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Abstract

SENSITIVE measurement and control equipment is protected
from disturbing electromagnetic fields by thin shielding

sheets (Kost, 1994). Alternatively to discretisation of the sheets,
the electromagnetic fields are modeled only in the surrounding of
the layer taking them into account with transmisson conditions.

We study the shielding effect by means of the model problem
of a diffusion equation with additional dissipation in the curved
thin sheet. We propose asymptotic expansion models with trans-
mission conditions for arbitrary order in the thickness ε. These
models allow for highly accurate modeling of the shielding effect
on meshes without cells at the scale of ε.

To numerically compute the modeling error we discretised
both, the asymptotic expansion models on the limit mesh and
the original problem on meshes with cells in the sheet of thick-
ness ε. Thereby we used high-order finite elements on curved
cells to diminish the effect of discretisation errors.

1. Introduction

Shielding sheets used for protection of sensitive
electronic devices including integrated circuits (IC).

(a) (b)
Comparison of field around a live wire with and without shielding
by a conducting sheet.

Issue: Geometries with sheets of small thickness are
difficult or even impossible to mesh

Remedy: 1. Reduction of the sheet to its midline
⇒ represented by edges in the mesh.

2. Enlargement of outer domain up to the midline.

3. Transmission conditions on the sheet midline
to approximate the behaviour of the conductive
sheet.

Reduction to sheet midline, enlargement of outer domain
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Transmission conditions on sheet midline

• First order impedance boundary condition by Krähenbühl and
Muller (1993), Igarashi, Kost, and Honma (1998),

• extended by a formulation with additional degrees of freedom
assigned to the midline (Gyselinck & Dular, 2004).

But: Relative modeling error is in general only O(ε) for simple
domain enlargement (Schmidt, 2008).

2. Model Problem

Time-harmonic Eddy-current Model for low-frequency applications
curlµ−1 curl e + iωσe = −iω j0,

+ Gauge-condition,

+ boundary conditions.
⇓

Model Problem for a particular thickness ε and conductivity c{
−1u + cu = f in �,

u = g on ∂�.

⇓

Family of problems for each thickness ε
−1uε

ext = f in �ε
ext := �\�

ε

int,
−1uε

int +
c0
ε

uε
int = 0 in �ε

int, Re c0 ≥ 0,
uε

ext = g on ∂�,
uε

ext = uε
int on 0ε := ∂�ε

int,
∂nuε

ext = ∂nuε
int on 0ε.

Choice of scaling of conductivity c(ε) =
c0
ε

because of asymptotically constant shielding
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( a ) c(ε) = c0
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( b ) c(ε) =
c0
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( c ) c(ε) =
c0
ε2

Solutions uε in a section of a circular domain
of radius 2 with thin sheet at r = 1.

Geometrical description
Consider sheet

of constant thickness ε with midline 0m, given by
a C∞ parametrisation xm(t) over interval 0̂.
Curvature denoted by κ(t).

⇒ Parametrisation of the sheet

x(t, s) = xm(t) + sn, s ∈
[
−ε/2, −ε/2

]
.

Goal of this work:
High order transmission conditions by

means of asymptotic expansions,
see e. g. (Bendali & Lemrabet, 1996; Caloz et al., 2006).

3. Asymptotic Expansions

3.1 Expansions
Solution in stretched coordinates
Define: S := s/ε and U ε

int(t, S) := uε
int(t, εS)

Asymptotic series : ansatz of power series

uε
ext(x) =

∞∑
i=0

εiui
ext(x) + o (ε∞)

ε→0

U ε
int(t, S) =

∞∑
i=0

εiU i
int(t, S) + o (ε∞)

ε→0

⇒ ui
ext(x) for each ε defined and so arbitrary close to midline

Move transmission condition onto midline 0m

Taylor expansion around trace at s = ±0

ui
ext(t, ±

ε

2
) =

∞∑
i=0

(
±

1
2

)i

εiui
ext(t, ±0) + o (ε∞)

ε→0

Expansion of Laplace operator (in (t, S)-coordinates) in power of ε

1 = ε−2∂2
S +

ε−1κ(t)
1 + εSκ(t)

∂S +
1

1 + εSκ(t)
∂t

(
1

1 + εSκ(t)
∂t

)
,

= ε−2

(
∂2

S +

L−1∑
l=1

εlAl + εLRL
ε

)
for all L ≥ 1.

Lemma The series RL
ε converges for L → ∞, if ε < 2

κ(t).

3.2 Hierarchical problem

Iterative solving for exterior solutions
on enlarged domain with transmission conditions

The exterior functions ui
ext(x) are given by

−1ui
ext = f δi

0 in �0
ext,

ui
ext = gδi

0 on ∂�,[
ui

ext

]
(t) = γ i(t) on 0m,[

∂sui
ext

]
(t) − c0

{
ui

ext

}
(t) = δi(t) on 0m.

(1)

with γ i(t), δi(t) functions of previous solutions u j
ext, j < i .

Lemma The problem (1) provides unique and stable
solutions ui

ext ∈ H 1(�0
ext), if Re c0 ≥ 0.

Lemma The solutions ui
ext are in H k(�0

ext) for any k ∈ N, if
f ∈ H k−2(�0

ext), g ∈ H k−1/2(∂�).

Internal expansion functions U i
int(t, S)

• are polynomials in S of order 2i ,

• follow by Sturm-Liouville problem from external functions ui
ext.

3.3 Optimal order for the modeling error
Lemma For the modeling error r ε,N+1 := uε

−
∑N

i=0 εiui holds

‖r ε,N+1
‖H 1(�ε

ext) +
√

ε||r ε,N+1
||H 1(�ε

int)
≤ CNεN+1.

Proof Problem for remainder r ε,N+1, estimate of source terms by estimation
of remainder of expansion of Laplace operator and Taylor expansion.

Lemma Same (optimal) order of ε for modeling error measured
in power loss or jump of normal derivative (shielding indicators).

3.4 Concrete models
Order 0 γ 0(t) = 0, δ0(t) = 0. ⇒ continuous over 0m.

Order 1 γ 1(t) = 0, δ1(t) =
c2

0
6 u0

ext(t). ⇒ continuous over 0m.

Order 2 γ 2(t) = −
c0
24κ(t)u0

ext(t) −
c0
12

{
∂nu0

ext

}
(t),

δ2(t) =
c2

0
6 u1

ext(t) +
c0
24κ(t)

{
∂nu0

ext

}
(t) + c0

(
7

240c2
0 −

∂2
t

12

)
u0

ext(t).

with {·}(t) the mean of the traces from both side of the sheet.
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( a ) Order 0
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( b ) Order 1
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( c ) Order 2

Example: Expansion functions in a circle with ellipsoidal sheet.

4. Numerical results

Implementation of exact model and asymptotic model
in the Numerical C++ Library Concepts with

• use of hp-FE spaces,

• use of exact maps of curved edges and cells (Blending tech-
niques), e. g. cells with circular, ellipsoidal and parallel edges.
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( a ) Error in power loss.
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( b ) Error in jump in the normal derivative.

Modeling error for asymptotic expansion solutions inside a circle
with ellipsoidal sheet, computed with p-FEM, validates theoreti-
cal estimates.

5. Collectivly computed model

Model of order 1 computed in one step for a particular ε
−1ũε,1

ext = f in �0
ext,

ũε,1
ext = g on ∂�,

[ũε,1
ext](t) = 0 on 0m,[

∂sũ
ε,1
ext

]
(t) − c0

(
1 +

c0

6

)
{ũε,1

ext}(t) = 0 on 0m.

(2)

Lemma The problem (2) provides unique and stable
solutions H 1(�0

ext), if Re c0 ≥ 0.

Lemma The solution ũε,1
ext is in H k(�0

ext) for any k ∈ N, if
f ∈ H k−2(�0

ext), g ∈ H k−1/2(∂�).

Lemma For the modeling error it holds

‖uε
− ũε,1

ext‖H 1(�ε
ext) +

√
ε‖uε

− ũε,1
ext‖H 1(�ε

int)
≤ Cε2.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

1

2

ε

er
ro

r

Power loss
Jump of normal derivative

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

1

2

ε

er
ro

r

L2-norm
H1-seminorm

Modeling error for collectivly computed model of order 1.
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