
Development and Analysis of an Algorithm for
the Linear Transport Equation

Abhigyan Ghosh

November 14, 2013

1

This work is dedicated to my mentor R. Massjung, without whose help I would
not have been able to write this paper.

Abhigyan Ghosh 3

Abstract
In my Extended Essay I will deal with a particular partial differential

equation called the linear transport equation. This differential equation is
very important in modeling the behavior of fluids using computer simula-
tions. The exact solution of the differential equation is often not possible
to calculate and thus an approximation has to be made by an algorithm.
My Extended Essay will deal with the question: How does such an algo-
rithm work, what are the requirements for such an algorithm and to what
extent can I improve the algorithm. My scope will be the analysis of two
algorithms, one using piecewise constant functions as an approximation
and the other one using piecewise linear functions, whereupon I will try
to develop an improved version of the algorithm. My algorithm will make
use of piecewise quadratic functions, while keeping the additional require-
ments of such an algorithm in mind. After writing the algorithm I will
compare the three different algorithms. I will show that the algorithm
using piecewise linear functions is significantly better than the one us-
ing piecewise constant functions. My algorithm using piecewise quadratic
functions works just as well as the one using piecewise linear functions.
That means that I succeeded in developing an algorithm using piecewise
quadratic functions while considering the additional requirements, but the
algorithm has not augmented the quality of the results.

Abhigyan Ghosh 4

Contents
1 Introduction 5

2 The linear transport equation 6
2.1 Derivation of the linear transport equation 6
2.2 Description of algorithms for the partial differential equation . . 7

3 Different algorithms 10
3.1 Staggered Lax-Friedrich’s method 10
3.2 Nessyahu-Tadmor method . 14

4 Development of an algorithm 18
4.1 Comparison of the algorithms . 18
4.2 Creating an own algorithm . 18

4.2.1 Reconstruction of function in x-axis 18
4.2.2 Limitation of the total variation in the x-axis 19
4.2.3 Reconstruction of function in t-axis 21
4.2.4 Calculation of the integral form 21
4.2.5 Limitation of time step and proof of TVD 22

5 Comparison of the three algorithms 23

6 Conclusion 25

Appendix 26

A Calculations 26
A.1 Differentiating the Integral Form to obtain the Differential Form 26
A.2 The proof of Nessyahu-Tadmor method being total variation di-

minishing . 27
A.3 Reconstruction of quadratic function in x-axis 29
A.4 Reconsidering the integral . 30
A.5 Calculation of the lambda values 31
A.6 Calculation of slopes in t-direction 34
A.7 Calculation of the integral form 35
A.8 Proof of TVD . 37

B Used Theorems 44

C Source code 45

D Lecture notes 50

Abhigyan Ghosh 5

1 Introduction
My Extended Essay will deal with the linear transport equation which is a par-
tial differential equation describing the transport and preservation of a quantity
such as fluids. Computational methods are used to simulate such fluid flows.
In my essay I will look at two algorithms for the simulation. My question is:
How does such an algorithm work, what are the requirements for such an al-
gorithm and to what extent can I improve the algorithm. The improvement of
algorithms saves resources, which is why it is of great significance.

Throughout this essay I will mainly be relying on the works of Randall J.
LeVeque [1], Nessyahu-Tadmor [3] and Ralf Massjung [2] (see Appendix D).

Due to the nature of my subject I expect my reader to have a knowledge of
integration and differentiation.

Abhigyan Ghosh 6

2 The linear transport equation
2.1 Derivation of the linear transport equation
The linear transport equation is the following time-based partial differential
equation

∂u

∂t
+ a · ∂u

∂x
= 0 (1)

where u is a function of x and time t. In this section we will see how this
equation is derived. Usually partial differential equations (PDE) are gained
from physical phenomena, so I will demonstrate the PDE with the aid of a
physical example. Imagine a cylindrical glass tube filled with gas. The value
of x ∈ [x1, x2] describes a certain position in the tube, with x1 and x2 being
the endpoints of the tube. If we look at a time t0, then the function ρ(x, t0)
describes the density of the gas at a certain position x. We get the mass of the
gas in the tube by integrating.

m =
∫ x2

x1

ρ(x, t0)dx (2)

The amount of gas in the tube can only change if a certain amount goes out of
the tube or a certain amount comes in through the endpoints. For this example
I will say that a constant amount of gas comes into the tube at x1 with the
velocity v1 and leaves the tube at x2 with the velocity v2. Starting from the
time t0 if we want to find out how much more gas there is in the tube at time t1,
we have to integrate at x1 and x2 and consider the difference. Note that even
though the incoming or outgoing gas has a constant velocity, the density of it
might not be constant, which is why we have to consider the density function
ρ(x, t) when integrating.

change in mass from time t0 to t1 =
∫ t1

t0

v1 · ρ(x1, t)dt︸ ︷︷ ︸
gas coming in at x1

−
∫ t1

t0

v2 · ρ(x2, t)dt︸ ︷︷ ︸
gas going out at x2

(3)
If we want to know how much mass there is at time t1 we can add the change
in mass during the time period to the original amount of gas in the tube. This
gives us an equation involving only integrals called the integral form.∫ x2

x1

ρ(x, t1)dx︸ ︷︷ ︸
mass at time t1

=
∫ x2

x1

ρ(x, t0)dx︸ ︷︷ ︸
mass at time t0

+
∫ t1

t0

v1 · ρ(x1, t)dt−
∫ t1

t0

v2 · ρ(x2, t)dt︸ ︷︷ ︸
change in mass from time t0 to t1

(4)

In this example I set the velocity to be constant. But this might not always be
the case. Generally the velocity can be described as a function of the density,
thus we can rewrite v · ρ = v(ρ) · ρ = f(ρ). The integral form becomes∫ x2

x1

ρ(x, t1)dx =
∫ x2

x1

ρ(x, t0)dx+
∫ t1

t0

f(ρ(x1, t))dt−
∫ t1

t0

f(ρ(x2, t))dt. (5)

Abhigyan Ghosh 7

If we look at any interval I ⊂ [x1, x2], we can assert that the integral form holds
for that interval too, since the mass at t1 is the mass at t0 plus the change in
mass during the time period. Similarly we can extend our glass tube definition,
and say that if the glass tube is in R, then for any interval I ⊂ R the integral
form holds. This equation is of fundamental importance, since it preserves
the given quantity, in this case the mass. This means that the mass in R
stays constant.

Since the integral form does not give us enough information, we can dif-
ferentiate it to get the following differential equation (see Appendix A.1 for
calculations).

∂ρ

∂t
+ ∂

∂x
f(ρ) = 0 (6)

This form is called the differential form. This equation is very useful, since
for every point (x, t) one can calculate the derivative in t-direction if one has
the derivative in x−direction.

From this point on I will use a simpler notation for partial derivatives, namely
∂ρ
∂t = ρt. Thus the differential form can be rewritten as

ρt + f(ρ)x = 0 (7)

The linear transport equation is a special case of this partial differential equa-
tion, namely when f(ρ) = a · ρ. Beginning from the next section I will use the
function u instead of ρ. Rewriting the integral form and generalizing it for any
interval [xi, xi+1] and time tn yields∫ xi+1

xi

u(x, tn)dx =
∫ xi+1

xi

u(x, tn)dx+
∫ tn+1

tn

a·u(xi, t)dt−
∫ tn+1

tn

a·u(xi+1, t)dt.

(8)
For futher reading refer to LeVeque [1].

2.2 Description of algorithms for the partial differential
equation

Now that we know the equation, we will look at the problem. If we get a starting
state u(x, t0) and a function f(u) which describes the velocity of each point in
the x-axis, how will the function u develop?
Since it is often not possible to calculate the exact solution of this problem,
an algorithm is used to approximate the solution. For that we first divide the
x-axis with the function u(x, t0) into several segments or cells Ωi, all having
the width ∆x. Then we calculate the intermediate values ui of this segments,
so that ui · ∆x =

∫
Ωi
u(x, t0)dx (see Figure 1). It is easier to calculate with

these ui-values than with the function as a whole. In the algorithm we have to
compute how these ui-values develop. For that we set a time step ∆t and look
how the values in a cell Ωi have progressed during that time.

Note that this means that the ui-values will change over time and thus re-
quire an index of time. For simplicity this index will be omitted and ui will

Abhigyan Ghosh 8

(a) Original function u(x, t0) (b) Intermediate values ui

Figure 1: Distribution of ui-values

signify the value at the current time step. Where it is important to distinguish
I will write uni to be the intermediate value of u on the cell Ωi at time tn.

For my essay I will use the simple function f(u) = a · u. The benefit of the
function becomes evident once we think about its implications. Any value ui
will be transported with the velocity a to the right. This means that the func-
tion u(x, t0) as a whole will be shifted to the right as the time progresses. If we
define the starting state as u(x, t0) = u0(x), the solution of the PDE would be
u(x, t) = u0(x− at). We can easily verify this by putting this function into the
differential form. By using the chain rule we get

∂

∂t
u0(x− at) + a

∂

∂x
u0(x− at)

= u′0(x− at) · (−a) + a · u′0(x− at) · 1
= (−a+ a) · u′0(x− at)
= 0. (9)

Thus the benefit of this simple function f is that we know the exact solution.
If we write an algorithm we can test it by comparing its results to the exact
solution.

The study of simple cases such as this is often used in mathematical practice
to gain insight about the problem and afterwards apply the knowledge to more
complex versions of the problem.

A difficulty that we will face is that we only can calculate in a finite area.
We can not calculate all the ui values from −∞ to ∞. Due to this we will
define an interval where we will compute our ui values and we will set up some
conditions for the boundaries. I will say that left and right of the boundary the
function value will be constant, namely cl and cr. If our interval is [xl, xr] then

Abhigyan Ghosh 9

Figure 2: Algorithm with oscillations Figure 3: The TVD of the sine function

that means the function u will be defined as follows:

u =


cl if x < xl

u(x, t) if x ∈ [xl, xr]
cr if x > xr

(10)

Since the transport of the quantity u has a certain known limited velocity, in
our case a, we know how far the ui-values will have been transported at most in
a given time frame. Thus even after a given time we can say in which interval
the significant ui-values are located.

There is an additional condition that the algorithm has to fulfill. If an
algorithm produces unrealistic results, that is if the function values get negative
or if some values form unnatural peaks, then the validity of the solution will
be impaired (see Figure 2). With time the algorithm will start to produce
more and more unrealistic values and it will start to oscillate. But since this
is against our interests the question is how can we supress such an oscillation.
To do this we define the Total Variation of our function u at time tn to be
TV(un) =

∑
i |ui+1−ui|. This sum describes the distance between the different

ui-values in the u-axis, and if we sum it up it describes the distance between the
extrema of the function. For example the total variation of the sine function
in the interval [0, 2π] is 4 (see Figure 3). The sum of the total variation is
taken over all the i-values from −∞ to ∞. However since the function becomes
constant beyond the boundary, there only exists a finite amount of positive
summands, so we can limit ourselves to the sum of all the |ui+1−ui| within the
boundary.

To avoid oscillations this total variation must not increase in the next time
step. Thus if we take the next time step to be tn+1, then the following must
hold:

TV(un+1) ≤ TV(un) (11)

If we can find such an algorithm, then we say the algorithm is total variation

Abhigyan Ghosh 10

Figure 4: The cells Ωi and Ωi+1

diminishing (TVD).

Summing up an algorithm needs to preserve the quantity and it needs to be
TVD.

3 Different algorithms
The following two algorithms have a similar method to calculate the new ui-
values. I will first look at the simpler algorithm.

3.1 Staggered Lax-Friedrich’s method
This algorithm uses piecewise constant functions to approximate the values
in the integral form (8). With the time step ∆t = tn+1 − tn one calculates the
LHS, namely the integral at time tn+1.∫ xi+1

xi

u(x, tn+1)dx =
∫ xi+1

xi

u(x, tn)dx︸ ︷︷ ︸
approximation using

xi-values

+
∫ tn+1

tn

a · u(xi, t)dt−
∫ tn+1

tn

a · u(xi+1, t)dt︸ ︷︷ ︸
approximation using xi-values

and the differential form of the equation
(12)

To describe the algorithm we will look at two neighboring cells Ωi and Ωi+1.
These two cells have the intermediate values ui and ui+1 (see Figure 4). We
will approximate the integrals in the integral form (12) to find the ui-values in
the next time step. First we can calculate the integral from xi to xi+1.∫ xi+1

xi

u(x, tn)dx = ui + ui+1

2 ·∆x (13)

Abhigyan Ghosh 11

On the LHS of (12) we will get an integral for the time tn+1. As before we will
describe this integral as∫ xi+1

xi

u(x, tn+1)dx = un+1
i+ 1

2
·∆x (14)

where un+1
i+ 1

2
describes the intermediate value at time tn+1 in the cell Ωi+ 1

2
. Note

that in a time step the cells get shifted by ∆x
2 , but that does not constitute

a problem since after two steps the cells are back in their original positions.
Plugging in the integrals (13) and (14) in (12) yields

un+1
i+ 1

2
·∆x = ui + ui+1

2 ·∆x+
∫ tn+1

tn

a · u(xi, t)dt−
∫ tn+1

tn

a · u(xi+1, t)dt. (15)

Since we assumed that the value of u is constant on the cell Ωi, we will likewise
assume that the value of u is constant along the t-axis. So u(xi, t) = ui. This
means that ∫ tn+1

tn

a · u(xi, t)dt = a ·
∫ tn+1

tn

u(xi, t)︸ ︷︷ ︸
is constant

dt

= a ·
∫ tn+1

tn

uidt

= a · ui ·∆t. (16)

Analogously ∫ tn+1

tn

a · u(xi+1, t)dt = a · ui+1 ·∆t. (17)

Again plugging it into the integral form (15) yields

un+1
i+ 1

2
·∆x = ui + ui+1

2 ·∆x+ a · ui ·∆t− a · ui+1 ·∆t (18)

Solving for un+1
i+ 1

2
gives us

un+1
i+ 1

2
= ui + ui+1

2 + a · ∆t
∆x (ui − ui+1). (19)

Now that we have an expression for un+1
i+ 1

2
, the intermediate value in the next

time step, the only remaining question is whether it fulfills the TVD-property
(11). We will adjust the time step ∆t so that the algorithm becomes TVD. For
that we have to look at figure 5.

In (a) we see how the cell is at time tn. At the point xi+1/2 there is a
discontinuity (compare with Figure 4). We can continue calculating as long as
this discontinuity does not pass over to the next cell (b). If that were the case

Abhigyan Ghosh 12

(a) at time tn (b) at time tn+1

Figure 5: The cell grid from above

it could be that more quantity would go out of the cell than come in, resulting
in negative values. But since we want to avoid that, we have to limit the time
step. That means we have to see how long it takes for the point xi+ 1

2
to cross

the border of the cell at xi+1, that is we have to see how long it takes for the
point to travel the distance of ∆x

2 . This is easily calculated since we know the
velocity to be a. Hence our time step can be at most

∆t ≤ ∆x
2a (20)

This inequality is often expressed with a κ which limits the time step. Due to
the TVD-condition the time step is often restricted further. In the case of the
piecewise constant method with the function f(u) = a · u, the time step
limitation is

∆t = κ
∆x
2a with k ≤ 1. (21)

The only thing remaining to show in this algorithm is that it is TVD if κ ≤ 1.
Therefore we have to show that TV(un+1) ≤ TV(un). Since I did not find a
proof in my sources I set out to prove the following myself.

TV(un+1)

=
∑
i

∣∣∣un+1
i+ 1

2
− un+1

i− 1
2

∣∣∣
=
∑
i

∣∣∣∣ui + ui+1

2 + a
∆t
∆x (ui − ui+1)− ui−1 + ui

2 − a∆t
∆x (ui−1 − ui)

∣∣∣∣

Abhigyan Ghosh 13

Rearranging the terms ui+ui+1
2 and ui−1+ui

2 gives us

=
∑
i

∣∣∣∣ui − ui−1

2 + a
∆t
∆x (ui − ui−1) + ui+1 − ui

2 − a∆t
∆x (ui+1 − ui)

∣∣∣∣
=
∑
i

∣∣∣∣(ui − ui−1)
(

1
2 + a

∆t
∆x

)
+ (ui+1 − ui)

(
1
2 − a

∆t
∆x

)∣∣∣∣
Defining ∆ui− 1

2
= ui − ui−1 and ∆ui+ 1

2
= ui+1 − ui and using the inequality

|a+ b| ≤ |a|+ |b| yields

≤
∑
i

∣∣∣∣∆ui− 1
2

(
1
2 + a

∆t
∆x

) ∣∣∣∣+
∣∣∣∣∆ui+ 1

2

(
1
2 − a

∆t
∆x

) ∣∣∣∣
Assuming that the factors in the brackets are non-negative, we can take them
out of the absolute value.

=
∑
i

|∆ui− 1
2
|
(

1
2 + a

∆t
∆x

)
︸ ︷︷ ︸
assuming ≥0

+|∆ui+ 1
2
|
(

1
2 − a

∆t
∆x

)
︸ ︷︷ ︸
assuming ≥0

If we were to write the sum out and collect all the terms with the factor ∆ui+ 1
2

we would see that what is left is

=
∑
i

|∆ui+ 1
2
|
(

1
2 − a

∆t
∆x + 1

2 + a
∆t
∆x

)
=
∑
i

|∆ui+ 1
2
|

=
∑
i

|ui+1 − ui|

= TV(un). (22)

Note that this only works since we have a finite amount of positive summands
as described earlier. This means that the piecewise constant method is TVD,
but only if our assumption of the factors in the bracket being larger or equal to
zero is true. Thus it still remains to show that our assumption was correct. We
have to show that

0 ≤ 1
2 ± a

∆t
∆x (23)

or equivalently
±a∆t

∆x ≤
1
2 . (24)

If we look at our definition of ∆t (21) we can see that the following holds.

±a∆t
∆x ≤

∣∣∣∣a∆t
∆x

∣∣∣∣ =
∣∣∣∣a · κ∆x

2a︸ ︷︷ ︸
=∆t

· 1
∆x

∣∣∣∣ =
∣∣∣κ2 ∣∣∣ ≤ 1

2 (25)

Abhigyan Ghosh 14

(a) ui-values (b) minmod slopes

Figure 6: The reconstruction of linear functions

Thus our assumption was correct and we have proved that the piecewise constant
method is TVD if κ ≤ 1.

3.2 Nessyahu-Tadmor method
The following algorithm will be a bit more complex than the previous one,
because instead of using piecewise constant functions it will use piecewise linear
functions. As a first step we must reconstruct a function in the x-axis. The
only values given are the ui values. The algorithm now reconstructs some linear
functions on the cells Ωi (see Figure 6). To do this the algorithm uses the
minmod function. It is defined the following way:

minmod(x, y) =


0 if x · y ≤ 0
x if |x| ≤ |y|
y if |y| < |x|

(26)

This means that whenever the input values have opposite signs, the function
value is 0. However, if both x and y have the same sign, then the output of the
function will be the value closer to 0.

The linear function is constructed in such a way, that the function passes
through ui, and the slope is the smaller one between ui−ui−1

∆x = ∆ui+1/2
∆x and

ui+1−ui

∆x = ∆ui−1/2
∆x . If we define the function on Ωi to be ui(x), then we construct

it the following way:

ui(x) = ui + Si
∆x (x− xi) where Si = minmod(∆ui+ 1

2
,∆ui− 1

2
) (27)

If we insert x = xi into the function, we will get ui as a result. However since
we only want to calculate the integral we can shift the function by xi to obtain

ui(x) = ui + Si
∆xx where Si = minmod(∆ui+ 1

2
,∆ui− 1

2
) (28)

Abhigyan Ghosh 15

This is done so that it is easier to calculate with the values, since one does not
need to know where exactly in the x-axis the cell is located, but only that the
cell boundary goes from −∆x

2 to ∆x
2 . If we calculate the integral in this cell,

it still gives
∫

Ωi
ui(x)dx = ui · ∆x. This is essential since we do not want to

increase the quantity in the cell with our reconstruction.
Further it needs to be remarked that our linear reconstruction of the ui-

values does not exceed the total variation of the values before reconstruction.
This is crucial since an increase in total variation renders it impossible to show
that the algorithm is total variation diminishing.

The next step would be to reconstruct the function in the t-axis. As discussed
this algorithm uses linear functions, so the reconstruction in t-direction has to
be linear too. To construct it we will use the differential equation

ut + f(u)x = 0 (29)

or rewritten

ut = −f(u)x
= (−a · u)x
= −a · ux. (30)

This means that the derivative or the slope in the t-axis is the slope in the
x-axis multiplied by −a. Further we can assume that the function in t-axis will
go through the point ui. With this information we can construct our function.
I will call the function vi.

vi(t) = ui + t · ut
= ui + t · (−a) · ux

= ui − a · t ·
Si
∆x (31)

Note that for every function ui(x) there will be a function vi(t). This function
vi(t) is set so that for t = 0 we get ui. As in the previous algorithm, we have
now both the function along the x- and the t-axis. This means that we can
calculate its integrals and thus get the quantity at the next time step with the

Abhigyan Ghosh 16

help of the integral form (12). The integral at time tn is∫ xi+1

xi

u(x, tn)dx

=
∫ xi+1/2

xi

u(x, tn)dx+
∫ xi+1

xi−1/2

u(x, tn)dx

=
∫ ∆x/2

0
ui(x, tn)dx+

∫ 0

−∆x/2
ui+1(x, tn)dx

=
[
ui · x+ Si

∆x
x2

2

]∆x/2

0
+
[
ui+1 · x+ Si+1

∆x
x2

2

]0

−∆x/2

= ui ·∆x
2 + Si

∆x
∆x2

8 + ui+1 ·∆x
2 − Si+1

∆x
∆x2

8

= ∆x
2 (ui + ui+1) + ∆x

8 (Si − Si+1) (32)

As a next step we have to evaluate the integrals at xi and xi+1 in t-direction.∫ tn+1

tn

vi(t)dt =
∫ ∆t

0
ui − a · t ·

Si
∆xdt

=
[
uit− a

Si
∆x

t2

2

]∆t

0

= ui∆t− a
Si
∆x

∆t2

2 (33)

and similarly ∫ tn+1

tn

vi+1(t)dt = ui+1∆t− aSi+1

∆x
∆t2

2 . (34)

Putting it all in the integral form yields∫ xi+1

xi

u(x, tn+1)dx =
∫ xi+1

xi

u(x, tn)dx+ a ·
∫ tn+1

tn

vi(t)dt− a ·
∫ tn+1

tn

vi+1(t)dt

= ∆x
2 (ui + ui+1) + ∆x

8 (Si − Si+1)

+ a

(
ui∆t− a

Si
∆x

∆t2

2 − ui+1∆t− aSi+1

∆x
∆t2

2

)
(35)

We can rewrite the LHS of the integral form as ∆x · un+1
i+1/2 to obtain

∆x · un+1
i+1/2 = ∆x

2 (ui + ui+1) + ∆x
8 (Si − Si+1)

+ a

(
ui∆t− a

Si
∆x

∆t2

2 − ui+1∆t+ a
Si+1

∆x
∆t2

2

)
⇔ un+1

i+1/2 = ui + ui+1

2 + Si − Si+1

8 + a
∆t
∆x (ui − ui+1)− a2

2
∆t2

∆x2 (Si − Si+1)
(36)

Abhigyan Ghosh 17

Thus we now have an expression for un+1
i+1/2. The only remaining thing to do

in this algorithm is to limit the time step and show that with that time step
the algorithm is TVD. This is done in Appendix A.2. By doing so we get a
limitation for our time step, namely

∆t = κ
∆x
2a with κ ≤

√
2− 1 (37)

Refer to Nessyahu-Tadmor [3] for further reading.

Abhigyan Ghosh 18

4 Development of an algorithm
Now that I have listed two algorithms, I will start to analyze and compare
them, and then try to develop an own improved version of the algorithm with
the gained knowledge.

4.1 Comparison of the algorithms
As a first step both algorithms fit a function in the cells Ωi, one being a constant
function, and the other being a linear one. Both reconstructions preserve the
quantity in the cell. In the Nessyahu-Tadmor method this linear function is
constructed in such a way that the total variation of the reconstructed function
is not bigger than the original total variation. Also in the Lax-Friedrich method
this holds true, but here the total variation of the reconstruction is exactly as
big as the original total variation. As a next step an approximation of the
function is made in t-direction at the points ui. In both cases the function goes
through the point ui, in the Lax-Friedrich method it is a constant function, in
the Nessyahu-Tadmor method it is linear. The slope of the function is calculated
using the differential form in the second algorithm. It is noteworthy that in the
first algorithm the differential form holds too, since it states that the slope
in t-direction is the same as the slope in x-direction, namely 0. After having
reconstructed the function in x- and t-direction one can calculate the integral
form. As a last step one has to show that the algorithm is TVD. To do this we
have to limit the time step. If we succeed to show that the total variation does
not increase with a certain time step, then we have shown that the algorithm
does not produce any oscillations. So when developing an algorithm I have to
consider the following steps:

1. Reconstruction of function in x-axis, with preservation of quantity

2. Limitation of the total variation in x-axis

3. Reconstruction of function in t-axis

4. Calculation of the integral form

5. Limit time step / Proof of TVD

4.2 Creating an own algorithm
In this section I will try to employ piecewise quadratic functions to improve the
algorithm. To do this I will follow the steps from the previous section.

4.2.1 Reconstruction of function in x-axis

First I have to think about how I want to reconstruct the piecewise quadratic
function. The function has to be reconstructed in the cell Ωi using only the
values ui−1, ui and ui+1. Since a quadratic function has three parameters, I

Abhigyan Ghosh 19

will have to find three conditions which our function has to fulfill. The first
of these conditions is given by the fact that the quantity in the cell has to be
preserved. This means that

∆x · ui =
∫

Ωi

ui(x)dx (38)

where ui is our reconstructed quadratic function on the cell Ωi. We have to set
two more conditions for our function. We have not yet considered the values
ui−1 and ui+1. When considering these values we have to find conditions which
are symmetrical, this means that if we change the values ui−1 and ui+1, our
function should only be mirrored but otherwise remain unchanged. If that were
not the case we would give preference to a certain side which is to be avoided.
After some consideration I came up with the condition that the slope at ∆x

2 has
to be the same as the slope ui+1−ui

∆x , and similarly the slope at −∆x
2 has to be

ui−ui−1
∆x . This means that the three given conditions are the following:

• ∆x · ui =
∫

Ωi
ui(x)dx

• u′i(−∆x
2) = ui−ui−1

∆x

• u′i(∆x
2) = ui+1−ui

∆x

where
ui(x) = q′′

2 x
2 + q′x+ q (39)

with q′′, q′ and q being the parameters of the quadratic function. Note that q,
q′ and q′′ are different on each cell and thus require an index. For simplicity
this index is omitted where it is not of necessity. Solving the conditions for the
parameters yields (see Appendix A.3)

q = ui −
ui+1 + ui−1 − 2ui

24 (40a)

q′ = ui+1 − ui−1

2∆x (40b)

q′′ = ui+1 + ui−1 − 2ui
∆x2 (40c)

4.2.2 Limitation of the total variation in the x-axis

Next we have to consider whether our reconstruction has a bigger total varia-
tion. If that were the case, we would have to adapt our function so that the total
variation does not increase. Recalling our definition of ∆u1+1/2 = ui+1−ui and
∆ui−1/2 = ui − ui−1, we will consider the case when the two slopes have oppo-
site signs, that is when ∆u1+1/2 ·∆u1−1/2 ≤ 0 (see Figure 7). This implies that
ui is an extrema (or a saddle point). If we reconstruct a quadratic function on
this cell, it will either violate the extremum, leading to a bigger total variation,
or it will violate the integral. So our only option is to say that our function on

Abhigyan Ghosh 20

Figure 7: The value ui is an extremum Figure 8: Increase of total variation

this cell will have to be constant, namely with the value ui.
The other case is when both slopes are positive. In this case the total varia-
tion might increase when at a point xi+1/2 the functions ui−1 and ui have two
different values (see Figure 8). To limit this possible increase we will have to
adapt our quadratic function. I will introduce a λi which will locally decrease
the total variation on the cell Ωi. This will be done the following way: First I
will rewrite my function (39) as

ui(x) = λi
q′′

2 x
2 + λiq

′x+ q (41)

The only thing that has changed is that I have inserted the λi in two places.
The λi should have a value between 1 and 0. If the value is 1, then our original
reconstruction remains unchanged, meaning that the total variation has not
increased with our reconstruction. However if we choose a λi < 1 our total
variation will decrease. It is easily seen that as λi tends to 0 our function ui
tends to a constant function with value q. This is not optimal since we want
our function to tend to ui as λi gets smaller. Else it would violate our condition
of preservation of quantity. This means that I have to reconsider the integral
condition

∆x · ui =
∫

Ωi

ui(x)dx. (42)

Recalculating q (see Appendix A.4) yields

q = ui − λi
ui+1 + ui−1 − 2ui

24 . (43)

As can be seen now q also depends on λi. As a next step we can consider
limiting our total variation with the aid of λi. To do that we will say that our
function may not exceed the value of ui−ui−1

2 at −∆x
2 , and similarly the value of

ui+1−ui

2 may not be exceeded at ∆x
2 (see Figure 17). Calculating the λi-values

gives us 2 different values which are both smaller than one (see Appendix A.5),

Abhigyan Ghosh 21

one for the right side, and one for the left. We will have to use the smaller of
the values, with which we will limit the total variation of our reconstruction.

λi =
{

0 when ∆ui+1 ·∆ui−1 ≤ 0
min

(
3 ui−1−ui

2ui−1−ui−ui+1
, 3 ui+1−ui

2ui+1−ui−ui−1

)
otherwise

(44)

4.2.3 Reconstruction of function in t-axis

In the piecewise linear method we reconstructed the function in the t-axis with
the help of the differential form, namely by calculating the slope of the function.
In the case of piecewise quadratic functions the slope does not suffice but we
need the second derivative too. To do this, we can differentiate the differential
form (1) to obtain information about the second derivative (see Appendix A.6)
and then reconstruct our function, which we will call vi(t). The function is
an approximation by a Taylor-Polynomial of second order around the value ui.
Doing this yields

vi(t) = q − aλiq′t+ a2λiq
′′ t

2

2 . (45)

4.2.4 Calculation of the integral form

This step is very tedious, but it does not need much explanation. That is why it
is done in the Appendix A.7, and in this section only the results are presented.∫ xi+1

xi

ui(x)dx = ∆x
16 (λiui+1 + λi+1ui − λiui−1 − λi+1ui+2) + ∆x

2 (ui + ui+1)

(46)

a

∫ tn+1

tn

vi(t)dt = κ
∆x
2 ui + (κ3 − κ)λi

∆x
48 (ui+1 + ui−1 − 2ui)

− κ2λi
∆x
16 (ui+1 − ui−1) (47)

a

∫ tn+1

tn

vi+1(t)dt = κ
∆x
2 ui+1 + (κ3 − κ)λi+1

∆x
48 (ui+2 + ui − 2ui+1)

− κ2λi+1
∆x
16 (ui+2 − ui) (48)

This leads to the calculation of the value un+1
i+1/2.

un+1
i+1/2 = λiui+1 + λi+1ui − λiui−1 − λi+1ui+2

16 + ui + ui+1

2 + κ
ui − ui+1

2

+ (κ3 − κ)λi(ui+1 + ui−1 − 2ui)− λi+1(ui+2 + ui − 2ui+1)
48

− κ2λiui+1 + λi+1ui − λiui−1 − λi+1ui+2

16 (49)

Abhigyan Ghosh 22

4.2.5 Limitation of time step and proof of TVD

This will be the most important step in the algorithm. Without the TVD-
property the algorithm is inutile.
I will have to develop a strategy to prove that the algorithm is indeed TVD. The
strategy to prove this will be very similar to the proof in the Nessyahu-Tadmor
method. I will namely compare my expression of the total variation with their
expression, and I will try to find similar terms. Then I will try to deal with those
terms like they did (see Appendix A.8). Calculating this gives us the limitation
for our time step.

∆t = κ
∆x
2a with κ ≤ 0.18144 (50)

Abhigyan Ghosh 23

Figure 9: The function s1 Figure 10: The function s2

5 Comparison of the three algorithms
Now I will compare the three different algorithms. To do that I wrote a program
which calculates the ui-values (see Appendix C). First I had to define a starting
state u(x0, t). I chose the following two functions (see Figure 9 and 10)

s1(x) =


0 if x < 0
1 if x ∈ [0, 1]
0 if x > 1

(51)

and

s2(x) =


0 if x < 0
sin2(x · π) if x ∈ [0, 1]
0 if x > 1

(52)

I had to consider functions which fulfilled property (10). Note that both func-
tions have positive values only in the interval [0, 1]. Next I could compare the
different algorithms by looking at the different ui-values they produced after
a certain amount of time. In the following page I evaluated the different al-
gorithms with κ = 0.25, κ = 0.15, and κ = 0.05 (see Figures 11-16). I chose
∆x = 1

20 . The amount of time steps was chosen in such a way so that the exact
solution would be located between x = 5 and x = 6.

We see that there is a significant difference between the piecewise constant
method and the piecewise linear method. However the piecewise quadratic
method is only slightly better than the piecewise linear method. This means
that my method does not improve the quality of solution significantly.

Instead of using the minmod function (26) in the piecewise linear method
one can also use other so called flux limiter functions (see Nessyahu-Tadmor
[3]). With these flux limiters a better result is achieved, however this comes at
the cost of the unability to prove the TVD-property.

Abhigyan Ghosh 24

Figure 11: s1, κ = 0.25

Figure 12: s1, κ = 0.15

Figure 13: s1, κ = 0.05

Figure 14: s2, κ = 0.25

Figure 15: s2, κ = 0.15

Figure 16: s2, κ = 0.05

Abhigyan Ghosh 25

In my algorithm I could rewrite (44) as

λi = minmod
(

3 ui−1 − ui
2ui−1 − ui − ui+1

, 3 ui+1 − ui
2ui+1 − ui − ui−1

)
(53)

With this notation I have a minmod function too, and thus a better result might
be achieved by using a different flux limiter function. However the analysis of
other flux limiters would go beyond the scope of this essay.

6 Conclusion
In my essay I analyzed two methods and showed how they worked. I success-
fully managed to extend the existing algorithm, so that it works with piecewise
quadratic functions. This was done under the required conditions of such an al-
gorithm. However the extent of improvement of my algorithm was minimal. The
question remains whether a different flux limiter would significantly increase the
exactness of the algorithm. Further I only worked with the function f(u) = a ·u.
It needs to be investigated how one can extend the existing algorithm to a more
general function f .

Abhigyan Ghosh 26

A Calculations
A.1 Differentiating the Integral Form to obtain the Dif-

ferential Form∫ x2

x1

ρ(x, t1)dx =
∫ x2

x1

ρ(x, t0)dx+
∫ t1

t0

f(ρ(x1, t))dt−
∫ t1

t0

f(ρ(x2, t))dt. (54)

First we rewrite the equation as follows.∫ x2

x1

ρ(x, t1)dx−
∫ x2

x1

ρ(x, t0)dx =
∫ t1

t0

f(ρ(x1, t))dt−
∫ t1

t0

f(ρ(x2, t))dt. (55)

To get the differential form, we will need to differentiate (partially) with respect
to x2 and t1. For this purpose, we will interpret the values x2 and t1 as vari-
ables. In addition, I will assume the functions f and ρ to be differentiable. Let
ρt(x, t) = ∂ρ

∂t and fx(x, t) = ∂f
∂x . Using the fundamental theorem of calculus,

and the Schwarz theorem for mixed partial derivatives, we can evaluate the LHS
and the RHS of the equation.
The LHS gives us

∂2

∂t1∂x2

(∫ x2

x1

ρ(x, t1)dx−
∫ x2

x1

ρ(x, t0)dx
)

= ∂

∂t1

(
∂

∂x2

∫ x2

x1

ρ(x, t1)dx− ∂

∂x2

∫ x2

x2

ρ(x, t0)dx
)

= ∂

∂t1
(ρ(x2, t1)− ρ(x2, t0)) (56)

Rewriting this term using the fundamental theorem of calculus yields
∂

∂t1
(ρ(x2, t1)− ρ(x2, t0))︸ ︷︷ ︸

= ∂

∂t1

∫ t1

t0

ρt(x2, t)dt

= ρt(x2, t1) (57)

Analogously the RHS yields

∂2

∂x2∂t1

(∫ t1

t0

f(ρ(x1, t))dt−
∫ t1

t0

f(ρ(x2, t))dt
)

= −fx(ρ(x2, t1)) (58)

Note that in (56) and (58) the sequence of differentiation is different. However
we can equate the two integrals according to Schwarz’ Theorem (112). Equating
both sides yields

ρt(x2, t1) = −fx(ρ(x2, t1))
ρt(x2, t1) + fx(ρ(x2, t1)) = 0 (59)

Abhigyan Ghosh 27

Since we know that this equation holds for any (x2, t1), we can generalize the
equation to obtain the differential form.

ρt + fx(ρ) = 0 (60)

A.2 The proof of Nessyahu-Tadmor method being total
variation diminishing

We want to prove that
TV(un+1) ≤ TV(un) (61)

Since from equation (36) I have given the expression for un+1
i+1/2 I can write down

TV(un+1).

TV(un+1)

=
∑
i

∣∣∣un+1
i+1/2 − u

n+1
i−1/2

∣∣∣
=
∑
i

∣∣∣∣ui + ui+1

2 − ui−1 + ui
2 + Si − Si+1

8 − Si−1 − Si
8

+ a
∆t
∆x (ui − ui+1)− a∆t

∆x (ui−1 − ui)

− a2

2
∆t2

∆x2 (Si − Si+1) + a2

2
∆t2

∆x2 (Si−1 − Si)
∣∣∣∣

Rearranging the terms and rewriting ui − ui−1 = ∆ui−1/2 and ui+1 − ui =
∆ui+1/2 gives us

=
∑
i

∣∣∣∣∆ui+1/2 ·
(

1
2 + 1

8
Si − Si+1

∆ui+1/2
− a∆t

∆x −
a2

2
∆t2

∆x2
1

∆ui+1/2
(Si − Si+1)

)
+ ∆ui−1/2 ·

(
1
2 −

1
8
Si−1 − Si
∆ui−1/2

+ a
∆t
∆x + a2

2
∆t2

∆x2
1

∆ui−1/2
(Si−1 − Si)

)∣∣∣∣
Using the inequality |a+ b| ≤ |a|+ |b| we get

≤
∑
i

∣∣∣∣∆ui+1/2 ·
(

1
2 + 1

8
Si − Si+1

∆ui+1/2
− a∆t

∆x −
a2

2
∆t2

∆x2
1

∆ui+1/2
(Si − Si+1)

)∣∣∣∣
+
∣∣∣∣∆ui−1/2 ·

(
1
2 −

1
8
Si−1 − Si
∆ui−1/2

+ a
∆t
∆x + a2

2
∆t2

∆x2
1

∆ui−1/2
(Si−1 − Si)

)∣∣∣∣
We define Ei+1/2 = 1

8
Si−Si+1
∆ui+1/2

− a∆t
∆x −

a2

2
∆t2
∆x2

1
∆ui+1/2

(Si − Si+1).

≤
∑
i

∣∣∣∣∆ui+1/2 ·
(

1
2 + Ei+1/2

)∣∣∣∣
+
∣∣∣∣∆ui−1/2 ·

(
1
2 − Ei−1/2

)∣∣∣∣

Abhigyan Ghosh 28

We will assume that |Ei| ≤ 1
2 , which means that the factor 1

2±Ei is non-negative
and that we can take it out of the absolute value.

=
∑
i

∣∣∆ui+1/2
∣∣ (1

2 + Ei+1/2

)
+
∣∣∆ui−1/2

∣∣ (1
2 − Ei−1/2

)
Writing the sum out and collecting only the ∆ui+1/2 terms in a summand leaves
us with

=
∑
i

|∆ui+1/2|
(

1
2 + Ei+1/2 + 1

2 − Ei+1/2

)
=
∑
i

|∆ui+1/2|

=
∑
i

|ui+1 − ui|

= TV(un) (62)

But this only works if our assumption of |Ei| ≤ 1
2 is true, which means that we

still have to prove that.

|Ei+1/2| =
∣∣∣∣18 Si − Si+1

∆ui+1/2
− a∆t

∆x −
a2

2
∆t2

∆x2
1

∆ui+1/2
(Si − Si+1)

∣∣∣∣
First I will substitute ∆t = κ∆x

2a .

=
∣∣∣∣18 Si − Si+1

∆ui+1/2
− κ

2 −
κ2

8
1

∆ui+1/2
(Si − Si+1)

∣∣∣∣
Then I will use the inequality |a+ b| ≤ |a|+ |b| multiple times to get

≤
∣∣∣∣18 Si − Si+1

∆ui+1/2

∣∣∣∣+
∣∣∣κ2 ∣∣∣+

∣∣∣∣κ2

8
Si − Si+1

∆ui+1/2

∣∣∣∣
≤
∣∣∣∣18 Si

∆ui+1/2

∣∣∣∣+
∣∣∣∣18 Si+1

∆ui+1/2

∣∣∣∣+
∣∣∣κ2 ∣∣∣+

∣∣∣∣κ2

8
Si

∆ui+1/2

∣∣∣∣+
∣∣∣∣κ2

8
Si+1

∆ui+1/2

∣∣∣∣
Next we use the following inequalities,
|Si| = |minmod(∆ui+1/2,∆ui−1/2)| ≤ |∆ui+1/2| and
|Si+1| = |minmod(∆ui+1/2,∆ui+3/2)| ≤ |∆ui+1/2|, to obtain

≤
∣∣∣∣18 ∆ui+1/2

∆ui+1/2

∣∣∣∣+
∣∣∣∣18 ∆ui+1/2

∆ui+1/2

∣∣∣∣+
∣∣∣κ2 ∣∣∣+

∣∣∣∣κ2

8
∆ui+1/2

∆ui+1/2

∣∣∣∣+
∣∣∣∣κ2

8
∆ui+1/2

∆ui+1/2

∣∣∣∣
= 1

4 + κ

2 + κ2

4
(63)

Abhigyan Ghosh 29

This expression still has to be smaller than 1
2 . Solving for κ yields.

1
4 + κ

2 + κ2

4 ≤
1
2

1 + 2κ+ κ2 ≤ 2
(κ+ 1)2 ≤ 2

Since κ > 0 we can take the root.

κ+ 1 ≤
√

2
κ ≤
√

2− 1 (64)

This means that we have proved that this method is TVD if κ ≤
√

2− 1.

A.3 Reconstruction of quadratic function in x-axis
We have given the system of equations

∆x · ui =
∫

Ωi

ui(x)dx (65a)

u′i(−
∆x
2) = ui − ui−1

∆x (65b)

u′i(
∆x
2) = ui+1 − ui

∆x (65c)

with ui(x) = q′′

2 x
2 + q′x + q. This means that u′i(x) = q′′x + q′. Solving (65c)

for q′ yields

u′i(
∆x
2) = q′′

∆x
2 + q′ = ui+1 − ui

∆x

⇒ q′ = ui+1 − ui
∆x − q′′∆x2 (66)

Plugging this into (65b) yields

ui − ui−1

∆x = −q′′∆x2 + q′

= −q′′∆x2 + ui+1 − ui
∆x − q′′∆x2

= −q′′∆x+ ui+1 − ui
∆x

q′′∆x = ui+1 − ui
∆x − ui − ui−1

∆x
⇒ q′′ = ui+1 + ui−1 − 2ui

∆x2 (67)

Abhigyan Ghosh 30

Put this back into (65c) to obtain

q′ = ui+1 − ui
∆x − q′′∆x2

= ui+1 − ui
∆x − ui+1 + ui−1 − 2ui

∆x2 · ∆x
2

= 2ui+1 − 2ui − ui+1 − ui−1 + 2ui
2∆x

⇒ q′ = ui+1 − ui−1

2∆x (68)

Finally solving (65a) gives us

∆x · ui =
∫

Ωi

ui(x)dx

=
∫ ∆x/2

−∆x/2
ui(x)dx

=
[
q′′

6 x
3 + q′

2 x
2 + qx

]∆x/2

−∆x/2

= q′′∆x3

48 + q′∆x2

8 + q∆x
2 + q′′∆x3

48 − q′∆x2

8 + q∆x
2

= q′′∆x3

24 + q∆x

∆x · ui = q′′∆x3

24 + q∆x

⇔ ui = q′′∆x2

24 + q

or equivalently

q = ui −
q′′∆x2

24 (69)

A.4 Reconsidering the integral
The parameters q′′ and q′ will remain unchanged, however they will be tuned
by a factor λi. That means that our function will gradually become a constant
function as λi approaches 0. Since the function changes with the λi we will have
to reevaluate whether the integral still holds, and possibly adapt it. So looking

Abhigyan Ghosh 31

at condition (38), we see that

∆x · ui =
∫

Ωi

ui(x)dx

=
∫ ∆x/2

−∆x/2
ui(x)dx

=
[
λi
q′′

6 x
3 + λi

q′

2 x
2 + qx

]∆x/2

−∆x/2

= λi
q′′∆x3

48 + λi
q′∆x2

8 + q∆x
2 + λi

q′′∆x3

48 − λi
q′∆x2

8 + q∆x
2

= λi
q′′∆x3

24 + q∆x

∆x · ui = λi
q′′∆x3

24 + q∆x

⇔ ui = λi
q′′∆x2

24 + q (70)

or equivalently

q = ui − λi
q′′∆x2

24
= ui − λi

ui+1 + ui−1 − 2ui
24 . (71)

A.5 Calculation of the lambda values
We have to limit the function at the points −∆x

2 and ∆x
2 . I will begin with

the right side first, namely at the point ∆x
2 . We said that the function value at

that point may not exceed ui+ui+1
2 (see Figure 17). But we have to distinguish

between the cases where the slope is positive and the one where it is negative.
I will first begin with the case that the slope is positive. That means that
∆ui+1/2 > 0. So our restriction can be formulated as

ui + ui+1

2 ≥ ui(
∆x
2) (72)

Abhigyan Ghosh 32

Figure 17: The boundaries of the function on the cell Ωi

Calculating ui(∆x
2) yields

ui(
∆x
2) = q + λiq

′∆x
2 + λi

q′′

2
∆x2

4

= ui − λi
ui+1 + ui−1 − 2ui

24 + λi
ui+1 − ui−1

2∆x
∆x
2 + λi

ui+1 + ui−1 − 2ui
2 ·∆x2

∆x2

4

= ui + λi

(
−ui+1 + ui−1 − 2ui

24 + ui+1 − ui−1

4 + ui+1 + ui−1 − 2ui
8

)
= ui + λi

(
−ui+1 + ui−1 − 2ui

24 + 6ui+1 − 6ui−1

24 + 3ui+1 + 3ui−1 − 6ui
24

)
= ui + λi

(
8ui+1 − 4ui − 4ui−1

24

)
= ui + λi

(
2ui+1 − ui − ui−1

6

)
(73)

Now we can solve (72) for λi.
ui + ui+1

2 ≥ ui(
∆x
2)

ui + ui+1

2 ≥ ui + λi

(
2ui+1 − ui − ui−1

6

)
ui + ui+1 ≥ 2ui + λi

(
2ui+1 − ui − ui−1

3

)
ui+1 − ui ≥ λi

(
2ui+1 − ui − ui−1

3

)
3(ui+1 − ui) ≥ λi(2ui+1 − ui − ui−1) (74)

The next step would be to take the factor on the RHS to the left, but for that
we have to consider that it could be negative, which in turn could reverse the

Abhigyan Ghosh 33

inequality sign. But we can easily verify that the factor is positive. Since we
know that ∆ui+1/2 is positive, we can assume that ∆ui−1/2 is positive too. If
that were not the case λi would be 0 consequently. This implies that

2ui+1−ui−ui−1 = 2(ui+1−ui) + (ui−ui−1) = 2∆ui+1/2 + ∆ui−1/2 > 0 (75)

That means we can take the factor in (74) to the left to obtain

3(ui+1 − ui) ≥ λi(2ui+1 − ui − ui−1)

3 ui+1 − ui
2ui+1 − ui − ui−1

≥ λi (76)

We can calculate the restriction for a negative slope in a similar fashion, because
ui(∆x

2) will still give the same value as in (73). The only difference is that now
∆ui+1/2 and ∆ui−1/2 are both negative. So our restriction (with same steps as
in (74)) simplifies to

ui + ui+1

2 ≤ ui
(

∆x
2

)
ui + ui+1

2 ≤ ui + λi

(
2ui+1 − ui − ui−1

6

)
3(ui+1 − ui) ≤ λi(2ui+1 − ui − ui−1)

(77)

Since the factor on the RHS is now negative, the inequality sign changes when
taking the factor to the left, yielding

3 ui+1 − ui
2ui+1 − ui − ui−1

≥ λi (78)

This is the exact same as in (76).
Now I have to calculate the restriction for the point−∆x

2 . Since this situation
is symmetric to the situation at point ∆x

2 I will use a simple trick to solve this
problem. If I change the values of ui+1 and ui−1 I will have the same situation
as before, but instead of at the point −∆x

2 it will be at the point ∆x
2 . Since we

have already calculated the solution to this one, we can simply switch back the
values ui+1 and ui−1 to get the desired restriction at −∆x

2 . This means that
the restriction there is

3 ui−1 − ui
2ui−1 − ui − ui+1

≥ λi (79)

Now the question is which of the two λi I have to take. The answer is the
smaller one. Both conditions must be fulfilled, and that can only be achieved
by taking the smaller λi value. However if both of these values are greater than
1, then we have to take λi = 1, since we want λi to be in the interval [0, 1]. But

Abhigyan Ghosh 34

as the following calculation shows, that can not be the case.

3 ui+1 − ui
2ui+1 − ui − ui−1

≤ 1 3 ui−1 − ui
2ui−1 − ui − ui+1

≤ 1

3
∆ui+1/2

2∆ui+1/2 + ∆ui−1/2
≤ 1 3

∆ui−1/2

2∆ui−1/2 + ∆ui+1/2
≤ 1

3∆ui+1/2 ≤ 2∆ui+1/2 + ∆ui−1/2 3∆ui−1/2 ≤ 2∆ui−1/2 + ∆ui+1/2

∆ui+1/2 ≤ ∆ui−1/2 ∆ui−1/2 ≤ ∆ui+1/2 (80)

Since one of the above inequalities will be true, it implies that one of the λi
values will be less or equal 1. Note that in the above equalities it is assumed
that ∆ui+1/2 and ∆ui−1/2 are both positive. This follows from the fact that else
the λi-value would be 0 to avoid an increase in the total variation (see Figure 7).
The other case is when both of the values are negative. In that case (80) would
have the inequality sign in the other direction, but one of the two inequalities
would still be true. That means that λi will be defined the following way.

λi =
{

0 when ∆ui+1 ·∆ui−1 ≤ 0
min

(
3 ui−1−ui

2ui−1−ui−ui+1
, 3 ui+1−ui

2ui+1−ui−ui−1

)
otherwise

(81)

A.6 Calculation of slopes in t-direction
If we want to reconstruct the function in t-direction we will need the first and
second derivative at the point ui. The first derivative is easily given by (1),
namely

ut = −a · ux (82)
Now we want to have the second derivative. We can differentiate (1) to obtain

utt = −a · uxt (83)

Note that I am using the notation ∂2u
∂t∂x = uxt. The problem with (83) is that we

dont know the value of uxt. But we know from Theorem (112) that uxt = utx,
if both uxt and utx are continuous in an open disk R containing our x and t.
We assume that to be true. So if we differentiate (82) with respect to x we get
the value of utx.

utx = −a · uxx (84)
Here we can calculate uxx. If we plug (84) into (83) we obtain

utt = −a · uxt
= −a · utx
= −a · (−a · uxx)
= a2 · uxx (85)

Abhigyan Ghosh 35

Since we know the first and second derivative, we can reconstruct a quadratic
function around the point xi, which has the value q. I will call this reconstruction
vi(t).

vi(t) = q + ut · t+ utt
2 · t

2 (86)

All that remains now is to calculate the exact values of ut and utt.

ut = −a · ux
= −a · u′i(0)
= −a · (λiq′′ · 0 + λiq

′)
= −aλiq′ (87)

utt = a2 · uxx
= a2 · u′′i (0)
= a2λiq

′′ (88)

This means our function in t-axis is

vi(t) = q − aλiq′ · t+ a2λiq
′′ · t

2

2 (89)

A.7 Calculation of the integral form
First I will calculate the integral in the x-axis.∫ xi+1

xi

u(x, tn)dx =
∫ ∆x/2

0
ui(x)dx+

∫ 0

−∆x/2
ui+1(x)dx (90)

The first integral is equivalent to∫ ∆x/2

0
ui(x)dx =

[
1
6λiq

′′
i x

3 + 1
2λiq

′
ix

2 + qix

]∆x/2

0

= 1
48λiq

′′
i ∆x3 + 1

8λiq
′
i∆x2 + 1

2qi∆x

= ∆x3

48 λi
ui+1 + ui−1 − 2ui

∆x2 + ∆x2

8 λi
ui+1 − ui−1

2∆x

+ ∆x
2

(
ui − λi

ui+1 + ui−1 − 2ui
24

)
= ∆x

48 λi(ui+1 + ui−1 − 2ui) + ∆x
16 λi(ui+1 − ui−1)

− ∆x
48 λi(ui+1 + ui−1 − 2ui) + ∆x

2 ui

= ∆x
16 λi(ui+1 − ui−1) + ∆x

2 ui (91)

Abhigyan Ghosh 36

Similarly the second integral yields∫ 0

−∆x/2
ui+1(x)dx =

[
1
6λi+1q

′′
i+1x

3 + 1
2λi+1q

′
i+1x

2 + qi+1x

]0

−∆x/2

= 1
48λi+1q

′′
i+1∆x3 − 1

8λi+1q
′
i+1∆x2 + 1

2qi+1∆x

= ∆x3

48 λi+1
ui+2 + ui − 2ui+1

∆x2 − ∆x2

8 λi+1
ui+1 − ui

2∆x

− ∆x
2

(
ui+1 −

ui+1 + ui − 2ui+1

24

)
= ∆x

48 λi+1(ui+2 + ui − 2ui+1)− ∆x
16 (ui+2 − ui)

− ∆x
48 λi+1(ui+2 + ui − 2ui+1) + ∆x

2 ui+1

= −∆x
16 λi+1(ui+2 − ui) + ∆x

2 ui+1 (92)

Adding up (91) and (92) yields∫ xi+1

xi

u(x, tn)dx = ∆x
16
(
λi(ui+1−ui−1)−λi+1(ui+2−ui)

)
+ ∆x

2 (ui+ui+1) (93)

Next I will calculate the integral in t-direction.∫ tn+1

tn

u(xi, t)dt =
∫ ∆t

0
vi(t)dt

=
∫ ∆t

0
qi − aλiq′it+ 1

2a
2λiq

′′
i t

2dt

=
[
qit−

1
2aλiq

′
it

2 + 1
6a

2λiq
′′
i t

3
]∆t

0

= qi∆t−
1
2aλiq

′
i∆t2 + 1

6a
2λiq

′′
i ∆t3

=
(
ui − λi

ui+1 + ui−1 − 2ui
24

)
∆t− 1

2aλi
ui+1 − ui−1

2∆x ∆t2

+ 1
6a

2λi
ui+1 + ui−1 − 2ui

∆x2 ∆t3

Abhigyan Ghosh 37

Setting our time step as ∆t = κ∆x
2a (see (21)) yields

=
(
ui − λi

ui+1 + ui−1 − 2ui
24

)
κ

∆x
2a −

1
2aλi

ui+1 − ui−1

2∆x κ2 ∆x2

4a2

+ 1
6a

2λi
ui+1 + ui−1 − 2ui

∆x2 κ3 ∆x3

8a3

= κ
∆x
2a ui − κλi

∆x
48a (ui+1 + ui−1 − 2ui)− κ2λi

∆x
16a (ui+1 − ui−1)

+ κ3λi
∆x
48a (ui+1 + ui−1 − 2ui) (94)

Since we want to have this integral multiplied by the velocity we get

a

∫ tn+1

tn

u(xi, t)dt = κ
∆x
2 ui + (κ3 − κ)λi

∆x
48 (ui+1 + ui−1 − 2ui)

− κ2λi
∆x
16 (ui+1 − ui−1)

(95)

By incrementing the index in (95) we get

a

∫ tn+1

tn

u(xi+1, t)dt = κ
∆x
2 ui+1 + (κ3 − κ)λi+1

∆x
48 (ui+2 + ui − 2ui+1)

− κ2λi+1
∆x
16 (ui+2 − ui)

(96)

A.8 Proof of TVD
We have the expression for un+1

i+1/2, namely

un+1
i+1/2 = λiui+1 + λi+1ui − λiui−1 − λi+1ui+2

16 + ui + ui+1

2 + κ
ui − ui+1

2

+ (κ3 − κ)λi(ui+1 + ui−1 − 2ui)− λi+1(ui+2 + ui − 2ui+1)
48

− κ2λiui+1 + λi+1ui − λiui−1 − λi+1ui+2

16 (97)

Abhigyan Ghosh 38

Thus we can calculate the total variation in the (n+ 1)-th time step.

TV(un+1)

=
∑
i

|un+1
i+1/2 − u

n+1
i−1/2|

=
∑
i

∣∣∣∣λiui+1 + λi+1ui − λiui−1 − λi+1ui+2

16 + ui + ui+1

2 + κ
ui − ui+1

2

+ (κ3 − κ)λi(ui+1 + ui−1 − 2ui)− λi+1(ui+2 + ui − 2ui+1)
48

− κ2λiui+1 + λi+1ui − λiui−1 − λi+1ui+2

16

− λi−1ui + λiui−1 − λi−1ui−2 − λiui+1

16 − ui−1 + ui
2 − κui−1 − ui

2

− (κ3 − κ)λi−1(ui + ui−2 − 2ui−1)− λi(ui+1 + ui−1 − 2ui)
48

+ κ2λi−1ui + λiui−1 − λi−1ui−2 − λiui+1

16

∣∣∣∣
Rearranging the terms ui+ui+1

2 and ui−1+ui

2 yields

=
∑
i

∣∣∣∣ui+1 − ui
2 + λiui+1 + λi+1ui − λiui−1 − λi+1ui+2

16 + κ
ui − ui+1

2

+ (κ3 − κ)λi(ui+1 + ui−1 − 2ui)− λi+1(ui+2 + ui − 2ui+1)
48

− κ2λiui+1 + λi+1ui − λiui−1 − λi+1ui+2

16

+ ui − ui−1

2 − λi−1ui + λiui−1 − λi−1ui−2 − λiui+1

16 − κui−1 − ui
2

− (κ3 − κ)λi−1(ui + ui−2 − 2ui−1)− λi(ui+1 + ui−1 − 2ui)
48

+ κ2λi−1ui + λiui−1 − λi−1ui−2 − λiui+1

16

∣∣∣∣

Abhigyan Ghosh 39

Similarly to the proof of Nessyahu-Tadmor, I will rewrite ui − ui−1 = ∆ui−1/2
and ui+1 − ui = ∆ui+1/2 and factor these out.

=
∑
i

∣∣∣∣∆ui+1/2

(
1
2 + λiui+1 + λi+1ui − λiui−1 − λi+1ui+2

16(∆ui+1/2) + κ
1
2

+ (κ3 − κ)λi(ui+1 + ui−1 − 2ui)− λi+1(ui+2 + ui − 2ui+1)
48(∆ui+1/2)

− κ2λiui+1 + λi+1ui − λiui−1 − λi+1ui+2

16(∆ui+1/2)

)
+ ∆ui−1/2

(
1
2 −

λi−1ui + λiui−1 − λi−1ui−2 − λiui+1

16(∆ui−1/2) − κ1
2

− (κ3 − κ)λi−1(ui + ui−2 − 2ui−1)− λi(ui+1 + ui−1 − 2ui)
48(∆ui−1/2)

+ κ2λi−1ui + λiui−1 − λi−1ui−2 − λiui+1

16(∆ui−1/2)

)∣∣∣∣
Next I will define the terms in the brackets to be 1

2 +Ei+1/2 and 1
2 −Ei−1/2 to

simplify.

=
∑
i

∣∣∣∣∆ui+1/2 ·
(

1
2 + Ei+1/2

)
+ ∆ui−1/2 ·

(
1
2 − Ei−1/2

) ∣∣∣∣
≤
∑
i

∣∣∣∣∆ui+1/2 ·
(

1
2 + Ei+1/2

) ∣∣∣∣+
∣∣∣∣∆ui−1/2 ·

(
1
2 − Ei−1/2

) ∣∣∣∣
Assuming the values in the brackets are non-negative I take them out of the
absolute value.

≤
∑
i

|∆ui+1/2|
(

1
2 + Ei+1/2

)
+ |∆ui−1/2| ·

(
1
2 − Ei−1/2

)
As in the previous proof, I will write the sum out and collect all terms with
∆ui+1/2 to obtain

=
∑
i

|∆ui+1/2| ·
(

1
2 + Ei+1/2 + 1

2 − Ei+1/2

)
=
∑
i

|∆ui+1/2| ·
(

1
2 + 1

2

)
=
∑
i

|∆ui+1/2|

=
∑
i

|ui+1 − ui|

= TV(un) (98)

Abhigyan Ghosh 40

Again as before I am left to prove that the values |Ei| ≤ 1
2 , since only then the

proof works. I will divide Ei+1/2 into several terms and estimate each of the
terms individually.

|Ei+1/2| =
∣∣∣∣λiui+1 + λi+1ui − λiui−1 − λi+1ui+2

16(∆ui+1/2) + κ
1
2

+ (κ3 − κ)λi(ui+1 + ui−1 − 2ui)− λi+1(ui+2 + ui − 2ui+1)
48(∆ui+1/2)

− κ2λiui+1 + λi+1ui − λiui−1 − λi+1ui+2

16(∆ui+1/2)

∣∣∣∣
≤
∣∣∣∣λiui+1 + λi+1ui − λiui−1 − λi+1ui+2

16(∆ui+1/2)

∣∣∣∣ (99a)

+
∣∣∣∣κ1

2

∣∣∣∣ (99b)

+
∣∣∣∣(κ3 − κ)λi(ui+1 + ui−1 − 2ui)− λi+1(ui+2 + ui − 2ui+1)

48(∆ui+1/2)

∣∣∣∣ (99c)

+
∣∣∣∣κ2λiui+1 + λi+1ui − λiui−1 − λi+1ui+2

16(∆ui+1/2)

∣∣∣∣ (99d)

First I will evaluate (99a).∣∣∣∣λiui+1 + λi+1ui − λiui−1 − λi+1ui+2

16(∆ui+1/2)

∣∣∣∣
=
∣∣∣∣λi(ui+1 − ui−1) + λi+1(ui − ui+2)

16(∆ui+1/2)

∣∣∣∣
=
∣∣∣∣λi(ui+1 − ui + ui − ui−1) + λi+1(ui − ui+1 + ui+1 − ui+2)

16(∆ui+1/2)

∣∣∣∣
=
∣∣∣∣λi(∆ui+1/2 + ∆ui−1/2)− λi+1(∆ui+1/2 + ∆ui+3/2)

16(∆ui+1/2)

∣∣∣∣
≤
∣∣∣∣λi(∆ui+1/2 + ∆ui−1/2)

16(∆ui+1/2)

∣∣∣∣+
∣∣∣∣λi+1(∆ui+1/2 + ∆ui+3/2)

16(∆ui+1/2)

∣∣∣∣ (100)

Next I will use the inequalities

|λi| =
∣∣∣∣min

(
3 ui−1 − ui

2ui−1 − ui − ui+1
, 3 ui+1 − ui

2ui+1 − ui − ui−1

)∣∣∣∣
=
∣∣∣∣min

(
3

∆ui−1/2

2∆ui−1/2 + ∆ui+1/2
, 3

∆ui+1/2

2∆ui+1/2 + ∆ui−1/2

)∣∣∣∣
≤
∣∣∣∣3 ∆ui+1/2

2∆ui+1/2 + ∆ui−1/2

∣∣∣∣ (101)

Abhigyan Ghosh 41

and

|λi+1| =
∣∣∣∣min

(
3 ui − ui+1

2ui − ui+1 − ui+2
, 3 ui+2 − ui+1

2ui+2 − ui+1 − ui

)∣∣∣∣
=
∣∣∣∣min

(
3

∆ui+1/2

2∆u1+1/2 + ∆ui+3/2
, 3

∆ui+3/2

2∆ui+3/2 + ∆ui+1/2

)∣∣∣∣
≤
∣∣∣∣3 ∆ui+1/2

2∆ui+1/2 + ∆ui+3/2

∣∣∣∣ (102)

Note that I can obtain inequalities (101) and (102) only because I know that
the λi-values are non-negative. Plugging this into (100) gives us∣∣∣∣λi (∆ui+1/2 + ∆ui−1/2)

16(∆ui+1/2)

∣∣∣∣+
∣∣∣∣λi+1

(∆ui+1/2 + ∆ui+3/2)
16(∆ui+1/2)

∣∣∣∣
≤
∣∣∣∣ 3
16 ·

∆ui+1/2

2∆ui+1/2 + ∆ui−1/2
·

∆ui+1/2 + ∆ui−1/2

∆ui+1/2

∣∣∣∣
+
∣∣∣∣ 3
16 ·

∆ui+1/2

2∆ui+1/2 + ∆ui+3/2
·

∆ui+1/2 + ∆ui+3/2

∆ui+1/2

∣∣∣∣
=
∣∣∣∣ 3
16 ·

∆ui+1/2 + ∆ui−1/2

2∆ui+1/2 + ∆ui−1/2

∣∣∣∣+
∣∣∣∣ 3
16 ·

∆ui+1/2 + ∆ui+3/2

2∆ui+1/2 + ∆ui+3/2

∣∣∣∣
We know that ∆ui+1/2 and ∆ui−1/2 have the same sign, since otherwise the
λi-value would be 0. This means that

∣∣∣ ∆ui+1/2+∆ui−1/2
2∆ui+1/2+∆ui−1/2

∣∣∣ ≤ 1. Similarly∣∣∣ ∆ui+1/2+∆ui+3/2
2∆ui+1/2+∆ui+3/2

∣∣∣ ≤ 1. Using this yields

∣∣∣∣ 3
16 ·

∆ui+1/2 + ∆ui−1/2

2∆ui+1/2 + ∆ui−1/2

∣∣∣∣+
∣∣∣∣ 3
16 ·

∆ui+1/2 + ∆ui+3/2

2∆ui+1/2 + ∆ui+3/2

∣∣∣∣
≤ 3

16 + 3
16 = 3

8 (103)

Abhigyan Ghosh 42

I can not simplify (99b) so I will move on to (99c). Factoring out |κ3 − κ| and
using the inequalities (101) and (102) for the λi-values yields∣∣∣∣(κ3 − κ)λi(ui+1 + ui−1 − 2ui)− λi+1(ui+2 + ui − 2ui+1)

48(∆ui+1/2)

∣∣∣∣
=|κ3 − κ|

∣∣∣∣λi(∆ui+1/2 −∆ui−1/2)− λi+1(∆ui+3/2 −∆ui+1/2)
48(∆ui+1/2)

∣∣∣∣
≤|κ3 − κ|

(∣∣∣∣λi (∆ui+1/2 −∆ui−1/2)
48(∆ui+1/2)

∣∣∣∣+
∣∣∣∣λi+1

(∆ui+3/2 −∆ui+1/2)
48(∆ui+1/2)

∣∣∣∣)
≤|κ3 − κ|

(∣∣∣∣ 3
48 ·

∆ui+1/2

2∆ui+1/2 + ∆ui−1/2
·

∆ui+1/2 −∆ui−1/2

∆ui+1/2

∣∣∣∣
+
∣∣∣∣ 3
48 ·

∆ui+1/2

2∆ui+1/2 + ∆ui+3/2
·

∆ui+3/2 −∆ui+1/2

∆ui+1/2

∣∣∣∣)
=|κ3 − κ|

(∣∣∣∣ 3
48 ·

∆ui+1/2 −∆ui−1/2

2∆ui+1/2 + ∆ui−1/2

∣∣∣∣+
∣∣∣∣ 3
48 ·

∆ui+3/2 −∆ui+1/2

2∆ui+1/2 + ∆ui+3/2

∣∣∣∣)
≤ 3

48 |κ
3 − κ|

(|∆ui+1/2|+ |∆ui−1/2|
|2∆ui+1/2 + ∆ui−1/2|

+
|∆ui+3/2|+ |∆ui+1/2|
|2∆ui+1/2 + ∆ui+3/2|

)
(104)

Again using that ∆ui+1/2 and ∆ui−1/2 have the same signs, I can say that
|∆ui+1/2|+|∆ui−1/2|
|2∆ui+1/2+∆ui−1/2|

≤ 1 and analogously |∆ui+3/2|+|∆ui+1/2|
|2∆ui+1/2+∆ui+3/2|

≤ 1. This means
that

3
48 |κ

3 − κ|
(|∆ui+1/2|+ |∆ui−1/2|
|2∆ui+1/2 + ∆ui−1/2|

+
|∆ui+3/2|+ |∆ui+1/2|
|2∆ui+1/2 + ∆ui+3/2|

)
≤ 3

48 |κ
3 − κ|(1 + 1) = 1

8 |κ
3 − κ| (105)

The last term (99d) is exactly the same as the first term (99a), if we factor out
|κ2|. This means that∣∣∣∣κ2λiui+1 + λi+1ui − λiui−1 − λi+1ui+2

16(∆ui+1/2)

∣∣∣∣ ≤ |κ2|38 (106)

Abhigyan Ghosh 43

Putting all estimations into (99) yields∣∣∣∣λiui+1 + λi+1ui − λiui−1 − λi+1ui+2

16(∆ui+1/2)

∣∣∣∣
+
∣∣∣∣κ1

2

∣∣∣∣
+
∣∣∣∣(κ3 − κ)λi(ui+1 + ui−1 − 2ui)− λi+1(ui+2 + ui − 2ui+1)

48(∆ui+1/2)

∣∣∣∣
+
∣∣∣∣κ2λiui+1 + λi+1ui − λiui−1 − λi+1ui+2

16(∆ui+1/2)

∣∣∣∣
≤ 3

8 + |κ|12 + |κ3 − κ|18 + |κ2|38 (107)

This term still has to be smaller than 1
2 . Since κ ∈ [0, 1] we know that |κ3−κ| =

κ− κ3. Solving the inequality gives us

3
8 + 1

2κ+ 1
8(κ− κ3) + 3

8κ
2 ≤ 1

2
3
8 + 4

8κ+ 1
8κ−

1
8κ

3 + 3
8κ

2 ≤ 4
8

3 + 4κ+ κ− κ3 + 3κ2 ≤ 4
−κ3 + 3κ2 + 5κ− 1 ≤ 0

This gives us the value

κ ≤ 0.18144 (108)

Abhigyan Ghosh 44

B Used Theorems
First fundamental theorem of calculus
Let f be continuous on the closed interval [a, b] and let F be the indefinite
integral of f on [a, b]. Then∫ b

a

f(x)dx = F (b)− F (a) (109)

Second fundamental theorem of calculus
Let f be a continuous function on an open interval I. Let a be any point in I.
Let

F (x) :=
∫ x

a

f(t)dt (110)

then
F ′(x) = d

dx

∫ x

a

f(t)dt = f(x). (111)

Schwarz’ Theorem - equality of mixed partials
Let f be a function of x and y. Let fxy and fyx both be continuous in an open
disk R. Then

fxy(x, y) = fyx(x, y) ∀(x, y) ∈ R (112)

Abhigyan Ghosh 45

C Source code
The following is the code from Scilab which was used to compute the develop-
ment of the ui-values. The code was written by myself.

// s e t t i n g s
clear a l l ;
c l f ;
n=10; //Number o f c e l l s between two i n t e g e r s
a=−1; // I n t e r v a l boundary
b=11;
v=3; // v e l o c i t y
i t e r =100; // i t e r a t i o n s
ve r s i on =1; // s t a r t d i s t r i b u t i o n
a lgor i thm=3; //1−constant , 2− l i n ea r , 3−quadrat ic , 4− o s c i l l a t i o n s
k=0.2; //kappa−va lue

function f=minmod(a , b)
i f a∗b<=0 then f=0
e l s e i f abs (a)>=abs (b) then f=b
else f=a
end

endfunction

de lx=1/n ;
amount=n∗(b−a)+1; //amount o f i n t e r v a l s
xdata = linspace (a , b , amount) //Even d i s t r i b u t i o n o f i n t e r v a l s in [a , b]
Un=zeros (amount , 1) ;
U=zeros (amount , 1) ;

//Def in ing s t a r t va l u e s
select ve r s i on

case 1 then
U(n+1:2∗n)=1; // f (x)=1 when 0<x<1, e l s e 0

case 2 then
function y = anything (x)
y (find (x < 0)) = 0 ;

x2 = x(0 <= x & x <= 1) ;
y (find (0 <= x& x<= 1)) = sin (x2∗%pi)^2 ;

y (find (1 < x)) = 0 ;

Abhigyan Ghosh 46

endfunction
// p l o t (xdata , anyth ing)

function g=ig (x)
g= x/2 − sin (2∗%pi∗x)/(4∗%pi) ;

endfunction
// p l o t (xdata , i g)

for i=n+1:1:2∗n
U(i)= i g ((i−n)∗ de lx)− i g ((i−n−1)∗de lx) ;
U(i)=U(i)/ de lx ;

end
end

plot (xdata , U, ’ . ’)

// S ta r t o f a l gor i thm
select a lgor i thm

case 1 then
// 1 . us ing cons tant f unc t i on s
de l t=k∗ de lx /(2∗v) ;

for j =1: i t e r
for i =1:amount−1

Un(i)=(U(i)+U(i +1))/2 + v∗ de l t ∗(U(i)−U(i +1))/ de lx ;
end

delete () ;
plot (xdata+delx /2 , Un, ’ g . ’) ;

for i =2:amount
U(i)=(Un(i−1)+Un(i))/2 + v∗ de l t ∗(Un(i−1)−Un(i))/ de lx ;

end

delete () ;
plot (xdata , U, ’ g . ’) ;

end
case 2 then

// 2 . us ing l i n e a r f unc t i on s
de l t=k∗ de lx /(2∗v) ;

for j =1: i t e r
S=zeros (amount , 1) ;

Abhigyan Ghosh 47

for i =2:amount−1
S(i)=minmod(U(i)−U(i −1) , U(i+1)−U(i)) ;

end
for i =2:amount−2

Un(i)=0.5∗(U(i)+U(i +1)) + 0 .125∗ (S(i)−S(i +1))
− de l t ∗v∗(U(i+1)−U(i))/ de lx − (d e l t ^2)∗(v^2)∗(S(i)−S(i +1))
∗0 . 5/ (de lx ^2) ;

end

delete () ;
plot (xdata+delx /2 ,Un, ’ . ’)

for i =2:amount−1
S(i)=minmod(Un(i)−Un(i −1) , Un(i+1)−Un(i)) ;

end

for i =2:amount−1
U(i)=0.5∗(Un(i−1)+Un(i)) + 0 .125∗ (S(i−1)−S(i))

− de l t ∗v∗(Un(i)−Un(i −1))/ de lx − (d e l t ^2)∗(v^2)∗(S(i−1)−S(i))
∗0 . 5/ (de lx ^2) ;

end

delete () ;
plot (xdata ,U, ’ . ’) ;

end
case 3 then

// 3 . us ing quadra t i c f unc t i on s
for j =1: i t e r

L=zeros (amount , 1) ;

for i =2:amount−1
i f (U(i)−U(i −1))∗(U(i+1)−U(i))<=0 then

L(i)=0;
else

L(i)=3∗min((U(i+1)−U(i))/ (2∗U(i+1)−U(i)−U(i −1)) ,
(U(i−1)−U(i))/ (2∗U(i−1)−U(i)−U(i +1))) ;

end
end

for i =2:amount−2
Un(i)=0.0625∗(L(i)∗U(i+1)+L(i +1)∗U(i)−L(i)∗U(i −1)

−L(i +1)∗U(i +2))+0.5∗(U(i)+U(i +1))+ k ∗0 . 5∗ (U(i)−U(i +1))

Abhigyan Ghosh 48

+(k^3−k)∗ (L(i)∗ (U(i+1)+U(i −1)−2∗U(i)) − L(i +1)∗(U(i +2)
+U(i)−2∗U(i +1)))/48 −k^2∗0.0625∗(L(i)∗U(i+1)+L(i +1)∗U(i)
−L(i)∗U(i−1)−L(i +1)∗U(i +2)) ;

end

delete () ;
plot (xdata+delx /2 ,Un, ’ r . ’) ;

for i =2:amount−1
i f (Un(i)−Un(i −1))∗(Un(i+1)−Un(i))<=0 then

L(i)=0;
else

L(i)=3∗min((Un(i+1)−Un(i))/ (2∗Un(i+1)−Un(i)−Un(i −1)) ,
(Un(i−1)−Un(i))/ (2∗Un(i−1)−Un(i)−Un(i +1))) ;

end
end

for i =3:amount−1
U(i)=0.0625∗(L(i −1)∗Un(i)+L(i)∗Un(i−1)−L(i −1)∗Un(i −2)

−L(i)∗Un(i +1))+0.5∗(Un(i−1)+Un(i)) + k ∗0 . 5∗ (Un(i−1)−Un(i))
+(k^3−k)∗ (L(i −1)∗(Un(i)+Un(i −2)−2∗Un(i −1)) − L(i)∗ (Un(i +1)
+Un(i −1)−2∗Un(i)))/48 −k^2∗0.0625∗(L(i −1)∗Un(i)+L(i)
∗Un(i−1)−L(i −1)∗Un(i−2)−L(i)∗Un(i +1)) ;

end

delete () ;
plot (xdata ,U, ’ r . ’) ;

end
case 4 then

for j =1: i t e r

d e l t=k∗ de lx /(2∗v) ;
for i =2:amount−1

Un(i)=−a∗ de l t ∗0 . 5∗ (U(i+1)−U(i −1))/ de lx+U(i) ;
end
delete () ;
plot (xdata ,U, ’ k . ’) ;
for i =2:amount−1

U(i)=−a∗ de l t ∗0 . 5∗ (Un(i+1)−Un(i −1))/ de lx+Un(i) ;
end

delete () ;

Abhigyan Ghosh 49

plot (xdata ,U, ’ k . ’) ;
end

end

disp ("U") ;
disp (U) ;

rc2
\

I

I
4,\ a

{,"

J''il^4
ve;ri

Ci'=

o

,1.t
6#f "- -t

L,!^ {'.t

Vpa,o,-. {,n i& 0r l-
)

F4^&; ['r ,

d

Y*v/F-
tr44,J

I/n, t^-1 Y ,A*:

.l{.V

J na [t,-,., x)
,A"n !z

.

e',- Ax /r";1.:(

',/V'^
a

('{r, *,..) - |t^ttrY, \ l*l^

rA;* *
Z

**----\r-*--=---J\-
**^"J

J^

l{,.,x) /" +

{.,

+ oo([trri.]-{(**,\
**_-,-r

n -h, Cf-t I$"J,

A/!\

^14 ^-
,{^+n \.''_.*___*.__lzl

/ltl",

I
=ry IL,

{
At
AN

A&,'+,r
A

Z

r.At I

{a
7

I ,".

(l""' +" ,:) -{

o Vr:lt= - 7t1*i'h '

4a^ f \ *
A,,lt \xl-

1^1',,,* pr(u

lr
{{,

(ln .r r

4x - &^.*;'
t.

Xh,f""X.f"..^*- *^f t(r {*J

/;, i'',cr.r.-W *,{-,'*"*" V*"lutLr.U

14:t' (Aiz',*i;lk-)
r -f, . {:I- ^, Ahgr:r}n ?q

X.fu. o"
z

Cr"

'(nn n

J -l I n {{, x,,.)) --{ r,,x /{, v,,)) d#
'ftr ^-.\+-*^--.-**--.

-,
A lr Ytr-a . Yl^'^& *'^(e,{f4/Yf{

(r,-q,-) rAf
$f.r:)-{(^i.,3)

Abhigyan Ghosh 50

D Lecture notes

J rlq ftr)/*
d4.

,trTr^= t(nu'n+"i,)+ -! tS,-J,*.)

r^^i'-{ nt^" 1 = ;^i -- S -&

.t {*l-u}J ; p- {,.\ - -- - & oo

\ '/

1

;* >- 4t^l N=-LMx -: A'^- ?l'-l '[*") *

/,1*-{'(^u1'd

W'-a'l{

u; Lt) = ,L(^ + '

\

(,';:;){(;',,

i

,#(
'l' o^:

V ^= ["y-
^i, ^1o

,,fr

,.;':

{n*t

! *t* 8. {"t

,,L'i f

\l*-, \1r,{ ".,'L-' v\e- N**/nl1 * Y^*kon (

j*,. Tvtl- Vr{, Lue..^-

S, s n^;^^^*J (a,,*'l*

J& cFt*l)'-,,{

/r.,. - { n / \
rrkur\ l/ 7r)('t'"^1ileVtu\ t

I

0< lk {

"t,4 ,^ j .

J c-A J.f , A ru'lu \
J".

t^*l

At'{"^P^.{i.t

*.J

4 lra ,'\-) 1\,{'"'l \.= 0 24,.,<_ \ ,./

L9"'
^.' r'|r{ A1yytxJ^-o'{';!* \'^,,r^ n:*n"

'\

Abhigyan Ghosh 51

f,,o""**r.'* ',

-fV(t'"u) =: 5- | ';;; *
^:"; I

2 1
2 (r,^n-A)

,4+'t
n"f'
A.n

t" I hr *rr-")

(s,*. * s,) -+- I
B

({ rr",i) -,f r,r''"")) . # {{("**) +{";:ij

('</"
fadl=lal.fi A
i.ft abTro I f

Fry-"r*Zo \

! 2'_ t,.rE.'i i \ i* tJF*;l \;!n
: ,: ino,:^-; I - -r-V (^^)

D ,t t,.r-ut" ua"-*r-l.*
"a

*",&
--rhJtrLu.

'

l^ Jl (lrl. lbl d

€.-* !+i
z.

\< l^ \r,
e vl

Af,t"+)

A-b-
+

AX
| (&,;1) -{(ld,t

= \l'('"f) I

| ,^*l rr

,l^"n- ll
t4

Abhigyan Ghosh 52

Arr', { M* €

, nx 4/L/wi :

q

€>

*=+

^r!1, lh- "
I

)e

F,t
I Mu i

Wnnn

/Ai Si

.-h*)

/k,

'fr$'(^^)

c(4zs2
. Y .ArMAACV

AY
7?

- nfuk'")

r4l+
) ln

=+ d^** €

=+ 1 1'/*-)

'(,'u')

V^

n :4 S, = y,,!^^^-ol(

{w
^|(n

* v^

o
- I r,,; s,,-.- 9, Iffi;\r x

I 5,1 = 1
,rr;*{ (ar"'! , au^,;) [

\ S,'.-j l. l&;"*t (o*,nr, oq-il I n l6q.g I

*.i *'o, , r l+ /n

1
1"';=- !:' 1 l i^-: - ffi 0"d@_t{-1)j
I aw-,i I ll 4vt^r2

K +=L_t!pI AM.'nt. | -

t<+ *tL **{
11't,,u4(- Mr, ?

A44+t

:l

lf,*,
'2. "Yr!:lf .:.f: L,"

r K_?_9_ _ *..:---\ *
*

() *I t\{ ; -= c,24,,,,,

+

Abhigyan Ghosh 53

Abhigyan Ghosh 54

Figures
All Figures in my Extended Essay were made by myself using the free softwares
Scilab and PhotoFiltre.

References
[1] R. LeVeque, Numerical Methods for Conservation Laws. Birkhäuser Ver-

lag, Basel (1992)

[2] R. Massjung, Numerik von Transportgleichungen. Unpublished lecture
notes. RWTH Aachen (2003) [see Appendix D]

[3] H. Nessyahu, E. Tadmor, Non-oscillatory Central Differencing for Hy-
perbolic Conservation Laws. Journal of Computational Physics, Vol. 87,
408–463 (1990)

