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1 Introduction

e Treatment of large-scale linear systems of equations is a common need in

modern computations

e The use of matrices leads in general to difficulties

Large-scale systems: size n = 10°,10° or larger, depending on the storage size.
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Fully populated matrices have n? entries; storage of O(n?) is usually not avail-

able.

Standard remedy: Restrict computations to sparse matrices (O(n) entries) and

use only matrix-vector multiplications (cost in computer time O(n)).

Goal of the hierarchical matrix technique: all matrix operations, in particular for

full matrices.



Typical fields of application:

B Boundary Element Method (BEM):
Formulation of homogeneous elliptic boundary value problems by integral equa-
tion formulations

= System matrices are fully populated

B Finite Element Method (FEM):

Elliptic boundary value problems lead to sparse matrices A, but for instance A1
is full. LU-factors are partially filled.
Sometimes Schur complements

A1 — Agd A2_21 A

are needed, which are also full.

B Further Applications



The costs in standard matrix approaches are:
e storage, Axx, A+ B: O(n?)
e Ax B, Al LU decomposition: O(n3).

The technique of hierarchical matrices tries to perform all matrix operations with
a computational cost of

O(nlog™ n).

Il The results are only approximate (only A x x is exact).

Already existing discretisation error e = O(n™%) = log(1/¢) = O(logn).



Preview: How do #-matrices look like?
e Decompose the matrix into suitable subblocks.

e Approximate the matrix in each subblock by a rank-k-matrix*

k
block = Y azb;
1=1

(for suitably small local rank k).

| :HQ

Illustration:

*k is upper bound. The true rank may be smaller.



Two Questions:

e How large is the representation error?
More precisely: How does the local rank k correspond to the error of the

matrix representation?

e How can the (approximate) matrix operations performed such that

cost = O(n x log*n) ?



Side Remark: About Rk-Matrices

Let the Rk-matrix Zz 1 a;b; T be of size n x m.
REMARK: (a) The amount of storage is (n +m) k (a; and b; to be stored).
(b) The amount of work for the matrix-vector multiplication A x ¢ (¢ € R"") are

2k (m 4+ n) — k — n operations.

Sums of Rk-Matrices, Truncation to Rank k
In general, the sum of Rk-matrices is of rank 2k. Apply truncation to rank k by
means of the singular-value decomposition:

A=UxDxV', (U,V unitary, D diagonal with d; > ... > dy;. > 0).

Truncation to rank k:

A'=UxD'«V' with D' :=diag{dy, ..., d;, 0, ...}

is of rank k and has the smallest Frobenius norm ||A — A'|| .
NOTATION: A &Ry B or, in the general case of rank-k-matrices, A ®ri B.

REMARK: The RI1-addition @p; of two n X m-matrices costs 9(n +m) + O(1)
operations.



2 Example for Demonstration

let n=2P, p=0,1,... ]
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The construction of the H-matrix format % IS recursive:

For n = 1, A is a rank-1-matrix. Otherwise the format of an n X n matrix of
level p (n = 2P) is

A1l A
A=
[A21 A2

with

o A;; are blocks of the size 5 x 7,
e A;; (¢ =1,2) are H-matrices (of level p — 1),

e Aio, Aoy are rank-1-matrix (abbreviation: R1).



2.1 Complexity of the H-Matrix Arithmetic

2.1.1 Storage

Dimension: n = 2P, p : hierarchy level:

The construction yields

Nstorage(p) =2n + 2Nst0rage(p —1) forp> 1.

Proof: The 2 off-diagonal blocks contain 4 vectors of size n/2.

Together with the induction start

this leads to

LEMMA: The storage requirement for an n X n H-matrix with n = 2P is

Nstorage(p) = (2p + 1)n = n(1 + 2logy n).



2.1.2 Addition

LEMMA: The R1l-addition of two n X n H-matrices or an H-matrix and an
R1-matrix requires 18n log, n + O(n) operations.

2.1.3 Matrix-Vector Multiplication

A :n x n H-matrix, x : n-vector, (A,x) — A x .

LEMMA: The matrix-vector multiplication of an n X n ‘'H-matrix by a vector
requires

4nlogo, n — n + 2 operations.



2.1.4 Matrix-Matrix Multiplication

Three types of products are to be distinguished:

1) RxR (R1-matrix times R1-matrix)
2) R« H (H-matrix times R1-matrix) or H x R
3) H+ H (H-matrix times H-matrix)

Type 1: (abT> (ch) = (a*xa)d', witha=b'ec.

LEMMA: Ngi+r1(p) = 3n — 1 operations.

Type 2: H % (abT) — (H % a)b! requires only a matrix-vector multiplication.

LEMMA: Ngy.r1(p) = 4nlogon — n + 2 operations. Same for R « H.



Type 3: H = H is computed recursively by
H R
HxH = | 5 H]*[R_H]

 |HxH+R+«R H*xR+RxH
_R*H+H*R HxH-+RxR |

' H R

This leads to the recursion

Ny«a(p) = 2Ng.g(p—1) +2Np.p(p —1) +2Ng.pr(p — 1)
+2Np.g(Pp— 1) +2Ngyr(p— 1) +2Npyr(p — 1)

with the starting value Ng,y(0) = 1.

LEMMA: The multiplication of two H-matrices requires

13n Iog% n + 65nlogo n — 51n 4 52 operations.



2.1.5 Matrix Inversion

Approximation of the inverse A~ by an H-matrix Invpi(A).
Recursion with respect to p (n = 2P):

For p =0, Invp (A) := A~ L
Having defined Invpy on level p — 1, the (exact) inverse of A is

A+ A APRS T Ay A A ARS T
—S_1A21A1_11 S—1

with the Schur complement S = Ayy — A21A1_11A12.

Recursion for the cost N;,,.,(p):

Ninv(p) — 2Ninv(p — 1) + 4NH*R1(p — 1)
+2Npg+g1(p — 1) + 2NR1«pi(p — 1).

LEMMA: The approximate inversion of an H-matrix requires

13n Iog% n + 47nlogon — 109n 4 110 operations.



2.1.6 LU-Decomposition

A is to be represented by
A= LU,

where L is a lower triangular matrix and U a upper triangular matrix of the
‘H-format.

LEMMA: The approximate LU-decomposition costs

11
Nry(p) = > " Iog% n + 25nlog, n — 28n + 28.

operations.



2.1.7 Concluding Remarks to the Introductory Case

At least, the rank 1 is to be replaced by a larger rank k.

P
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]

Moreover, in general, the simple format "k is to be replaced
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3 General Construction of Hierarchical Matrices

Partition of the Matrix

How to partition the matrix in subblocks?

I: index set of matrix rows, J: index set of matrix columns.
Blockib=7XxowithtC I, o CJ.

Cluster Tree:
The cluster tree T'(I) contains a collection of subsets 7 C I (similarly: T'(J)).

Block Cluster Tree T'(I x J):
Collection of (small and large) blocks b = 7 X o with 7 € T'(I), o € T'(J).
Criterion for selection: b as large as possible and admissible, i.e.,

min {diam(7),diam(o)} > ndist(r, o).



Cluster Tree

Let I (J) be the index set containing the row (column) indices i (j) of the
matrix A = (Aij) . Partition I recursively into (e.g.) two subsets. This process
ends if the subsets of I have a sufficiently small cardinality. (Similarly for J).
The resulting tree T'(I) is called the cluster tree.

W,

W,

REMARK: For usual discretisations, an index 7 € [ is associated to an nodal
point z; € R? or the support supp(¢,;) C R% of a basis function ¢;.

The practical performance uses bounding boxes:




Block-Cluster Tree

NOTATION: T'(I x J) is the block-cluster tree. Elements: blocks b = 7 X 0.

H.

S

Let 7 Xx 0 € T(I X J) be a block (1 € T(I), o € T(J)).

/.7 € T(I) sons of 7, i.e., 7 = 7/ U 7", Similarly, ¢/,0"” € T(J) sons of
o € T(J). Then the four sons of 7 x o0 € T(I x J) are 7/ x o/, 7/ x o, 7" x o/,
"' x o' € T(I x J). If either 7 or o is a leaf, 7 X o is not further partitioned.

N~ o o b W N P O
N~ o o A W N P O
N~ o o A W N B O

!
l

green blocks: admissible, red: non-admissible



DEFINITION (admissible block) Fix some n > 0. A block 7 x 0 € T(I x J) is

called admissible if
min {diam(€2;),diam(Qs)} > ndist(Q2+, Q)

or T X oisaleaf. 7 x o € T(I x J) is called maximally admissible if the father

of 7 X o is non-admissible.

Wg

5

W

DEFINITION (Partition P): P C T'(I x J) is defined by:
1) different b € P are disjoint,
2) their union Upepp = I X J is complete,

3) they are maximally admissible.




4 Application to BEM

1
Example: (Au) (x) := /0 log |x — y| u(y)dy for z € [0, 1].

Discretisation: collocation with piecewise constant elements in

[a:i_l,a:i], xi:ih, izl,...,n, h:]./n,

Midpoints z;_; /> = (¢ — 1/2)h are the collocation points:

. T
A = (aij)ij=1,.,n  With a;; = /x log |@;_1 /2 — y‘ dy.
j—1

Replace the kernel function k(x,y) = log(x — y) in a certain range of x,y by an
approximation i(x,y) of separable form

Az,y) =) o ; Xu(@)Yi(y).



%(x7@0 ::EE:“EJ;Xl(x)}Q(y)'
Simple choice: Taylor's formula applied with respect to y:
J = {0,1,...,k— 1},

X.,(x) = derivatives of x(z,-) evaluated at y = y*,

Yi(y) = (y—vy7)"
The kernel k(x,y) = log |x — y| leads to the error estimate

ly — y*|"/k

—y* = ly —y*|)F

k(z,y) — Rz, y)| < (i for |z —y*| >|y—y"l

If x is replaced by &, the integral a;; = fai‘?_l m(wi_l/z,y)dy becomes

Lj

i = ) Xu(z;_1/7) Yi(y)dy. (*)

vedJ Ti-1
Let b be a block and restrict 4,5 in (%) to b. Then (x) describes a block matrix
Alp. Each term of the sum in (%) is an RI-matrix ab' with

a; = Xu(x;_1/2), bj = /

ZBj_l

Ly

Y. (y)dy.

Since #J = k, the block A|, is of Rk-type.



Furthermore, one can check that

i} 1 /1\F . _
wla,y) — &l < (5) 5 1A= Alleo <275k,

Discretisation error h**, where the step size h is related to n = #1 by h ~ %

Hence k should be chosen such that
1 y 4
2=k (-) .
n

k = O(logn)

Hence,

is the required rank.

NOTE: a) The construction of the cluster and block-cluster tree is automatic
(block-box) and fast. Even refinements with form-regular elements are allowed.
b) Similarly, the construction of the approximation A is block-box like (usually
by interpolation instead of Taylor expansion).



5 Application to FEM

REMARK: a) A FEM system matrix is an H-matrix. Non-trivial blocks = 0.
b) For a uniformly elliptic differential operator with L°°-coefficients, the in-

verse of the FEM-matrix can exponentially well be approximated by an H-matrix
[Bebendorf - Hackbusch 2003].

When solving a linear system of equations Ax = b,

one can make use of the LU decomposition.

The particular advantage of the

LU decomposition for sparse matrices A is

that the factors L and U contain many

zero blocks (fill-in is not complete!). = e

Example of an factor L:



EXAMPLE (inverse Problem, Wolters-Grasedyck-Hackbusch, 2004):
Given: electric/magnetic field (EEG,MEG) at ~ 400 sensor positions on the

head surface.
What is the current distribution in the brain ? Where are the sources 7

PDE: —divo(z)Vu(z) = f(z), =€ QCR3, dpu =0 on 09.
The boundary value has to be solved for ~ 400 right-hand sides

Wi

A
A
0

Py
=

Triangulation with
N = 147287 tetraeder conductivity o



- Galerkin discretisation ~~ Az = b

- The system has to be solved for =~ 400 right-hand sides b
- Stopping criterion: ||Az — b||/||b|| < 1078

- Machine: SUNFire, 900 MHz, single processor

Pardiso! LUy, € =107° PEBBLES?
Setup 237 468 13
Solve 2.4 1.0 10
Total 1197 3868 4013

fPardiso (Schenk & Co)
'PEBBLES (Langer/Haase)



6 7{2-Matrices

Two hierarchies are involved:
1. Hierarchy given by the cluster tree T'.

2. The involved rank-k-matrices do not use arbitrary row and column vectors,
but vectors from special subspaces Vi (7 € T'), i.e., the matrix blocks belong

to tensor spaces Vi ® Vi

3. The basis of V; is connected with the bases of V_ for 7/ € S(7). This leads
to hierarchically defined bases: V|, C V_.

Since, in the end, the bases need not be stored directly, the log-factor disappears:

storage(A), cost(A x x), cost(A + B), cost(A* B) = O(n)

and smaller constants (see S. Borm 2004ff).



7/ Matrix Equations

Lyapunov: AX+ XA = C
Sylvester AX —XB = C
Riccatii: ~AX +XA' — XFX C

Given: A, B,C, F'; desired matrix-valued solution: X.

Applications: optimal control problems for elliptic / parabolic pdes.

e Low rank C, F' = low rank X

e H-matrix C, low rank F' = H-matrix X

Computation via H-arithmetic, possibly combined with multi-grid methods.



Matrix-Riccati Equation

A' X+ XA-XFX+G=0 (A<O).

Lemma 7.1 The solution X satisfies

X=—(M"M)"IM"N,

T[40

Lemma 7.2 Assume that Re)\ # 0 for all eigenvalues \ € o(5).

where

[M N]::sign<

Start: S(O) -— S. Then the iteration
(H‘l) - 1 (Z) (1) 1
S — 5 (S -+ (S ) )

converges quadratically to sign(S).



Example of a matrix-Riccati equation by L. Grasedyck
Choice of A by A = Ay, (1D-Laplacian).

The following table shows the relative error HX’ — XHz/ 1 X |5 -

n =101 | 256 1024 65536
k=1 8.810-3 | 1.510-1 | 1.310-1 |-
k = 2.410-4 | 2.610-4 | 4.210-4 | 6.710-4
k = 7.710-8 | 9.110-8 | 1.110-7 | 6.219-7
k=26 1.910-10 | 3.710-10 | 2.410-10 | 1.719-9
Number of iterations | 12 14 17 26
time* [sec] 2.2 8.5 67 18263

*) k=2, Sun Quasar 450 MHz

In the last case, the (full) matrix X has 4,294,967, 296 entries.




8 Matrix-Valued Functions f(A)

EXAMPLE: Matrix-exponential function e~ t4

Cauchy-Dunford representation

1
e tA = —/re_Zt (2] — A)~Ldt

271

using a parabola I : MCS

After parametrisation and quadrature:

N

Tn(t) = ) vpe % (zo] — A)TL, zpel.
{=—N

Error estimate for t > tg > 0 :
—tA —cN?2/3
HTN(t) —e H e

= N ~ logn = Total cost: O(nlog™n).
See: Gavrilyuk-Hackbusch-Khoromskij, 2002.



9 Higher dimensional-analogue: Tensor systems

The analogue of rank-k-matrices are sums of k£ tensor products.

Tensor space:

V=V1oaWwhe...0 V.

Example: V; = RYi for index sets I;. Then the entries of v € V are
Viq o, ig with Z] < Ij.

V is isomorphic to RY with the product index set T := 17 X Ip X ... X I .
d

DEFINITION: A rank-k-tensor is of the form

k
ngﬂ)(@vgﬂ)@...@vgﬁ) Withv§“)6‘/j.
p=1



DEFINITION: A rank-k-tensor is of the form
k
ngu)(@vgw@...@véﬂ) withv§“)e\/j. (*)
pn=1
QUESTION: Given v € V, are there best rank-k-approximations (*)?

How can they be computed?

REMARK: Tools like the singular-value decomposition do not exist for d > 3.
Non-existence of best-approximations and numerical instability possible.

A trust-region Newton method for determining the best rank-k-approximation
(after a regularisation) is described by Espig (Diss. 2008).



Example from the electronic Schrodinger equation

Hartree-Fock equation F, 1,(y) = €, ¢(y) involves the Hartree potential

N/2
Vg(x)=2>
b=1

/wz(y)m(y) gy = [ PY) 4 (1)

x —y| x —y|

where p(y) = 2 Zé\fz/lz Yu(y)¥;(y) is the electron density.

' ' _AU)
Standard approach uses Gaussians g,(f)(yj) = (y; — A](g))ek e~ kW= A5")? o
represent the orbital (wavefunction) by
Sy 1 2 3
(y) = Y gp () g (12) g (u3). (2)
k=1

Here, K, = tensor rank. We start with a representation (2) produced by the
MOLPRO program package using the MATROP program for matrix operations.

Eq. (2) yields p(y) = ¥ (y)¥p(y) with K := K, (K, +1)/2 terms.



Optimising the tensor representation reduces the tensor rank to a much smaller

rank x while almost keeping the same order of accuracy:

p(y) = > Qgﬁl)(yl) 922)(,02) 023)(3/3), k< K.
k=1

The computational work for evaluating the Hartree potential (1) depends essen-

tially on the tensor rank.

EXAMPLE CHs: The MOLPRO program yields K = 1540, which can be re-
duced by our approach to kK = 45. The computing time for evaluating Vi for

the tensor representation with k = 45 is 8 hours, while the estimated time for
K = 1540 is 190 hours.

molecule | initial rank Kof p(y) | final rank K | relative error | error in energy (hartree)
CHy4 1540 45 9.0x10°° 6.0x10>
CoH» 2346 50 1.3x10~% 5.0x10~%
CoHg 4656 55 8.8x107° 4.0x10~%

see Rao Chinnamsetty - Espig - Khoromskij - Hackbusch - Flad: J. Chem. Physics 127 (2007)
and Rao Chinnamsetty, Diss. 2008.



Kronecker- Tensor Products

Vi, = R>j vector spaces of matrices. Then

Vi=11@V®...0 V; 2R/
with IT:=I1 XIhXx...xI; and J:=J;y X JoX...X Jy.

| A;1B ApB
Notation ford=2: A B = | A»1B

REMARK: a) For d = 2 the approximation of a matrix M by a Kronecker-
rank-k expression Zﬁ:l AlW) @ BH) s equivalent to a certain standard rank-k

approximation of a related matrix M.

b) For d > 3 the search for rank-k approximations is more involved.

If the matrix is the discretisation of a continuous operator with a kernel function
»#(x,y), X,y € R% analytical methods may help (see next example).



Separable PDE in [0,1]¢, d large

Let Q = (0,1)¢ Cc RY.
Equidistant grid: ;, = (h,2h,...,nh) with

(n+1)h=1 (here n = 1024).

Separable PDE: L = Z,‘/l:l ay(mv)aa—;, e.g., L = A.

Discretisation of —L by usual difference formula:

d
A=—-Lp=-)> a,,(xv)DifymV (Dzy%: 2nd difference)
v=1

= AIRIQR..QI+1TQRAIR.. T+ ...+IRIR...Q0 Ay
Goal: Approximation of L;l.

Numerical result (Grasedyck 2004):
For d = 2048, accuracy 107> to 10~%: 5 min computer time

Related dimension:

N = 10242948 — 1 24 x 100109



Underlying method

1/x can be approximated by exponential sums Z’;Zl wy exp(apx):

_ 1
min max — —
Wu,v gezg,z1] 1T

1 1/2
min  max |— — Zi:l wy exp(apx)l < O(e_Ck / ), ¢>0.

Wy ,&py CCE[J/'0,00) €T T

> _jwveplava)] < O(eF), e>0,

Let [xq,x1] or [xg, o0) contain the spectrum of L;,. Then

_ k
Ly N Zyzl wy exp(ayLy,).

The special tensor structure

d
Lp=> I®..01Q®Ly,0I®...Q01
pu=1

implies exp(ayLy) = ®Z=1 exp(aw Ly, ,,)-
Approximation of exp(av Ly, ,,) by H-matrices (see above). Finally:

d
_ k
th ~ ZV:]_ Wy (X)lepo(ath,M) (rank-k-tensor).
M:



10 Final Remarks

e Concerning papers about the subject “hierarchical matrices” see

http://www.mis.mpg.de (— institute reports) or

http://www.mis.mpg.de/scicomp/hackbusch e.html

e For scientific purpose the software library HLib is freely available (ask for a
licence form)

e Every year we organise a winter school on this subject.

e For commercial applications: HLibPro (distributed via the Fraunhofer-Institute
SCAI in St.Augustin)



