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‘ 1. Introduction |

ADE publicly available at http://sfepy.kme.zcu.

cz under the BSD open-source license, SfePy is a
general finite element analysis software. The latest sources
can be obtained at the developer's pages currently at
http://code.google.com/p/sfepy/, containing also
mailing lists and the issue (bug) tracker. We encourage and
support everyone who joins! Current applications include

e homogenization of porous media (parallel flows in a de-
formable porous medium),

e acoustic band gaps (homogenization of a strongly het-
erogenous elastic structure: phononic materials),

e shape optimization in incompressible flow problems.

‘ 2. Appetizer I: shape optimization of channels |

HE incompressible flow problem is defined in an open
bounded domain © ¢ R? with two (possibly overlapping)
subdomains defined as

QZQDUQC with T'c=00p NoQ¢, (1)

where ()~ is the control domain and )p Is the design do-
main, see Fig. 1. The shape of 2y is modified exclusively
through the design boundary, I'p C 9Qp \ I'ip—out Where
lin—out € 0€2 is the union of the “inlet-outlet” boundary of
the channel; in general I';,_,;t consists of two disjoint parts,
Fin—out — Fin U Loyt

e Tp

Figure 1: The decomposition of domain ), control domain
() at the outlet sector of the channel.

We wish to enhance flow uniformity by reducing the gra-
dients of flow velocities u in Q. Our objective is thus to
minimize

1%
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by moving the design boundary I'p. The design changes
are performed by means of the free-form deformation
(FFD), cf. [4]. Example results can be seen in Fig. 2.
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Figure 2: Left: initial, right: final shapes of a tube. Flow
and domain control boxes; ()~ between two grey planes.

~or more information, see [2] or [9].

3. Which language? |

ITH the advent of very high level dynamic, or scripting,

programming languages new possibilities of code de-
velopment emerged, accelerated by easily available com-
puting power we have at our hands presently. Nowadays
a very popular way of application development relies upon
expressing the logic of a code in a high-level scripting lan-
guage while, following a careful profiling, the real bottle-
necks are implemented in a traditional language like for-
tran, C, or C++. The scripting language then serves as a
glue, providing high-level interface to both (numerical) for-
tran legacy codes and newer libraries. The language of our
choice is Python (http://python.org) — a remarkably
powerful dynamic programming language that is used in a
wide variety of application domains.

Y mixing programming languages we get best of both
worlds: the speed of C in relevant parts of the code,
and the flexibility, power and maintainability of Python.

e low level code (C or fortran): element matrix evaluations,
costly mesh-related functions, ...

¢ high level code (Python): logic of the code, particular ap-
plications, configuration files, problem description files

We conclude this section with

SfePy = Python + C (+ fortran)

‘ 4. Dependencies |

O install and use SfePy, several other packages or li-
braries are needed:

e NumPy and SciPy: free (BSD license) collection of nu-
merical computing libraries for Python

—enables Matlab-like array/matrix manipulations and in-
dexing
e other: UMFPACK, Pyparsing, Matplotlib, Pytables (+
HDF5), swig

e visualization of results: ParaView, Mayavi2, or any other
VTK-capable viewer

5. Appetizer lI: homogenization of porous media

O tackle strong heterogeneities we use a multiscale ap-
proach based on the theory of homogenization, cf. [3].

In Fig. [3 (left) a periodic microstructure with a matrix and
two systems of highly permeable channels (—strong het-
erogeneity in permeability) is shown (3 x 3 x 3 repetition of
the reference volume element). Our model of parallel flows
iIn a deformable porous medium is defined in terms of dis-
placements v and two pressures pi, po In each channel on
the macroscale, and by so-called corrector shape functions
(displacement- and pressure-like) on the microscale, see
Fig. 3 (middle, right).

Figure 3: Microstructure (left), example correctors (middle,

right), color = pressure.

The homogenized constitutive coefficients (elasticity, fad-
iIng memory effects, Biot-like coefficients, permeability, etc.)
computed for such a microstructure are then used within
the macroscopic homogenized model, see Fig. 4.
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Figure 4: Macroscale solution for two time steps: displace-
ments 10x magnified, color = pressures pi, py, arrows =
diffusion velocities wy, wo (5000x magnified).

Finally let us show corrector shape functions of an ideal-
ized 2D microstructure of an osteon in Fig. |9, a structure
quasi-periodically repeating in bones.
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Figure 5: Correctors for an osteon microstructure (color =
pressure, arrows = displacements).

‘ 6. Describing problems to solve |

N order to solve PDEs, these must be translated to a form
that SfePy can deal with. Fortunately, this form is similar

to a “paper” version of the problem. The problem descrip-
tion file is a regular Python module, I.e. all Python syntax
and power is accessible, and consists of entities defining:

o fields of various FE approximations, variables,

e equations in the weak form, quadratures,

e boundary conditions (Dirichlet, periodic, “rigid body”),
e FE mesh file name, options, solvers, ...

Let us illustrate this using a trivial example: the Laplace
equation

cAu=0in€, w=wuonl. (3)
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QUATIONS in SfePy are built using terms, which corre-

spond directly to the integral forms of weak formulation
of a problem to be solved. The weak formulation of (3) is:
Find v € V, such that

/cVu:Vv—O, Yo e V. (4)
()

In SfePy input files, this can be written as
dw_laplace.il.Omega( c, v, u ) = 0, (95

which directly corresponds to the discrete version of (4):
Find u € V},, such that

vl ( / cGTGu=0, YveV,, (6)
£y,

where Vu =~ Gu. The integral over the discrete domain €,
IS approximated by a numerical quadrature, that is named
i1 In our case.

‘ 7. Appetizer lll: acoustic band gaps |

C oustic band gaps appear in strongly heterogeneous

media composed of a matrix (mtx) and a periodic pat-
tern of inclusions (inc). The strong heterogeneities in the
elasticity can lead to negative eigenvalues of an effective
mass tensor A* for certain frequency ranges, resulting ei-
ther in a strong band gap (no waves at all) or a weak
band gap (waves in a particular direction only). The effec-
tive mass tensor A* = Y ;A% (w) + r*, % = [[ o+
fmtx rm(y), 7; 1S the inclusion density, r,, the matrix density,
has the following form:

2
o L
a5 = [ rieh [ mied, %
1nc I1NnC

where w is the frequency and {¢’, M} ;> are the eigenele-
ments associated to the elasticity operator in the inclusion
domain, see [1].

Example results for the spherical inclusion are in Fig. |6 and
and for the elliptical inclusion in Fig. [7.
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Figure 6: Displacement eigenvectors of elasticity operator.
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Figure 7: Example band gaps (yellow = strong, white =
weak), the largest (solid) and smallest (dashed) eigenval-

ues of A* and resonance frequencies v \J (vertical lines).
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