# Eigenfaces

Tag über Mathematik und Unterricht, Bellinzona

Oliver Rietmann

ETH Zürich

#### What?

Manual for implementing a program for image compression and face recoginition in Python.

#### Who?

Single person or group work for a whole school class.

#### How?

Text with theoretical and practical exercises, including solutions. Template codes are provided and will be extended by the students.

Core question: How can a computer recognize faces?

# **Goals for the Students**

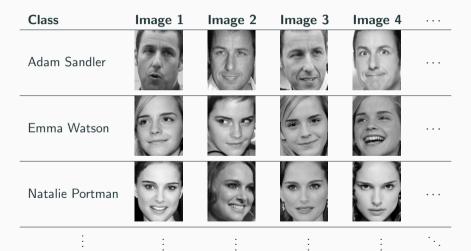
- Generalize vector geometry from  $\mathbb{R}^3$  to  $\mathbb{R}^n$ .
- Learn how to code in Python.

# **Goals for the Audience**

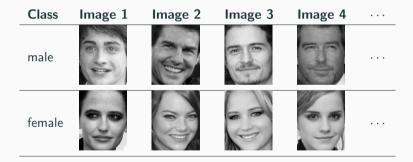
- Explain to another teacher what eigenfaces are.
- Name one application of eigenfaces.
- Get to know an application of linear algebra accessible for students.
- Have fun and look at a lot of pictures.

# Training Set

# The code learns how to classify from given training images.



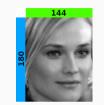
# The code learns how to classify from given training images.



# Image as Matrix

#### **Representation of Grayscale Images**

Map pixels to values between 0 (black) and 1 (white) and represent as  $M \times N$  matrix with entries  $p_{ij} \in [0, 1]$ .



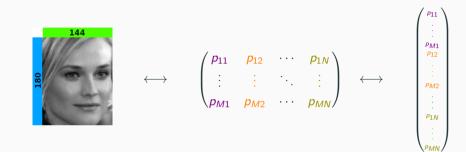
|               | ( <i>p</i> <sub>11</sub> | <b>p</b> <sub>12</sub> |   | $p_{1N}$          |
|---------------|--------------------------|------------------------|---|-------------------|
| $\rightarrow$ |                          | ÷                      | · | ÷ )               |
|               | $p_{M1}$                 | <b>р</b> <sub>М2</sub> |   | p <sub>MN</sub> ) |

# Example

Which image on the right is represented by the following matrix?

$$\begin{pmatrix} 1 & \frac{1}{4} \\ \frac{1}{2} & 0 \\ 0 & \frac{3}{4} \end{pmatrix}$$





Question: What is the following code doing to the image  $\vec{p}$ ?

```
1 def get_negative(p):
2 MN = len(p)
3 for i in range(MN):
4 p[i] = 1.0 - p[i]
5 return p
```

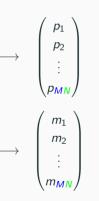


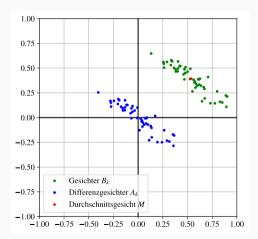


# Mean Face and Difference Faces

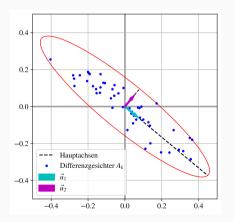
We can center the training images around the origin by subtracting the mean face.







# Principal component analysis using singular value decomposition yields eigenfaces.



Eigenfaces as images:  $\vec{p}_k = \sigma_k \vec{u}_k + \vec{m}$ 



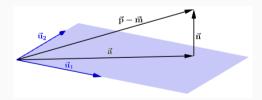
# Transition $\mathbb{R}^3 \longrightarrow \mathbb{R}^{M \cdot N}$ (projection onto eigenfaces)

New face image as supersposition of mean face and eigenfaces:  $c_k = \vec{u}_k \cdot (\vec{p} - \vec{m})$ 



# Use prior knowledge in $\mathbb{R}^3$

- linear combination
- scalar product
- orthogonality



# **Eigenfaces vs. Test Images**

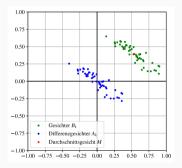
#### Observation

This can be done with any other (sufficiently large) set of images!

#### Question

Then what distinguishes the eigenfaces?

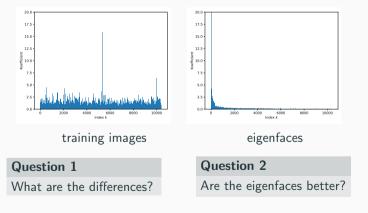
# Expansion w.r.t. the training images:

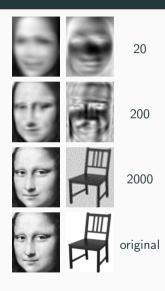




. . .

Absolute values  $|c_k|$  of the **coefficients** of the linear combination w.r.t. the training images and eigenfaces.





#### Literature

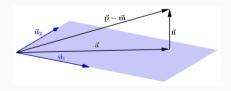
Turk, Pentland, Face Recognition Using Eigenfaces, 1991

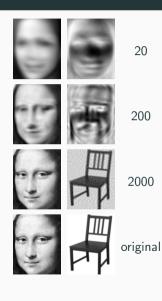
# Task

For a given image  $\vec{p}$ , decide if it shows a face.

#### Idea

If  $\vec{p}-\vec{m}$  lies almost in the subspace spanned by the first  $K \approx 2000$  eigenfaces, then it is probably a face.





#### Task

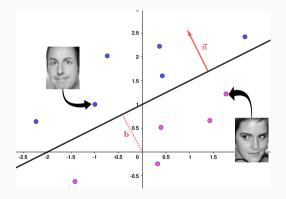
Given an image of a face (any person), determine the gender of the person.

# Structure

This is a binary classification problem.

#### Approach

Use a separating hyperplane: Male faces on one side and female faces on the other side.



# Step 1

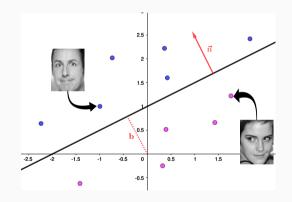
Compute  $\vec{n} \in \mathbb{R}^{M \cdot N}$  and *b*, such that

 $\{\vec{x} \mid \vec{x} \cdot \vec{n} + b = 0\}$ 

optimally separates the genders on the training images.

# Step 2

Given a new image  $\vec{p}$ , check on which side of the plain it is.



#### Problem

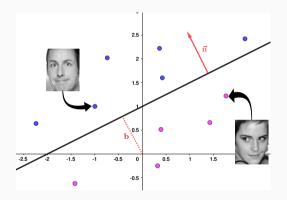
Normal  $\vec{n} \in \mathbb{R}^{M \cdot N}$  has too may parameters to optimize for. Recall: M = 180, N = 144

# Solution

Represent each image by its coefficient vector

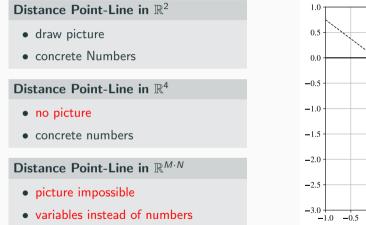
$$\vec{c} = (c_1, \ldots, c_K)^T$$

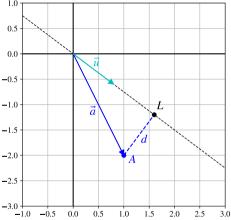
w.r.t. the first  $K \approx 2000$  eigenfaces.



# Didactical Aspects: Some Examples

# Transition $\mathbb{R}^3 \longrightarrow \mathbb{R}^{M \cdot N}$ (Distance Point-Line)





# Group work (Setting up the training images)

#### **Positive Interdependence**

The more training images, the better the result.

## Individual Accountability

If somebody provides wrong image files, the whole program won't work.

#### **Promotive Interaction**

The database is ready only when everyone is done. Hence faster students should help the slower students.

#### **Foster Interpersonal Skills**

Collaboration is only necessary when the results are assembled.

### **Group Processing**

Cutting pictures to the right resolution helps to see pictures as  $M \times N$  Matrix of pixels.

## Question

Name two differences and one similarity of the simplified picture on the right and the real situation (i.e. resolution M = 180 and N = 144).

#### Question

Can the difference-faces (blue) be rendered to images?



# Scaffolding

- Computing eigenfaces by SVD is too advanced  $\rightarrow$  eigenfaces as blackbox.
- Loading and saving images has nothing to do with mathematics  $\rightarrow$  code-templates.

# Interleaved practice

- blocked: Develop whole theory first, then write code.
- interleaved: Alternate between theory and programming.

## Holistic mental model confrontation

Compare simplified pictures in 3 dimensions with  $N \cdot M$  dimensions.

Eigenfaces ...

- 1. ... build on vector geometry in  $\mathbb{R}^3$ .
- 2. ... can visualize linear algebra in higher dimensions.
- 3. ... can be used as blackbox.
- 4. ... allow to explore linear alebra in higher dimensions.

https://educ.ethz.ch/unterrichtsmaterialien/mathematik/eigengesichter.html

https://github.com/OliverRietmann/eigenfaces\_latex

https://github.com/OliverRietmann/eigenfaces