 2 3 4 5

−4

−2

0

2

4Hamiltonian error×10−15

×105steps

spatial angular
momentum error

×10−15

×105steps

– p. 8/11



Integrators based Jacobi elliptic functions

In several recent publications (2006, 2007), it is proposed to
integrate the rigid body motionusing Jacobi elliptic functions.
This approach analytically yields the exact solution.
However, a standard implementation showsan unexpected
propagation of round-off errors.
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Integrators based Jacobi elliptic functions

In several recent publications (2006, 2007), it is proposed to
integrate the rigid body motionusing Jacobi elliptic functions.
This approach analytically yields the exact solution.
However, a standard implementation showsan unexpected
propagation of round-off errors.
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Error per step:≈ 1.25 × 10−17

(machine precisioneps = 2−53 ≈ 2 × 10−16)
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Explanation: inexact coefficients

The integrator based on Jacobi elliptic functions uses many
constants depending enI1, I2, I3, e.g.

y1(t) = c1a1cn(u, k), y2(t) = c2a1sn(u, k), y3(t) = δc3a2dn(u, k),

c1 =
√

I1/(I3 − I1), c2 = . . . , c3 = . . .

a1 =
√

2H(y)I3 − 2C(y), a2 = . . . ,

u =
√

(I3 − I2)/(I1I2I3)δa2t + . . . k = . . .

The same rounded coefficients are used along the integration.

In (E. Hairer, R. I. McLachlan & A. Razakarivony, 2007), it is
shown that for implicit Runge-Kutta methods, ifrounded
coefficientsaij andbj are used, then the order conditions are not
exactly satisfied, and this inducesa systematic error in
long-time integrations.
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New implementation

To reduce the effect of rounding errors, the main idea is to
rewrite the algorithm so that only 3 constants depending on
I1, I2, I3 are involved.
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G. Vilmart,Reducing round-off errors in rigid body dynamics, to appear
in Journal of Computational Physics, 2008.
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