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1 Introduction

� Treatment of large-scale linear systems of equations is a common need in
modern computations

� The use of matrices leads in general to di�culties

Large-scale systems: size n = 105; 106 or larger, depending on the storage size.

Fully populated matrices have n2 entries; storage of O(n2) is usually not avail-

able.

Standard remedy: Restrict computations to sparse matrices (O(n) entries) and

use only matrix-vector multiplications (cost in computer time O(n)).

Goal of the hierarchical matrix technique: all matrix operations, in particular for

full matrices.



Typical �elds of application:

� Boundary Element Method (BEM):
Formulation of homogeneous elliptic boundary value problems by integral equa-

tion formulations

) System matrices are fully populated

� Finite Element Method (FEM):
Elliptic boundary value problems lead to sparse matrices A, but for instance A�1

is full. LU-factors are partially �lled.

Sometimes Schur complements

A11 �A12A
�1
22 A21

are needed, which are also full.

� Further Applications



The costs in standard matrix approaches are:

� storage, A � x; A+B: O(n2)

� A �B; A�1; LU decomposition: O(n3):

The technique of hierarchical matrices tries to perform all matrix operations with

a computational cost of

O(n log� n):

!! The results are only approximate (only A � x is exact).

Already existing discretisation error " = O(n��)) log(1=") = O(logn):



Preview: How do H-matrices look like?

� Decompose the matrix into suitable subblocks.

� Approximate the matrix in each subblock by a rank-k-matrix�

block =
kX
i=1

aib
>
i

(for suitably small local rank k).

Illustration:

�k is upper bound. The true rank may be smaller.



Two Questions:

� How large is the representation error?
More precisely: How does the local rank k correspond to the error of the

matrix representation?

� How can the (approximate) matrix operations performed such that

cost = O(n � log� n) ?



Side Remark: About Rk-Matrices

Let the Rk-matrix
Pk
i=1 aib

>
i be of size n�m:

REMARK: (a) The amount of storage is (n+m) k (ai and bi to be stored).

(b) The amount of work for the matrix-vector multiplication A � c (c 2 Rm) are

2k (m+ n)� k � n operations.

Sums of Rk-Matrices, Truncation to Rank k
In general, the sum of Rk-matrices is of rank 2k. Apply truncation to rank k by

means of the singular-value decomposition:

A = U �D � V >; (U; V unitary, D diagonal with d1 � ::: � d2k � 0):
Truncation to rank k:

A0 = U �D0 � V > with D0 := diagfd1; :::; dk; 0; :::g
is of rank k and has the smallest Frobenius norm kA�A0kF :

NOTATION: A�R1 B or, in the general case of rank-k-matrices, A�Rk B:

REMARK: The R1 -addition �R1 of two n�m-matrices costs 9(n+m)+O(1)
operations.



2 Example for Demonstration

Let n = 2p; p = 0; 1; : : :

The construction of the H-matrix format is recursive:

For n = 1; A is a rank-1-matrix. Otherwise the format of an n � n matrix of

level p (n = 2p) is

A =

"
A11 A12
A21 A22

#
with

� Aij are blocks of the size n2 �
n
2 ;

� Aii (i = 1; 2) are H-matrices (of level p� 1),

� A12; A21 are rank-1-matrix (abbreviation: R1).



2.1 Complexity of the H-Matrix Arithmetic

2.1.1 Storage

Dimension: n = 2p; p : hierarchy level:

The construction yields

Nstorage(p) = 2n+ 2Nstorage(p� 1) for p > 1:

Proof: The 2 o�-diagonal blocks contain 4 vectors of size n=2:

Together with the induction start

Nstorage(0) = 1 (case of n = 1 = 2
0);

this leads to

LEMMA: The storage requirement for an n� n H-matrix with n = 2p is

Nstorage(p) = (2p+ 1)n = n(1 + 2 log2 n):



2.1.2 Addition

LEMMA: The R1-addition of two n � n H-matrices or an H-matrix and an
R1-matrix requires 18n log2 n+O(n) operations.

2.1.3 Matrix-Vector Multiplication

A : n� n H-matrix, x : n-vector, (A; x) 7�! A � x.

LEMMA: The matrix-vector multiplication of an n � n H-matrix by a vector
requires

4n log2 n� n+ 2 operations.



2.1.4 Matrix-Matrix Multiplication

Three types of products are to be distinguished:

. 1) R �R (R1-matrix times R1-matrix)

. 2) R �H (H-matrix times R1-matrix) or H �R

. 3) H �H (H-matrix times H-matrix)

Type 1:
�
ab>

� �
cd>

�
= (� � a) d>, with � = b>c:

LEMMA: NR1�R1(p) = 3n� 1 operations.

Type 2: H �
�
ab>

�
= (H � a) b> requires only a matrix-vector multiplication.

LEMMA: NH�R1(p) = 4n log2 n� n+ 2 operations: Same for R �H.



Type 3: H �H is computed recursively by

H �H =

"
H R
R H

#
�
"
H R
R H

#

=

"
H �H +R �R H �R+R �H
R �H +H �R H �H +R �R

#
:

This leads to the recursion

NH�H(p) = 2NH�H(p� 1) + 2NR�R(p� 1) + 2NH�R(p� 1)
+2NR�H(p� 1) + 2NH+R(p� 1) + 2NR+R(p� 1)

with the starting value NH�H(0) = 1:

LEMMA: The multiplication of two H-matrices requires

13n log22 n+ 65n log2 n� 51n+ 52 operations.



2.1.5 Matrix Inversion

Approximation of the inverse A�1 by an H-matrix InvR1(A):

Recursion with respect to p (n = 2p):

For p = 0; InvR1(A) := A�1:
Having de�ned InvR1 on level p� 1; the (exact) inverse of A is"

A�111 +A�111 A12S
�1A21A

�1
11 �A�111 A12S�1

�S�1A21A�111 S�1

#

with the Schur complement S = A22 �A21A
�1
11 A12:

Recursion for the cost Ninv(p):

Ninv(p) = 2Ninv(p� 1) + 4NH�R1(p� 1)
+2NH+R1(p� 1) + 2NR1�R1(p� 1):

LEMMA: The approximate inversion of an H-matrix requires

13n log22 n+ 47n log2 n� 109n+ 110 operations.



2.1.6 LU-Decomposition

A is to be represented by

A � LU;

where L is a lower triangular matrix and U a upper triangular matrix of the

H-format.

LEMMA: The approximate LU-decomposition costs

NLU(p) =
11

2
n log22 n+ 25n log2 n� 28n+ 28:

operations.



2.1.7 Concluding Remarks to the Introductory Case

At least, the rank 1 is to be replaced by a larger rank k:

Moreover, in general, the simple format is to be replaced

by a more re�ned format like



3 General Construction of Hierarchical Matrices

Partition of the Matrix

How to partition the matrix in subblocks?

I: index set of matrix rows; J : index set of matrix columns.

Block: b = � � � with � � I; � � J:

Cluster Tree:

The cluster tree T (I) contains a collection of subsets � � I (similarly: T (J)).

Block Cluster Tree T (I � J):

Collection of (small and large) blocks b = � � � with � 2 T (I); � 2 T (J):
Criterion for selection: b as large as possible and admissible, i.e.,

min fdiam(�); diam(�)g � � dist(�; �):



Cluster Tree
Let I (J) be the index set containing the row (column) indices i (j) of the

matrix A =
�
Aij

�
: Partition I recursively into (e.g.) two subsets. This process

ends if the subsets of I have a su�ciently small cardinality. (Similarly for J):

The resulting tree T (I) is called the cluster tree.

Ω

τΩ

σ

REMARK: For usual discretisations, an index i 2 I is associated to an nodal

point xi 2 Rd or the support supp(�i) � Rd of a basis function �i:
The practical performance uses bounding boxes:



Block-Cluster Tree

NOTATION: T (I � J) is the block-cluster tree. Elements: blocks b = � � �.

τ
σ
b

Let � � � 2 T (I � J) be a block (� 2 T (I), � 2 T (J)).
� 0; � 00 2 T (I) sons of �; i.e., � = � 0 [ � 00: Similarly, �0; �00 2 T (J) sons of

� 2 T (J): Then the four sons of � �� 2 T (I � J) are � 0��0; � 0��00; � 00��0;
� 00 � �00 2 T (I � J). If either � or � is a leaf, � � � is not further partitioned.
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green blocks: admissible, red: non-admissible



DEFINITION (admissible block) Fix some � > 0: A block � � � 2 T (I � J) is

called admissible if

min fdiam(
�); diam(
�)g � � dist(
� ;
�)

or � � � is a leaf. � � � 2 T (I � J) is called maximally admissible if the father
of � � � is non-admissible.

Ω

Ω

τ

σ

DEFINITION (Partition P ): P � T (I � J) is de�ned by:

1) di�erent b 2 P are disjoint,

2) their union
S
b2P p = I � J is complete,

3) they are maximally admissible.



4 Application to BEM

Example: (Au) (x) :=
Z 1
0
log jx� yju(y)dy for x 2 [0; 1]:

Discretisation: collocation with piecewise constant elements in

[xi�1; xi]; xi = ih; i = 1; : : : ; n; h = 1=n;

Midpoints xi�1=2 = (i� 1=2)h are the collocation points:

A = (aij)i;j=1;:::;n with aij =
Z xj
xj�1

log
���xi�1=2 � y

��� dy:
Replace the kernel function �(x; y) = log(x� y) in a certain range of x; y by an
approximation ~�(x; y) of separable form

~�(x; y) =
X

�2J X�(x)Y�(y):



~�(x; y) =
X

�2J X�(x)Y�(y):

Simple choice: Taylor's formula applied with respect to y:

J = f0; 1; : : : ; k � 1g;
X�(x) = derivatives of �(x; �) evaluated at y = y�;

Y�(y) = (y � y�)�:

The kernel �(x; y) = log jx� yj leads to the error estimate

j�(x; y)� ~�(x; y)j � jy � y�jk=k
(jx� y�j � jy � y�j)k

for jx� y�j � jy � y�j:

If � is replaced by ~�; the integral aij =
R xj
xj�1 �(xi�1=2; y)dy becomes

~aij =
X
�2J

X�(xi�1=2)
Z xj
xj�1

Y�(y)dy: (�)

Let b be a block and restrict i; j in (�) to b: Then (�) describes a block matrix
~Ajb: Each term of the sum in (�) is an R1 -matrix ab> with

ai = X�(xi�1=2); bj =
Z xj
xj�1

Y�(y)dy:

Since #J = k, the block ~Ajb is of Rk-type.



Furthermore, one can check that

j�(x; y)� ~�(x; y)j � 1

k

�
1

2

�k
; kA� ~Ak1 � 2�k=k:

Discretisation error h{; where the step size h is related to n = #I by h � 1
n:

Hence k should be chosen such that

2�k �
�
1

n

�{
:

Hence,

k = O(logn)

is the required rank.

NOTE: a) The construction of the cluster and block-cluster tree is automatic

(block-box) and fast. Even re�nements with form-regular elements are allowed.

b) Similarly, the construction of the approximation ~A is block-box like (usually

by interpolation instead of Taylor expansion).



5 Application to FEM

REMARK: a) A FEM system matrix is an H-matrix. Non-trivial blocks = 0.
b) For a uniformly elliptic di�erential operator with L1-coe�cients, the in-
verse of the FEM-matrix can exponentially well be approximated by an H-matrix
[Bebendorf - Hackbusch 2003].

When solving a linear system of equations Ax = b;

one can make use of the LU decomposition.

The particular advantage of the

LU decomposition for sparse matrices A is

that the factors L and U contain many

zero blocks (�ll-in is not complete!).

Example of an factor L:
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EXAMPLE (inverse Problem, Wolters-Grasedyck-Hackbusch, 2004):

Given: electric/magnetic �eld (EEG,MEG) at � 400 sensor positions on the

head surface.

What is the current distribution in the brain ? Where are the sources ?

PDE: �div �(x)ru(x) = f(x); x 2 
 � R3, @nu = 0 on @
:
The boundary value has to be solved for � 400 right-hand sides

Triangulation with

N = 147287 tetraeder conductivity �



- Galerkin discretisation  Ax = b

- The system has to be solved for � 400 right-hand sides b
- Stopping criterion: kAx� bk= kbk � 10�8

- Machine: SUNFire, 900 MHz, single processor

Pardisoy LUH; " = 10�6 PEBBLESz

Setup 237 468 13
Solve 2.4 1.0 10
Total 1197 868 4013

yPardiso (Schenk & Co)
zPEBBLES (Langer/Haase)



6 H2-Matrices

Two hierarchies are involved:

1. Hierarchy given by the cluster tree T .

2. The involved rank-k-matrices do not use arbitrary row and column vectors,

but vectors from special subspaces V� (� 2 T ) ; i.e., the matrix blocks belong
to tensor spaces V� 
 V�

3. The basis of V� is connected with the bases of V� 0 for �
0 2 S(�): This leads

to hierarchically de�ned bases: V� j� 0 � V� 0:

Since, in the end, the bases need not be stored directly, the log-factor disappears:

storage(A); cost(A � x); cost(A+B); cost(A �B) = O(n)

and smaller constants (see S. B�orm 2004�).



7 Matrix Equations

Lyapunov: AX +XA> = C

Sylvester AX �XB = C

Riccati: AX +XA> �XFX = C

Given: A;B;C; F ; desired matrix-valued solution: X:

Applications: optimal control problems for elliptic / parabolic pdes.

� Low rank C;F ) low rank X

� H-matrix C, low rank F ) H-matrix X

Computation via H-arithmetic, possibly combined with multi-grid methods.



Matrix-Riccati Equation

A>X +XA�XFX +G = O (A < O):

Lemma 7.1 The solution X satis�es

X = �(M>M)�1M>N;

where h
M N

i
:= sign

 "
A> G
F �A

#!
�
"
I O
O I

#
:

Lemma 7.2 Assume that <e� 6= 0 for all eigenvalues � 2 �(S):

Start: S(0) := S: Then the iteration

S(i+1) :=
1

2

�
S(i) +

�
S(i)

��1�
converges quadratically to sign(S):



Example of a matrix-Riccati equation by L. Grasedyck

Choice of A by A = �h (1D-Laplacian).

The following table shows the relative error



 ~X �X





2
= kXk2 :

n = 101 256 1024 65 536
k = 1 8.810-3 1.510-1 1.310-1 -
k = 2 2.410-4 2.610-4 4.210-4 6.710-4
k = 4 7.710-8 9.110-8 1.110-7 6.210-7
k = 6 1.910-10 3.710-10 2.410-10 1.710-9

Number of iterations 12 14 17 26
time� [sec] 2.2 8.5 67 18263
*) k=2, Sun Quasar 450 MHz

In the last case, the (full) matrix X has 4; 294; 967; 296 entries.



8 Matrix-Valued Functions f(A)

EXAMPLE: Matrix-exponential function e�tA.

Cauchy-Dunford representation

e�tA =
1

2�i

Z
�
e�zt (zI �A)�1 dt

using a parabola � :
Ω

CS
CP

After parametrisation and quadrature:

TN(t) :=
NX

`=�N

`e

��`t (z`I �A)�1 ; z` 2 �:

Error estimate for t � t0 > 0 :


TN(t)� e�tA



 . e�cN2=3:

) N � logn ) Total cost: O(n log� n):
See: Gavrilyuk-Hackbusch-Khoromskij, 2002.



9 Higher dimensional-analogue: Tensor systems

The analogue of rank-k-matrices are sums of k tensor products.

Tensor space:

V := V1 
 V2 
 : : :
 Vd:

Example: Vi = RIi for index sets Ii: Then the entries of v 2 V are

vi1;i2;:::;id with ij 2 Ij:

V is isomorphic to RI with the product index set I := I1 � I2 � : : :� Id:

DEFINITION: A rank-k-tensor is of the form

kX
�=1

v
(�)
1 
 v

(�)
2 
 : : :
 v

(�)
d with v

(�)
j 2 Vj:



DEFINITION: A rank-k-tensor is of the form

kX
�=1

v
(�)
1 
 v

(�)
2 
 : : :
 v

(�)
d with v

(�)
j 2 Vj: (*)

QUESTION: Given v 2 V, are there best rank-k-approximations (*) ?
How can they be computed?

REMARK: Tools like the singular-value decomposition do not exist for d � 3:

Non-existence of best-approximations and numerical instability possible.

A trust-region Newton method for determining the best rank-k-approximation

(after a regularisation) is described by Espig (Diss. 2008).



Example from the electronic Schr�odinger equation

Hartree-Fock equation F  b(y) = �b b(y) involves the Hartree potential

VH(x) = 2
N=2X
b=1

Z  �b(y) b(y)

jx� yj
dy =

Z
�(y)

jx� yj
dy; (1)

where �(y) = 2
PN=2
b=1  b(y) 

�
b(y) is the electron density.

Standard approach uses Gaussians g
(j)
k (yj) = (yj � A

(j)
k )`k e��k(yj�A

(j)
k )2 to

represent the orbital (wavefunction) by

 b(y) �
K X
k=1

g
(1)
k (y1) g

(2)
k (y2) g

(3)
k (y3): (2)

Here, K = tensor rank. We start with a representation (2) produced by the

MOLPRO program package using the MATROP program for matrix operations.

Eq. (2) yields �(y) =  �b(y) b(y) with K := K (K + 1)=2 terms.



Optimising the tensor representation reduces the tensor rank to a much smaller

rank � while almost keeping the same order of accuracy:

�(y) �
�X
k=1

%
(1)
k (y1) %

(2)
k (y2) %

(3)
k (y3); �� K:

The computational work for evaluating the Hartree potential (1) depends essen-

tially on the tensor rank.

EXAMPLE CH4: The MOLPRO program yields K = 1540; which can be re-

duced by our approach to � = 45: The computing time for evaluating VH for

the tensor representation with � = 45 is 8 hours, while the estimated time for

K = 1540 is 190 hours.

molecule initial rank Kof �(y) �nal rank � relative error error in energy (hartree)

CH4 1540 45 9.0�10�6 6.0�10�5
C2H2 2346 50 1.3�10�4 5.0�10�4
C2H6 4656 55 8.8�10�5 4.0�10�4

see Rao Chinnamsetty - Espig - Khoromskij - Hackbusch - Flad: J. Chem. Physics 127 (2007)

and Rao Chinnamsetty, Diss. 2008.



Kronecker-Tensor Products

Vj = RIj�Jj vector spaces of matrices. Then

V := V1 
 V2 
 : : :
 Vd
�= RI�J

with I := I1 � I2 � : : :� Id and J := J1 � J2 � : : :� Jd:

Notation for d = 2 : A
B =

264 A11B A12B : : :
A21B

. . .
...

375
REMARK: a) For d = 2 the approximation of a matrix M by a Kronecker-

rank-k expression
Pk
�=1A

(�) 
 B(�) is equivalent to a certain standard rank-k

approximation of a related matrix ~M:

b) For d � 3 the search for rank-k approximations is more involved.
If the matrix is the discretisation of a continuous operator with a kernel function

{(x;y); x;y 2 Rd; analytical methods may help (see next example).



Separable PDE in [0; 1]d, d large

Let 
 = (0; 1)d � Rd.
Equidistant grid: 
h = (h; 2h; : : : ; nh) with

(n+ 1)h = 1 (here n = 1024):

Separable PDE: L =
Pd
�=1 a�(xv)

@2

@x2v
, e.g., L = �:

Discretisation of �L by usual di�erence formula:

A = �Lh = �
dX

�=1

a�(xv)D
h
x�x� (Dh

x�x� : 2nd di�erence)

= A1 
 I 
 : : :
 I + I 
A2 
 : : :
 I + : : :+ I 
 I 
 : : :
Ad

Goal: Approximation of L�1h .

Numerical result (Grasedyck 2004):

For d = 2048, accuracy 10�5 to 10�6: 5 min computer time

Related dimension:

N = 10242048 = 1:24� 106165:



Underlying method

1=x can be approximated by exponential sums
Pk
�=1 !� exp(��x):

min
!�;��

max
x2[x0;x1]

����1x �Xk

�=1
!� exp(��x)

���� � O(e�ck); c > 0;

min
!�;��

max
x2[x0;1)

����1x �Xk

�=1
!� exp(��x)

���� � O(e�ck
1=2
); c > 0:

Let [x0; x1] or [x0;1) contain the spectrum of Lh: Then

L�1h �
Xk

�=1
!� exp(��Lh):

The special tensor structure

Lh =
dX

�=1

I 
 : : :
 I 
 Lh;� 
 I 
 : : :
 I

implies exp(��Lh) =
Nd
�=1 exp(��Lh;�):

Approximation of exp(��Lh;�) by H-matrices (see above). Finally:

L�1h �
Xk

�=1
!�

dO
�=1

expH(��Lh;�) (rank-k-tensor):



10 Final Remarks

� Concerning papers about the subject \hierarchical matrices" see

http://www.mis.mpg.de (! institute reports) or

http://www.mis.mpg.de/scicomp/hackbusch e.html

� For scienti�c purpose the software library HLib is freely available (ask for a
licence form)

� Every year we organise a winter school on this subject.

� For commercial applications: HLibPro (distributed via the Fraunhofer-Institute
SCAI in St.Augustin)


