
Stochastic processes
and their applications in Economics

Patrick Gagliardini
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Introduction

A stochastic process is a collection of random variables Yt indexed by
time t

Beautiful mathematical theory with relevant applications in many
domains: physics, chemistry, biology (e.g. Brownian motion),
meteorology, engineering sciences, .... and economics

Why are economists (and social scientists) interested in stochastic
processes?
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Introduction

Economics deals with intertemporal decisions under uncertainty,
i.e. with time and risks!

An agent’s decision today has an effect today and in the future

In real life situations, the agent’s opportunity set is subject to
uncertainty (randomness)

Example: decision to buy a new house

Stochastic processes yield the mathematical language to describe
risks evolving in time
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Stochastic processes: definition

An underlying probability space (Ω,F ,P)

A stochastic process is a collection of random variables (or vectors, or
matrices)

{Yt : t ∈ T }

valued in some space Y

The index set may be continuous e.g. T = [0,∞) or discrete e.g.
T = N

For any given t ∈ T , we have a random variable (vector, matrix)
Yt : Ω → Y

For any given ω ∈ Ω, we have a time series of realizations
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White Noise processes

A White Noise is a stochastic process with Yt independent and
identically distributed (i.i.d.) across t = 0, 1, 2, ...

Gaussian White Noise: Yt i.i.d. N(0, σ2), i.e. Y = R and

f (y) =
1√
2πσ2

exp

(
− 1

2σ2
y2

)

Bernoulli process: Yt i.i.d. B(1, p), i.e. Y = {0, 1} and
P(Yt = 1) = p
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Markov process

Serial dependence means that the density of Yt depends on the past
realizations Yt−1,Yt−2, ...

f (Yt |Yt−1,Yt−2, ...)

For a Markov process of order p, only the p most recent lags matter

f (Yt |Yt−1,Yt−2, ...) = f (Yt |Yt−1,Yt−2, ...,Yt−p)
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Autoregressive process

Let Y = R. In an Auto-Regressive process of order p there is a linear
additive effect from p lags

Yt = ϕ1Yt−1 + ϕ2Yt−2 + ...+ ϕpYt−p + εt

where εt ∼ WN(0, σ2)

Example: AR(1) process

Yt = ϕYt−1 + εt

= εt + ϕεt−1 + ϕ2εt−2 + ...

if |ϕ| < 1.
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AR(1) process
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Markov chains

Definition 1

The stochastic process Yt is a (time homogenous) Markov chain if:

(i) it has a discrete state space Y = {1, 2, ...}, and
(ii) satisfies the Markov property (of order 1):

P(Yt = j |Yt−1,Yt−2, ....) = P(Yt = j |Yt−1)

Here we focus on Markov chains with finite state space Y = {1, 2, ..., J}

Patrick Gagliardini (USI) Stochastic processes in Economics September 14th, 2022 10 / 33



Transition matrix

The distribution of an homogenous Markov chain (Yt) is characterized by:

(1) The transition matrix P = [pi ,j ] where

pi ,j = P[Yt = i |Yt−1 = j ]

(2) The initial distribution vector µ = [µi ] where

µi = P[Y0 = i ]
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Example: A two-state Markov chain

P =

(
0.95 0.025
0.05 0.975

)
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How to simulate a path? Yt = 1(Ut ≤ p1,k) with Ut ∼ Unif (0, 1) and
k = Yt−1.
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Multi-period transition

Let P(h) = [p
(h)
i ,j ] denote the transition matrix at horizon h ≥ 1:

p
(h)
i ,j = P[Yt+h = i |Yt = j ]

Theorem 2

We have P(h) = Ph, h ≥ 1.

This is the Chapman-Kolmogorov theorem for Markov chains.
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Invariant distribution and stationarity

Definition 3

A vector ν = [ν1, ..., νJ ]
′ such that νj ≥ 0, for all j , and

J∑
j=1

νj = 1 is an

invariant distribution of the chain (Yt) if:

Pν = ν

that is, ν is an eigenvector of matrix P associated with the eigenvalue 1.

If Y0 ∼ ν then Yt ∼ ν for all t ≥ 0.
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Irreducible Markov chains

Definition 4

(i) State i is accessible from state j , denoted j → i , if p
(h)
ij > 0 for some

h ≥ 0.

(ii) States i and j communicate, denoted i ↔ j , if both j → i and i → j .

(iii) A time homogeneous Markov chain is irreducible if any two states
communicate: i ↔ j , for all i , j ∈ {1, ..., J}.
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Example of (non) irreducible chains

Consider the two stochastic matrices:

P1 =

 1/2 0 1
1/2 1/2 0
0 1/2 0

 , P2 =

 1/2 0 0
1/2 1/2 1
0 1/2 0

 .

The Markov chain associated with P1 is irreducible, while the one
associated with P2 is not!
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Ergodic theorem

Theorem 5

Let (Yt) be an irreducible homogeneous Markov chain with finite state
space and invariant distribution ν. Further, let f be a function on

{1, 2, ..., J} and E[f (Yt)] :=
J∑

j=1

νj f (j). Then, for any initial distribution:

lim
T→∞

1

T

T∑
t=1

f (Yt) → E[f (Yt)]

with probability 1.
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Business and stock market cycles

Economic recessions (grey) vs expansions (NBER)
Down-turning (red) vs up-turning stock market (Lunde, Timmermann
2004)
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Modeling the business cycles as a Markov chain

Let St = either 0 or 1 for the economy state: recession vs boom

Transition matrix

P =

(
p00 p01
p10 p11

)

Estimation (yearly data):

P̂ =

(
0.7550 0.0951
0.2450 0.9049

)
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State space models

Hamilton (1989)

yt an economic time series (e.g. GDP growth rate, or unemployment rate)

Consider the business cycle St = 0/1 as a latent (i.e. unobserved) state

Link yt to the latent state St plus an autocorrelated noise zt

yt = α0 + α1St + zt ,

zt = ϕ1zt−1 + ϕ2zt−2 + ...+ ϕpzt−p + εt
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State space models

Use the model to filter the state

P(St = 1|yt , yt−1, yt−2, ...)

or predict the future state

P(St+1 = 1|yt , yt−1, yt−2, ...)

Kitagawa-Hamilton filter
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Filtered probability of recession state St = 0 (Hamilton (1989))
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Modern approach: common factors from large models

Andreou, Gagliardini, Ghysels, Rubin (ECMA, 2019)
Blue - Quarterly growth rate of Industrial Production (IP) index, USA
Red - Annual growth rate of GDP, USA
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Corporate risks

Let Si ,t = either 0 or 1 for risk state of company i in year t (e.g.
investment vs speculative rating)

A state vector with n Markov chains

St =


S1,t
S2,t
...

Sn,t



How can we model the dependence between the companies?
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Rating downgrade probabilities (France: retail, wholesale)

Gagliardini, Gourieroux (JFEC 2005)
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Common factor

A model with a common factor

P(Si ,t = 1|Si ,t−1 = 1,Ft) =
1

1 + exp(a+ bFt)

where Ft follows a AR(1) model Ft = ϕFt−1 + εt
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Common factor vs contagion

Add a contagion effect

P(Si ,t = 1|Si ,t−1 = 1,Ft ,Nt−1) =
1

1 + exp(a+ bFt + cNt−1)

where Nt−1 =
∑n

i=1 Si ,t−1 is the number of companies in high risk state
at t − 1

Gagliardini, Gourieroux (JEDC 2013)
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Concluding remarks

Stochastic processes can model effectively intertemporal decisions
under uncertainty

Multiple steps in the analysis:

Model specification
Estimation and testing
Prediction

Do not forget model uncertainty!

Modern challenges: high-dimensional settings
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THANK YOU FOR YOUR ATTENTION!
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