Numerical solution of the incompressible Navier-Stokes
equations with the immersed-boundary technique

Giuseppe Bonfigli and Patrick Jenny, Institute of fluid Dynamics, ETH-Zurich, CH-8092 Zurich
bonfigli@ifd.mavt.ethz.ch jenny@ifd.mavt.ethz.ch

Basic idea

The generation of body fitted grids for finite-
volume computations is typically the most
time-consuming task in the work-flow of
industrial CFD applications. Frequently
involved geometries are so complex that
high quality grids are not affordable and
computations are carried out considering
grids with degenerated cells, thus affecting
the quality of the results and undermining
the stability of the numerical procedure.

Complex unstructured grid around an airplane wing.

The immersed-boundary approach removes
these difficulties by considering non-fitted
orthogonal meshes. In particular, we
consider a finite-difference discretization,
and impose no-slip boundary conditions at
solid walls exactly by modifying difference
stencils intersecting the boundary. This is
achieved in a fully automatic manner. The
only geometrical information required is the
distance  between grid nodes and

intersection points of the grid lines with the
boundary. Normal direction, curvature, and
higher differential properties of the boundary
surface need not be known to achieve high
order accuracy.
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Body-fitted (lef\t) and immersed grid (right).
Governing equations

The numerical procedure is based on a
primitive-variable ~ formulation  of  the
incompressible Navier-Stokes equations on
staggered grids (Harlow & Welch, 1965).
Second or fourth order finite-differences are
considered for spatial discretization. The
third-order Adams-Bashforth scheme or the
standard fourth-order Runge-Kutta scheme
are used for time integration.

Dirichlet boundary conditions are imposed
on all velocity components and the pressure
is computed from a Poisson equation
equivalent to the continuity equation:

V-(kV p)=R(u). (1)

Boundary conditions on p are indirectly
derived from the constraints on the velocity,
which are taken into account when
computing the right hand side of (1).

Solution of the pressure equation

Equation (1) is solved iteratively combining a
fix-point iteration with the MSFV-procedure
(insert) used as pre-conditioner. Immersed
solid bodies are represented by zero-
permeability regions (k=0).
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Permeability distribution for the computation of the
flow around a cylinder.

Boundary conditions on the velocity are
considered by means of ghost velocity
nodes, where velocity components are
estimated by extrapolation, considering
prescribed values at the boundary and
values from neighbouring nodes lying inside
the flow region.

Available values
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Ghost node
Control volume
for continuity eq.

Interpolation to ghost node (left) and flux evaluation at cell
boundaries as considered in the MSFV-procedure (right).

Values at ghost nodes depend on the
unknown solution for the pressure and have
to be recomputed at every iteration step.

Validation of the procedure

Results are presented for two test cases. In
the first set of computations a steady
solution is prescribed for Re=1 by
introducing an appropriate volume force.
Second order convergence with respect to
the spatial discretization is verified by
comparing numerical and exact solutions. In
the second test case the flow around a
cylinder at Re=100 is computed. An
unsteady  self-sustained  Karman-street
develops as expected after initial triggering.
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Solution (top) and convergence behaviour with respect to
spatial discretization (bottom) for the volume-force case.
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Vorticity iso-coturs for the flow around a cylinder at
Re=100 (snap-shot at two different time steps).

The MSFV-technique

V-(kV p)

The multi-scale-finite-volume technique (MSFV, Jenny et al., 2003) has been developed to
solve large linear systems resulting from the finite-volume discretization of the elliptic
problems with strongly non-homogeneous coefficients:

k=k(x,y).

The procedure has some analogies with the multi-grid approach, but prolongation and
restriction are based on numerically computed basis functions. This allows for large
upscaling factors (5 to 20 fine cells per coarse cell) keeping account of spatial changes in
the permeability k with sufficient accuracy also on the coarse grid.
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basis functions (right).

Fluxes induced by a basis function in the case of discontinuous permeability (left). Permeability distribution for a test
case (center) and corresponding convergence rates for the MSFV procedure considering different definitions of the

The coarse grid solution is determined by imposing flux balance over a set of properly
chosen control volumes (coarse cells, red lines in the figures). This ensures global
coupling over the whole integration domain. On the other hand, fine-scale convergence is
enforced by localized relaxation on the fine grid (line relaxation or domain decomposition).
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