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Abstract

A suitable Schrödinger problem is solved by exact diagonal-
ization (ED) and the result is compared to the one obtained
via the effective mass approximation (EMA). The problem
consists of an optical lattice embedded in a confining ex-
ternal potential (EP). By decreasing the EP width in the
present case from ≈7nm down to ≈1nm the EMA is found
to increasingly overestimate the ground state energy (GSE)
in the regime below ≈2nm. For EP widths well above ≈2nm
the EMA reproduces the GSE up to ≈1 meV.

1. Introduction

The progressive scaling of modern semiconductor devices
down to the nanometer regime requires a full quantumme-
chanical treatment (FQT) in order to be able to reliably pre-
dict interesting quantities such as currents or charge den-
sities. As the computational burden related to the FQT
drives the simulation time on a common workstation be-
yond reasonable limits some simplifications are required. A
widely used simplification in nowadays semiconductor de-
vice simulators [1] is given by the effective mass approxi-
mation (EMA) [2]. However, the EMA as any other approx-
imation is bound to some specific restrictions. The most
important condition requires that the variation of an exter-
nal perturbation is small compared to the lattice constant
of the underlying semiconductor material. Investigations on
the validity of the EMA in quantum transport calculations of
silicon quantum wires have been reported [4]. In this work
the groundstate properties of a confined optical lattice are
considered in order to study the limitations of the EMA.

2. The Model

An optical lattice in three dimensions is given by the expres-
sion

V (~r) = V0

3∑

i=1

sin2
(πxi

a

)
, (1)

where V0 denotes the amplitude and a the periodicity. The
simulation box is delimited by Ω ≡ [−Na/2, Na/2]3 and the
external potential (EP) reads

Ũ(~r) = U0 (1 − χb(~r)) , (2)

where χb is unity on [−Nb/2, Nb/2]3 and zero elsewhere.
The length d ≡

√
3Nb is referred to as the EP width. In

order to obtain a smooth confinement the potential Ũ from
Eq. (2) undergoes a convolution with a Gaussian mollifier

U(~r) ≡ 1

|Ω|

∫

Ω
Ũ(~r′)Fǫ(~r − ~r′)d~r′ (3)

Fǫ(~r) ≡
∑

~v∈Λ(Ω)

|Ω|
(2π)3/2ǫ3

exp

[
−1

2

(~r − ~v)2

ǫ2

]
, (4)

where Λ(Ω) ≡ {Na~n|~n ∈ Z
3}. In the following

{N = 15, a = 10aB, ǫ = 0.2aB, U0 = 4.1eV, V0 = 0.5eV } (5)

with aB = 0.052nm. The V (~r) as well as the U(~r) are il-
lustrated in Fig. 1. The stationary Schrödinger equation is
given by

ĤΨ = EΨ (6)

with Hamilton operators Ĥ for the two different approaches

Ĥ
ED ≡ − ~

2

2me
∆ + V (~r) + U(~r) (7)

Ĥ
EMA ≡ − ~

2

2me

~∇M~∇T + U(~r) + E0, (8)

where ~ is Planck’s constant and me the free electron
mass. The effective mass tensor M from Eq. (8) is given
by the unit matrix divided by m0 = 1.006 and the edge is
E0 = 0.79eV. The derivation of the EMA Hamiltonian Ĥ

EMA

from the full operator Ĥ
ED is explained in detail in Ref. [2].

For a given external perturbation U(~r) the Schrödinger
equation is solved by ED and via the EMA simultaneously
and the resulting groundstate energies (GSE) as well as
wavefunctions are compared to each other. The difference
of the wavefunctions is computed by means of the L2 norm.
Note that the wavefunctions resulting from Eq. (6) are nor-
malized to unity on the simulation domain Ω according to

1
!
=

∫

Ω
|Ψ|2d~r. (9)

3. Solution

The Schrödinger equations resulting from the two Hamilton
operators given in Eqs. (7) and (8) are solved by expanding
the wavefunction Ψ(~r) in terms of planewaves

Ψ(~r) =
∑

~G∈Γ(Ω)

c(~G) exp(i ~G~r), (10)

where Γ(Ω) ≡ {2π~n/(Na)|~n ∈ Z
3}. After inserting the

ansatz from Eq. (10) in the problem given in Eq. (6) and in-
tegrating on both sides with (1/|Ω|)

∫
Ω exp(−i ~G′~r) . . . d~r the

Hamilton operator becomes a Matrix

H(~G′, ~G) =
1

|Ω|

∫

Ω
exp(−i ~G′~r)Ĥ exp(i ~G~r)d~r. (11)

For numerical purposes a reduced set of planewaves

Γ̃(Ω) ≡ {2π(n1, n2, n3)/(Na)|n1 = −M, . . . ,M i = 1, 2, 3}
(12)

is used. The resulting matrices are diagonalized on a
Cray XT3 machine by means of the ScaLAPACK routine
PDSYEVX as well as via an alternative diagonalization al-
gorithm (RMDIIS [3]) being suitable for the plavewave ex-
pansion given in Eq. (10). Figure 2 illustrates the scaling
behavior of both diagonalization methods as well as the
time for the matrix assembly. The PDSYEVX routine shows
a better scaling behavior compared to the RMDIIS method
which on the other hand is found to be notably faster than
the PDSYEVX routine.
The convergence properties of the groundstate energy
(GSE) as well as the wave function differences depending
on the size of Γ̃(Ω) are shown in Fig. 3. Two limiting cases of
a strong (b = 1aB) and a weak (b = 9aB) confinement are il-
lustrated. In both cases the EMA GSE is found to converge
faster than the ED GSE, where the convergence criterion
is set to 1meV . Note that for the strong confinement case
up to 103823 planewaves, i.e. M = 23, are required for the
wavefunction difference to converge. In the latter case the
convergence criterion is set to ≈ 5% of relative error. How-
ever, the investiagation of the EMA limitations in this work
is focused on the GSE.
In the following the RMDIIS is the method of choice and
M = 23. Furthermore a fix amount of 128 computing nodes
is used because of memory purposes.

4. Results and Discussion

The EP width d =
√

3Nb is ramped from b = 9aB down to
b = 1aB and the resulting GSEs are plotted in Fig 4. Except
of the region below ≈ 2nm the EMA is found to reproduce
the ED GSEs satisfactorily well. The wavefunction differ-
ence in the case of the weakest and the strongest confine-
ment differs by almost a factor of ten. As the effective mass
m0 = 1.006 is close to unity the amplitude V0 is rather small
compared to reality. This can possibly explain why the suit-
ability range of the EMA in this work is larger than the one
obtained in Ref. [4].
The procedure presented in this work is not bound to a spe-
cific case such as the optical lattice and can be easily mod-
ified in order to perform similar investigations in more re-
alistic environments such as pseudopotentials subjected to
external perturbations.
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Figure 1: V (~r) and U(~r) from Eqs. (1) and (3) for the pa-
rameters given in Eq. (5). Plotted is a cut along the space
diagonal of Ω. The inset shows a schematic representation
of the optical lattice in three dimensions.
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Figure 2: Scaling properties of the diagonalization and as-
sembly time. For this specific problem the RMDIIS method
is significantly faster than the PDSYEVX routine. For the
comparison the matrix size is set to 297912, i.e. M = 15.
Note the affiliation to the corresponding ordinates.
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Figure 3: Plotted are groundstate energies and wavefunc-
tion differences (WFD) as a function of the plavewave set
Γ̃(Ω) from Eq. (12). The solid vertical line and the dashed
one indicate the convergence up to a meV for the GSE in
the ED and EMA case respectively.
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Figure 4: GSE as a function of the EP width d =
√

3Nb.
Below ≈ 2nm the discrepancy between the EMA and the
ED results reaches some tenths of an eV. The dashed line
shows the edge E0 = 0.79eV from Eq. (8). The differ-
ence between the wavefunctions for the two limiting cases
b = 9aB and b = 1aB can be found in Fig. 3.
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