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Abstract

DOMAIN Decomposition Methods (DDM) were first in-
troduced by Schwarz in 1869 for proving the Dirich-

let Principle. After a century of latency, Lions revived
Schwarz’s theory with very innovative convergence proofs,
and Dryja and Widlund studied Schwarz methods in a dis-
crete setting for parallel computing purposes. Later, opti-
mized Schwarz methods were introduced, based on an op-
timization of the communication between the subdomains.
These methods are of interest because of their fast conver-
gence rates.
This poster provides a short introduction to DDM, followed
by a discussion of Optimized DDMs with Robin transmis-
sion conditions applied to the one-dimensional heat equa-
tion. The efficiency of the Robin transmission conditions will
be emphasized. We present existing results for these algo-
rithms, and a very recent performance analysis for short
time intervals.

1. Overlapping Schwarz methods

T O introduce Overlapping Schwarz Methods we take the
example introduced by Schwarz himself in 1869.
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The domain Ω is divided into two subdomains Ω1 and Ω2 as
shown in the figure. Then the Schwarz method is defined
for the heat equation,

∂tu = ∆u on Ω× (0, T ),

as an iterative system:
∂tu

n
1 (x, t) = ∆un

1 (x, t) on Ω1 × (0, T ),
B1u

n
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un
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n
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where B1 and B2 are pseudo differential operators. We will
be interested in the analysis of the following transmission
conditions:

•Dirichlet: B1 and B2 are the identity.
•Robin: B1 = ∂n + p and B2 = ∂n + p with p real positive

and ∂n the unit outward normal derivative.

Remark 1. The derivative adds essential information that is
communicated to the neighboring subdomains. Fewer it-
erations are then needed to obtain the same precision as
illustrated in the next figure.

Figure 1: Comparing Dirichlet with Robin

Remark 2. The algorithm described here, applied to many
subdomains, is naturally parallel.
We will simplify the problem and apply the Domain Decom-
position Method to the one dimensional heat equation over
R:

Ω = R
L
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Figure 2: The decomposition of R in two subdomains

2. Effect of time on convergence

IN 2001 Gander and Zhao (see [1]) were working on
domain decomposition methods for the n-dimensional

heat equation using Dirichlet transmission conditions. They
analyzed the error and showed that the convergence is lin-
ear for a large time interval and superlinear for a small time
interval. The theoretical results they proofed are the follow-
ing.

For the n-dimensional heat equation with Dirichlet
transmission conditions, the error satisfies:
• on an infinite time interval:

max
j
‖ek(m+2)

j ‖∞ ≤ (γ(m, L))k max
j
‖e0

j‖∞,

with en
j := u−un

j the error of the heat equation for subdo-
main j at iteration n and γ ≤ 1.

• on a short time interval:
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2
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)
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The next plot illustrates these results. The upper curve has
a time interval of length T = 2 and the lower one has an
interval of length T = 0.1.

Figure 3: Linear/superlinear convergence with T=2/0.1

Questions:
1. Can we find an analytic error estimate for

Robin transmission conditions?
2. Has time the same influence when using

Robin transmission conditions?
3. How can we make use of the short time be-

haviour to improve the method?
4. Can we find the optimal parameter p for this

problem?

3. Error estimates for Robin transmission conditions

W E answer the first question in the restricted context of
R. The error estimate of this problem is obtained us-

ing the Laplace transform. Once in the frequency domain,
the error equation has a solution of the form

ên
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√
s
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)2n

ê0
i (Γj, s), i 6= j, (1)

where s is the frequency variable and ê0
i the Laplace trans-

form of the initial guess.

Proposition 1. The DDM with Robin conditions applied to
the unbounded domain R subdivided into two subdomains
as illustrated in figure 2 has an error over the interface given
by
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Proof. The proof consists of a judiciously chosen transfor-
mation of (1) which permits the calculation of the inverse
Laplace transform using differential equations.

The special case without overlap, i.e. L = 0, leads to a
simpler expression. If we define the function

f (τ ) :=
1√
πτ

− eτ 2
erfc(τ ),

then we get the error estimate
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where the coefficients of the sum are given by

C(k, n) =

(
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)
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(k − 1)!(2n− k)
.

This result aims to answer the questions introduced in the
next section.

4. Robin and short times

W E study the behaviour of the method with Robin trans-
mission conditions applied to a short time interval.

Numerical computations lead to the following error plot for
a final time of T = 0.01 and an overlap of four mesh points.

Figure 4: Complexity of a short time situation

This figure illustrates all the interesting behaviours of the
method we are working on:

• Find the solution of the min-max problem:

min
p

( max
t∈(0,T )

(||en
i (Γj, t)||)),

• Predetermine the parameters n and p for a choosen
tolerance,

• Explain the cusps of the curves around the optimal p.
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