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306 14 Plzeň, Czech Republic

cimrman3@ntc.zcu.cz, rohan@kme.zcu.cz, lukes@kme.zcu.cz

1. Introduction

MADE publicly available at http://sfepy.kme.zcu.
cz under the BSD open-source license, SfePy is a

general finite element analysis software. The latest sources
can be obtained at the developer’s pages currently at
http://code.google.com/p/sfepy/, containing also
mailing lists and the issue (bug) tracker. We encourage and
support everyone who joins! Current applications include
• homogenization of porous media (parallel flows in a de-

formable porous medium),
• acoustic band gaps (homogenization of a strongly het-

erogenous elastic structure: phononic materials),
• shape optimization in incompressible flow problems.

2. Appetizer I: shape optimization of channels

THE incompressible flow problem is defined in an open
bounded domain Ω ⊂ IR3 with two (possibly overlapping)

subdomains defined as

Ω = ΩD ∪ ΩC with ΓC = ∂ΩD ∩ ∂ΩC , (1)

where ΩC is the control domain and ΩD is the design do-
main, see Fig. 1. The shape of ΩD is modified exclusively
through the design boundary, ΓD ⊂ ∂ΩD \ Γin−out where
Γin−out ⊂ ∂Ω is the union of the “inlet-outlet” boundary of
the channel; in general Γin−out consists of two disjoint parts,
Γin−out = Γin ∪ Γout.
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Figure 1: The decomposition of domain Ω, control domain
ΩC at the outlet sector of the channel.
We wish to enhance flow uniformity by reducing the gra-
dients of flow velocities u in ΩC. Our objective is thus to
minimize

Ψ(u) =
ν

2

∫
ΩC

|∇u|2 (2)

by moving the design boundary ΓD. The design changes
are performed by means of the free-form deformation
(FFD), cf. [4]. Example results can be seen in Fig. 2.

Figure 2: Left: initial, right: final shapes of a tube. Flow
and domain control boxes; ΩC between two grey planes.
For more information, see [2] or [5].

3. Which language?

WITH the advent of very high level dynamic, or scripting,
programming languages new possibilities of code de-

velopment emerged, accelerated by easily available com-
puting power we have at our hands presently. Nowadays
a very popular way of application development relies upon
expressing the logic of a code in a high-level scripting lan-
guage while, following a careful profiling, the real bottle-
necks are implemented in a traditional language like for-
tran, C, or C++. The scripting language then serves as a
glue, providing high-level interface to both (numerical) for-
tran legacy codes and newer libraries. The language of our
choice is Python (http://python.org) — a remarkably
powerful dynamic programming language that is used in a
wide variety of application domains.

BY mixing programming languages we get best of both
worlds: the speed of C in relevant parts of the code,

and the flexibility, power and maintainability of Python.
• low level code (C or fortran): element matrix evaluations,

costly mesh-related functions, . . .
• high level code (Python): logic of the code, particular ap-

plications, configuration files, problem description files
We conclude this section with

SfePy = Python + C (+ fortran)

4. Dependencies

TO install and use SfePy, several other packages or li-
braries are needed:

•NumPy and SciPy: free (BSD license) collection of nu-
merical computing libraries for Python
– enables Matlab-like array/matrix manipulations and in-

dexing
• other: UMFPACK, Pyparsing, Matplotlib, Pytables (+

HDF5), swig
• visualization of results: ParaView, Mayavi2, or any other

VTK-capable viewer

5. Appetizer II: homogenization of porous media

TO tackle strong heterogeneities we use a multiscale ap-
proach based on the theory of homogenization, cf. [3].

In Fig. 3 (left) a periodic microstructure with a matrix and
two systems of highly permeable channels (→strong het-
erogeneity in permeability) is shown (3× 3× 3 repetition of
the reference volume element). Our model of parallel flows
in a deformable porous medium is defined in terms of dis-
placements u and two pressures p1, p2 in each channel on
the macroscale, and by so-called corrector shape functions
(displacement- and pressure-like) on the microscale, see
Fig. 3 (middle, right).

Figure 3: Microstructure (left), example correctors (middle,
right), color = pressure.
The homogenized constitutive coefficients (elasticity, fad-
ing memory effects, Biot-like coefficients, permeability, etc.)
computed for such a microstructure are then used within
the macroscopic homogenized model, see Fig. 4.

t = 60 s: p1, w1 t = 80 s: p1, w1

t = 60 s: p2, w2 t = 80 s: p2, w2

Figure 4: Macroscale solution for two time steps: displace-
ments 10× magnified, color = pressures p1, p2, arrows =
diffusion velocities w1, w2 (5000× magnified).
Finally let us show corrector shape functions of an ideal-
ized 2D microstructure of an osteon in Fig. 5, a structure
quasi-periodically repeating in bones.

Figure 5: Correctors for an osteon microstructure (color =
pressure, arrows = displacements).

6. Describing problems to solve

IN order to solve PDEs, these must be translated to a form
that SfePy can deal with. Fortunately, this form is similar

to a “paper” version of the problem. The problem descrip-
tion file is a regular Python module, i.e. all Python syntax
and power is accessible, and consists of entities defining:
• fields of various FE approximations, variables,
• equations in the weak form, quadratures,
• boundary conditions (Dirichlet, periodic, “rigid body”),
• FE mesh file name, options, solvers, . . .

Let us illustrate this using a trivial example: the Laplace
equation

c∆u = 0 in Ω, u = ū on Γ . (3)

EQUATIONS in SfePy are built using terms, which corre-
spond directly to the integral forms of weak formulation

of a problem to be solved. The weak formulation of (3) is:
Find u ∈ V , such that∫

Ω
c ∇u : ∇v = 0, ∀v ∈ V0 . (4)

In SfePy input files, this can be written as

dw_laplace.i1.Omega( c, v, u ) = 0 , (5)

which directly corresponds to the discrete version of (4):
Find u ∈ Vh, such that

vT (

∫
Ωh

c GTG)u = 0, ∀v ∈ Vh0 , (6)

where ∇u ≈ Gu. The integral over the discrete domain Ωh
is approximated by a numerical quadrature, that is named
i1 in our case.

7. Appetizer III: acoustic band gaps

AC oustic band gaps appear in strongly heterogeneous
media composed of a matrix (mtx) and a periodic pat-

tern of inclusions (inc). The strong heterogeneities in the
elasticity can lead to negative eigenvalues of an effective
mass tensor A∗ for certain frequency ranges, resulting ei-
ther in a strong band gap (no waves at all) or a weak
band gap (waves in a particular direction only). The effec-
tive mass tensor A∗ =

∑
j∈J A∗,j(ω) + r∗I, r∗ =

∫
inc ri +∫

mtx rm(y), ri is the inclusion density, rm the matrix density,
has the following form:

A
∗,j
pq =

−ω2

ω2 − λ2

∫
inc

riϕ
j
p

∫
inc

riϕ
j
q , (7)

where ω is the frequency and {ϕj, λj}j≥1 are the eigenele-
ments associated to the elasticity operator in the inclusion
domain, see [1].
Example results for the spherical inclusion are in Fig. 6 and
and for the elliptical inclusion in Fig. 7.
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Figure 6: Displacement eigenvectors of elasticity operator.

Figure 7: Example band gaps (yellow = strong, white =
weak), the largest (solid) and smallest (dashed) eigenval-
ues of A∗ and resonance frequencies

√
λj (vertical lines).
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