Geometrie 1 & 2

Michael Graf, Heinz Klemenz

TMU Frauenfeld, 11. September 2019

Inhalt

- Entstehung und Überblick
- 2 Übersicht Geometrie 1
- 3 Übersicht Geometrie 2
- 4 Leitgedanken
- Beispiele

Entstehung

Entstehung

2007 - 2013

- 2014 Anfrage der DMK, Beginn der Überarbeitung
- 2017 Herausgabe des ersten Bandes durch den Orell Füssli Verlag
- 2019 Herausgabe des zweiten Bandes durch den Orell Füssli Verlag

Übersicht Geometrie 2

Leitgedanken OO

Uberblick

Umfang:

00000

- Aufgaben- und Lösungsband, Arbeitsblätter () in PDF-Form
- Aufgaben- und Lösungsband auch als e-Book OF-App für iOS oder Android (offline) oder im Browser (online) https://reader.ofv.ch
- PDF mit Arbeitsblättern im e-Book des Lösungsbands als Download enthalten

Uberblick

Entstehung und Überblick 00000

Umfang:

- Aufgaben- und Lösungsband, Arbeitsblätter () in PDF-Form
- Aufgaben- und Lösungsband auch als e-Book OF-App für iOS oder Android (offline) oder im Browser (online) https://reader.ofv.ch
- PDF mit Arbeitsblättern im e-Book des Lösungsbands als Download enthalten

Umfang:

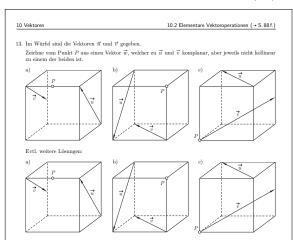
00000

- Aufgaben- und Lösungsband, Arbeitsblätter () in PDF-Form
 - 13. \square Im Würfel sind die Vektoren \overrightarrow{u} und \overrightarrow{v} gegeben.

Zeichne vom Punkt P aus einen Vektor \vec{w} , welcher zu \vec{u} und \vec{v} komplanar, aber jeweils nicht kollinear zu einem der beiden ist.

Umfang:

00000


- Aufgaben- und Lösungsband, Arbeitsblätter () in PDF-Form
 - 13. \square Im Würfel sind die Vektoren \overrightarrow{u} und \overrightarrow{v} gegeben.

Zeichne vom Punkt P aus einen Vektor \vec{w} , welcher zu \vec{u} und \vec{v} komplanar, aber jeweils nicht kollinear zu einem der beiden ist.

Entstehung und Überblick 00000

Umfang:

• Aufgaben- und Lösungsband, Arbeitsblätter () in PDF-Form

Uberblick

Umfang:

00000

- Aufgaben- und Lösungsband, Arbeitsblätter () in PDF-Form
- Aufgaben- und Lösungsband auch als e-Book OF-App für iOS oder Android (offline) oder im Browser (online) https://reader.ofv.ch
- PDF mit Arbeitsblättern im e-Book des Lösungsbands als Download enthalten

Uberblick

Entstehung und Überblick 00000

Umfang:

- Aufgaben- und Lösungsband, Arbeitsblätter () in PDF-Form
- Aufgaben- und Lösungsband auch als e-Book OF-App für iOS oder Android (offline) oder im Browser (online) https://reader.ofv.ch
- PDF mit Arbeitsblättern im e-Book des Lösungsbands als Download enthalten

Beispiele

Aufbau aller Kapitel im Aufgabenbuch:

- Diverse Unterkapitel
- Vermischte Aufgaben
 - Zum Repetieren
 - Zum Vertiefen und Erforschen
- Weiterführende Aufgaben

Am Ende des Buches:

Numerische Lösungen, Zeichen und Abkürzungen, Stichwortverzeichnis

Im Lösungsbuch:

Aufbau aller Kapitel im Aufgabenbuch:

- Diverse Unterkapitel
- Vermischte Aufgaben
 - Zum Repetieren
 - Zum Vertiefen und Erforschen
- Weiterführende Aufgaben

Am Ende des Buches:

• Numerische Lösungen, Zeichen und Abkürzungen, Stichwortverzeichnis

Im Lösungsbuch:

Aufbau aller Kapitel im Aufgabenbuch:

- Diverse Unterkapitel
- Vermischte Aufgaben
 - Zum Repetieren
 - Zum Vertiefen und Erforschen
- Weiterführende Aufgaben

Am Ende des Buches:

Numerische Lösungen, Zeichen und Abkürzungen, Stichwortverzeichnis

Im Lösungsbuch:

Aufbau aller Kapitel im Aufgabenbuch:

- Diverse Unterkapitel
- Vermischte Aufgaben
 - Zum Repetieren
 - Zum Vertiefen und Erforschen
- Weiterführende Aufgaben

Am Ende des Buches:

Numerische Lösungen, Zeichen und Abkürzungen, Stichwortverzeichnis

Im Lösungsbuch:

Aufbau aller Kapitel im Aufgabenbuch:

- Diverse Unterkapitel
- Vermischte Aufgaben
 - Zum Repetieren
 - Zum Vertiefen und Erforschen
- Weiterführende Aufgaben

Am Ende des Buches:

Numerische Lösungen, Zeichen und Abkürzungen, Stichwortverzeichnis

Im Lösungsbuch:

Beispiel: 3 Kongruenz von Figuren

Vorkenntnisse

Grundkonstruktionen, Grundlegendes der Kongruenzabbildungen

Inhalte

Kongruenz und Kongruenzsätze (3.1)

Umgangssprachlich:

Zwei Figuren sind kongruent (deckungsgleich), wenn man sie passend aufeinander legen kann.

Mathematische Definition:

Zwei Figuren F_1 und F_2 heissen **kongruent** ($F_1 \cong F_2$), wenn sie durch eine oder mehrere Kongruenzabbildungen (Spiegelungen, Drehungen, Verschiebungen) aufeinander abgebildet werden können.

Kongruenzsätze im Dreieck

Zwei Dreiecke sind kongruent, wenn sie

- 1. in allen drei Seiten übereinstimmen (SSS) od-
- 2. in zwei Seiten und dem Zwischenwinkel übereinstimmen (SWS) od
- 3. in einer Seite und den beiden anliegenden Winkeln übereinstimmen (WSW) od
- 4. in zwei Seiten und dem der grösseren Seite gegenüberliegenden Winkel übereinstimmen (SsW).


Bemerkung: Der Fall SWW kann auf den Fall WSW zurückgeführt werden (konstante Winkelsumme).

Inhaltsverzeichnis

Inhaltsverzeichnis

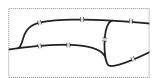
- Grundlagen der Geometrie
- @ Geometrische Abbildungen
- Songruenz von Figuren
- Flächen- und Volumenberechnung
- Die Satzgruppe im rechtwinkligen Dreieck
- Oer Kreis

Inhaltsverzeichnis

- Allette Darlanti S Feltabittalla S Act alle Allette Helizalla Mindalla Geometrie 1
- Allento la Placia la Placi

- Grundlagen der Geometrie
- @ Geometrische Abbildungen
- Songruenz von Figuren
- Flächen- und Volumenberechnung
- Die Satzgruppe im rechtwinkligen Dreieck
- O Der Kreis

Inhaltsverzeichnis



Mairicharladh Mainteachta Ma-aille Mille Mairiche Mairich

- Grundlagen der Geometrie
- @ Geometrische Abbildungen
- Songruenz von Figuren
- Flächen- und Volumenberechnung
- Oie Satzgruppe im rechtwinkligen Dreieck
- O Der Kreis
- Ähnlichkeit
- Trigonometrie
- Räumliche Geometrie
- Vektoren
- Analytische Geometrie

Aufbau:

- Einführung ►
- Grundbegriffe, Winkel
- Grundkonstruktionen
- Punktmengen

Aufbau:

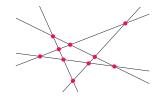
- Einführung ►
- Grundbegriffe, Winkel
- Grundkonstruktionen
- Punktmengen

Besonderes:

• Verschiedene Zugänge zur Geometrie ▶

Aufbau:

- Einführung ►
- Grundbegriffe, Winkel
- Grundkonstruktionen
- Punktmengen



Besonderes:

Verschiedene Zugänge zur Geometrie ►

Aufbau:

- Einführung ►
- Grundbegriffe, Winkel
- Grundkonstruktionen
- Punktmengen

Besonderes:

Verschiedene Zugänge zur Geometrie ►

Aufbau:

Entstehung und Überblick

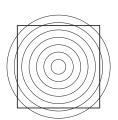
- Einführung ►
- Grundbegriffe, Winkel
- Grundkonstruktionen
- Punktmengen

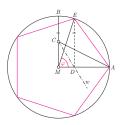
Besonderes:

Verschiedene Zugänge zur Geometrie ►

Aufbau:

Entstehung und Überblick

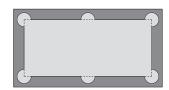

- Einführung ►
- Grundbegriffe, Winkel
- Grundkonstruktionen
- Punktmengen


Besonderes:

Verschiedene Zugänge zur Geometrie ►

Weiterführende Aufgaben:

- Regelmässige *n*-Ecke
- Konstruktion des regelmässigen Fünfecks ►
- Konstruierbarkeit von Winkeln, Winkeldreiteilung



Kapitel 2: Geometrische Abbildungen

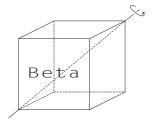
Aufbau:

Entstehung und Überblick

- Kongruenzabbildungen (Achsen- und Punktspiegelung, Drehung, Translation) ▶
- Symmetrie sowie Konstruktionen

Kapitel 2: Geometrische Abbildungen

Aufbau:


Entstehung und Überblick

- Kongruenzabbildungen
 (Achsen- und Punktspiegelung, Drehung, Translation)
- Symmetrie sowie Konstruktionen

Besonderes:

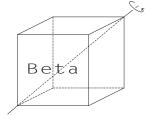
- Viele Vorlagenblätter
- Räumliche Aufgaben ►

Kapitel 2: Geometrische Abbildungen

Aufbau:

Entstehung und Überblick

- Kongruenzabbildungen (Achsen- und Punktspiegelung, Drehung, Translation) ►
- Symmetrie sowie Konstruktionen

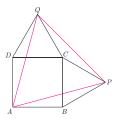


Besonderes:

- Viele Vorlagenblätter
- Räumliche Aufgaben ►

Weiterführende Aufgaben:

- Kreisinversion
- Faltgeometrie



Kapitel 3: Kongruenz von Figuren

Aufbau:

Entstehung und Überblick

- Kongruenzbegriff und Kongruenzssätze ►
- Besondere Linien und Punkte im Dreieck
- Dreieckskonstruktionen
- Vierecke und Viereckskonstruktionen

Kapitel 3: Kongruenz von Figuren

Aufbau:

Entstehung und Überblick

- Kongruenzbegriff und Kongruenzssätze ►
- Besondere Linien und Punkte im Dreieck
- Dreieckskonstruktionen
- Vierecke und Viereckskonstruktionen

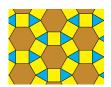
Besonderes:

• Eine Seite Dreieckskonstruktionen

Kapitel 3: Kongruenz von Figuren

Aufbau:

Entstehung und Überblick

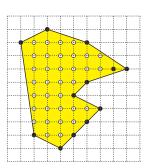

- Kongruenzbegriff und Kongruenzssätze ►
- Besondere Linien und Punkte im Dreieck
- Dreieckskonstruktionen
- Vierecke und Viereckskonstruktionen

Besonderes:

• Eine Seite Dreieckskonstruktionen

Weiterführende Aufgaben:

- Parkettierungen ►
- Kongruenzssätze für Vierecke

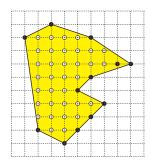


Kapitel 4: Flächen- und Volumenberechnung

Aufbau:

Entstehung und Überblick

- Längen- und Flächenmasse
- Quadrate, Rechtecke, Parallelogramme, Dreiecke, Trapeze und Drachenvierecke
- Flächenverwandlung und Flächenteilung
- Oberflächen- und Rauminhalte (halbe und ganze Quader)



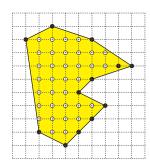
Kapitel 4: Flächen- und Volumenberechnung

Aufbau:

Entstehung und Überblick

- Längen- und Flächenmasse
- Quadrate, Rechtecke, Parallelogramme, Dreiecke, Trapeze und Drachenvierecke
- Flächenverwandlung und Flächenteilung
- Oberflächen- und Rauminhalte (halbe und ganze Quader)

Besonderes:


• Flächen- und Zerlegungsgleichheit

Kapitel 4: Flächen- und Volumenberechnung

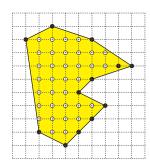
Aufbau:

Entstehung und Überblick

- Längen- und Flächenmasse
- Quadrate, Rechtecke, Parallelogramme, Dreiecke, Trapeze und Drachenvierecke
- Flächenverwandlung und Flächenteilung
- Oberflächen- und Rauminhalte (halbe und ganze Quader)

Besonderes:

• Flächen- und Zerlegungsgleichheit


Weiterführende Aufgaben:

■ Formel von Pick ►

Kapitel 4: Flächen- und Volumenberechnung

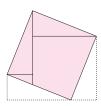
Aufbau:

- Längen- und Flächenmasse
- Quadrate, Rechtecke, Parallelogramme, Dreiecke, Trapeze und Drachenvierecke
- Flächenverwandlung und Flächenteilung
- Oberflächen- und Rauminhalte (halbe und ganze Quader)

Besonderes:

• Flächen- und Zerlegungsgleichheit

Weiterführende Aufgaben:

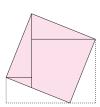

● Formel von Pick ►

$$A = i + \frac{1}{2}r - 1$$

Aufbau:

Entstehung und Überblick

- Satz von Pythagoras
- Höhensatz und Kathetensatz

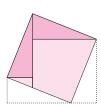


Aufbau:

Entstehung und Überblick

- Satz von Pythagoras
- Höhensatz und Kathetensatz

- Diverse Beweise ►
- Diverse r\u00e4umliche Anwendungen
- Kehrsatz des Satzes von Pythagoras
- Anwendung der Normalform von Wurzeltermen



Aufbau:

Entstehung und Überblick

- Satz von Pythagoras
- Höhensatz und Kathetensatz

- Diverse Beweise ►
- Diverse r\u00e4umliche Anwendungen
- Kehrsatz des Satzes von Pythagoras
- Anwendung der Normalform von Wurzeltermen

Aufbau:

Entstehung und Überblick

- Satz von Pythagoras
- Höhensatz und Kathetensatz

- Diverse Beweise ►
- Diverse r\u00e4umliche Anwendungen
- Kehrsatz des Satzes von Pythagoras
- Anwendung der Normalform von Wurzeltermen

Aufbau:

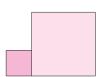
Entstehung und Überblick

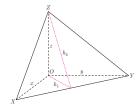
- Satz von Pythagoras
- Höhensatz und Kathetensatz

- Diverse Beweise ►
- Diverse r\u00e4umliche Anwendungen
- Kehrsatz des Satzes von Pythagoras
- Anwendung der Normalform von Wurzeltermen

Aufbau:

Entstehung und Überblick

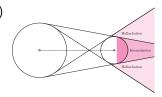

- Satz von Pythagoras
- Höhensatz und Kathetensatz


Besonderes:

- Diverse Beweise ►
- Diverse r\u00e4umliche Anwendungen
- Kehrsatz des Satzes von Pythagoras
- Anwendung der Normalform von Wurzeltermen

Weiterführende Aufgaben:

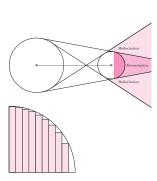
- Pythagoreische Tripel und Quadrupel ►
- Flächenformel von Heron



Kapitel 6: Der Kreis

Aufbau:

- 1. Teil: Konstruktionen (unabhängig von Kap. 5)
 - Tangenten, Sekanten, Sehnen ►
 - Tangenten- und Sehnenvierecke
 - Peripheriewinkelsatz, Ortsbogen

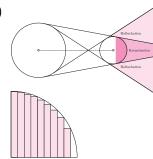


Kapitel 6: Der Kreis

Aufbau:

Entstehung und Überblick

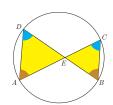
- 1. Teil: Konstruktionen (unabhängig von Kap. 5)
 - Tangenten, Sekanten, Sehnen ►
 - Tangenten- und Sehnenvierecke
 - Peripheriewinkelsatz, Ortsbogen
- 2. Teil: Berechnungen
 - Umfang und Flächeninhalt ►
 - Sektor, Segment, Bogenlänge


Kapitel 6: Der Kreis

Aufbau:

- 1. Teil: Konstruktionen (unabhängig von Kap. 5)
 - Tangenten, Sekanten, Sehnen ►
 - Tangenten- und Sehnenvierecke
 - Peripheriewinkelsatz, Ortsbogen
- 2. Teil: Berechnungen
 - Umfang und Flächeninhalt ►
 - Sektor, Segment, Bogenlänge

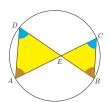
Weiterführende Aufgaben:


- Algorithmus zur Exhaustionsmethode von Archimedes ►
- Näherungskonstruktionen zur "Quadratur des Kreises"

$$s_{2n} = \frac{s_n}{\sqrt{2 + \sqrt{4 - s_n^2}}}$$

Aufbau:

- Verhältnisse und Proportionen
- Ähnliche Figuren
- Strahlensätze
- Zentrische Streckung

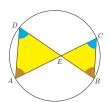

Aufbau:

Verhältnisse und Proportionen

WW-Satz:

Zwei Dreiecke sind genau dann winkelgleich, wenn sie gleiche Seitenverhältnisse haben.

- Ähnliche Figuren
- Strahlensätze
- Zentrische Streckung


Aufbau:

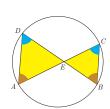
Verhältnisse und Proportionen

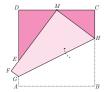
WW-Satz:

Zwei Dreiecke sind genau dann winkelgleich, wenn sie gleiche Seitenverhältnisse haben.

- Ähnliche Figuren
- ⇒ Strahlensätze
- ⇒ Zentrische Streckung

Aufbau:

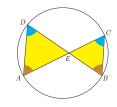

• Verhältnisse und Proportionen


WW-Satz:

Zwei Dreiecke sind genau dann winkelgleich, wenn sie gleiche Seitenverhältnisse haben.

- Ähnliche Figuren
- ⇒ Strahlensätze
- ⇒ Zentrische Streckung

- Die drei Hauptteile sind unabhängig voneinander und können in beliebiger Reihenfolge behandelt werden.
- Viele Anwendungen (Längenberechnung, Sätze und Beweise, Mittelwerte, Faltgeometrie, Optik)



Aufbau:

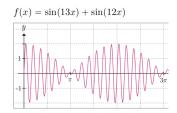
- Verhältnisse und Proportionen
- Ähnliche Figuren
- ⇒ Strahlensätze
- ⇒ Zentrische Streckung

Besonderes:

- Die drei Hauptteile sind unabhängig voneinander und können in beliebiger Reihenfolge behandelt werden.
- Viele Anwendungen (Längenberechnung, Sätze und Beweise, Mittelwerte, Faltgeometrie, Optik)

Weiterführende Aufgaben:

- Goldener Schnitt
- Logik

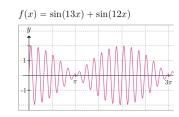

Aufbau (klassisch):

Entstehung und Überblick

- Rechtwinklige Dreiecke
- Funktionswerte beliebiger Winkel
- Allgemeine Dreiecke
- Additionstheoreme ► ③
- Graphen von trigonometrischen Funktionen ►
- Goniometrie

Aufbau (klassisch):

- Rechtwinklige Dreiecke
- Funktionswerte beliebiger Winkel
- Allgemeine Dreiecke
- Additionstheoreme ► 3
- Graphen von trigonometrischen Funktionen ►
- Goniometrie

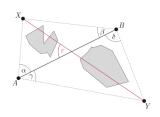


Aufbau (klassisch):

- Rechtwinklige Dreiecke
- Funktionswerte beliebiger Winkel
- Allgemeine Dreiecke
- Additionstheoreme ► 3
- Graphen von trigonometrischen Funktionen ►
- Goniometrie

Besonderes: Viele Anwendungen, z.B.

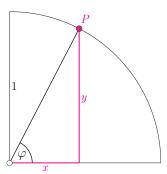
- Biorhythmus
- Ebbe und Flut
- Einparken
- Vermessung (Vorwärtseinschneiden) ►


Aufbau (klassisch):

- Rechtwinklige Dreiecke
- Funktionswerte beliebiger Winkel
- Allgemeine Dreiecke
- Additionstheoreme ► 6
- Graphen von trigonometrischen Funktionen ►
- Goniometrie

Besonderes: Viele Anwendungen, z.B.

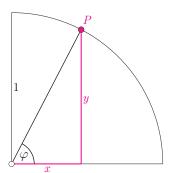
- Biorhythmus
- Ebbe und Flut
- Einparken
- Vermessung (Vorwärtseinschneiden) ►

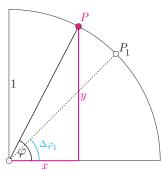

Weiterführende Aufgaben: Berechnung von trigonometrischen Werten

- Sehnentafeln von Ptolemaios
- Potenzreihen
- CORDIC-Algorithmus zur Berechnung von $y = \sin(\varphi)$ und $x = \cos(\varphi)$ •

Weiterführende Aufgaben: Berechnung von trigonometrischen Werten

- Sehnentafeln von Ptolemaios
- Potenzreihen

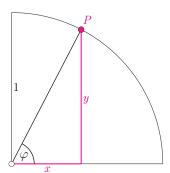

Entstehung und Überblick



Weiterführende Aufgaben: Berechnung von trigonometrischen Werten

- Sehnentafeln von Ptolemaios
- Potenzreihen

Entstehung und Überblick

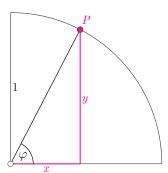


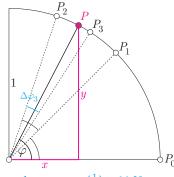
$$\Delta \varphi_1 = \arctan(1) = 45^\circ$$

Weiterführende Aufgaben: Berechnung von trigonometrischen Werten

- Sehnentafeln von Ptolemaios
- Potenzreihen

Entstehung und Überblick

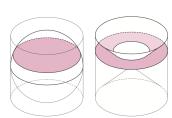



$$\Delta \varphi_2 = \arctan(\frac{1}{2}) \approx 26.5^{\circ}$$

Weiterführende Aufgaben: Berechnung von trigonometrischen Werten

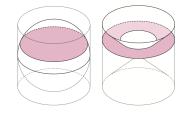
- Sehnentafeln von Ptolemaios
- Potenzreihen

Entstehung und Überblick


Aufbau:

Entstehung und Überblick

- Vorstellen im Raum
- Darstellen in Schrägbildern
- Konstruieren in Schrägbildern
- Stereometrie
 - Quader, Prismen, Zylinder
 - Prinzip von Cavalieri
 - Pyramiden, Kegel
 - Kugel ►

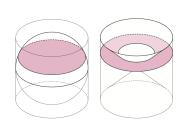

Aufbau:

- Vorstellen im Raum
- Darstellen in Schrägbildern
- Konstruieren in Schrägbildern
- Stereometrie
 - Quader, Prismen, Zylinder
 - Prinzip von Cavalieri
 - Pyramiden, Kegel
 - Kugel ►

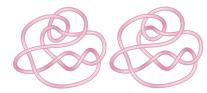
Aufbau:

- Vorstellen im Raum
- Darstellen in Schrägbildern
- Konstruieren in Schrägbildern
- Stereometrie
 - · Quader, Prismen, Zylinder
 - Prinzip von Cavalieri
 - Pyramiden, Kegel
 - Kugel ►

Besonderes: Viele Aufgaben zur Raumvorstellung, z.B.


- Mentale Rotation
- Deltaeder
- Schnittfiguren in Würfeln und Prismen
- Knoten ▶

Aufbau:


- Vorstellen im Raum
- Darstellen in Schrägbildern
- Konstruieren in Schrägbildern
- Stereometrie
 - · Quader, Prismen, Zylinder
 - Prinzip von Cavalieri
 - Pyramiden, Kegel
 - Kugel ►

- Mentale Rotation
 - Deltaeder
 - Schnittfiguren in Würfeln und Prismen
 - Knoten ►

Welcher ist der Unknoten?

Weiterführende Aufgaben:

Räumliches Konstruieren mit Ebenenlineal und Kugelzirkel

Im Raum kann man nicht direkt mit Zirkel und Lineal konstruieren. Wir stellen uns deshalb zusätzliche räumliche Werkzeuge vor, mit welchen wir räumliche Konstruktionen ausführen können: ein «Ebenenlineal» und einen «Kugelzirkel».

Damit lassen sich folgende räumliche Konstruktionen ausführen:

- (1) Gerade durch zwei gegebene Punkte konstruieren (Lineal)
- (2) Ebene durch drei gegebene Punkte konstruieren (Ebenenlineal)
- (3) Kugel um einen Punkt mit vorgegebenem Radius konstruieren (Kugelzirkel)
- (4) Schnittlinien von Flächen (Ebenen und Kugeln) konstruieren
- (5) Punkte auf Linien und Flächen setzen
- (6) In einer Ebene konstruieren (Zirkel und Lineal)

Weiterführende Aufgaben:

Entstehung und Überblick

Räumliches Konstruieren mit Ebenenlineal und Kugelzirkel ►

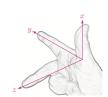
Im Raum kann man nicht direkt mit Zirkel und Lineal konstruieren. Wir stellen uns deshalb zusätzliche räumliche Werkzeuge vor, mit welchen wir räumliche Konstruktionen ausführen können: ein «Ebenenlineal» und einen «Kugelzirkel».

Damit lassen sich folgende räumliche Konstruktionen ausführen:

- (1)Gerade durch zwei gegebene Punkte konstruieren (Lineal)
- (2)Ebene durch drei gegebene Punkte konstruieren (Ebenenlineal)
- (3)Kugel um einen Punkt mit vorgegebenem Radius konstruieren (Kugelzirkel)
- (4)Schnittlinien von Flächen (Ebenen und Kugeln) konstruieren
- (5)Punkte auf Linien und Flächen setzen
- (6)In einer Ebene konstruieren (Zirkel und Lineal)

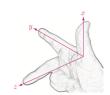
Beispiel:

Gegeben: Ebene E, Gerade g und Punkt P


Konstruiere die Gerade t, welche parallel zu E liegt, q schneidet und durch P geht.

Aufbau:

- Elementare Vektoroperationen (graphisch)
- Vektoren in Komponentendarstellung
- Grundoperationen (rechnerisch)
- Skalar-, Vektor- und Spatprodukt ►


Aufbau:

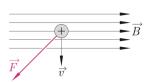
- Elementare Vektoroperationen (graphisch)
- Vektoren in Komponentendarstellung
- Grundoperationen (rechnerisch)
- Skalar-, Vektor- und Spatprodukt ►

Aufbau:

- Elementare Vektoroperationen (graphisch)
- Vektoren in Komponentendarstellung
- Grundoperationen (rechnerisch)
- Skalar-, Vektor- und Spatprodukt ►

Besonderes: Anwendungen auch ausserhalb der Mathematik

- Boot im Fluss, Flugzeug im Wind
- CH₄-Molekül und Symmetrien
- Planarität der C-Atome im Benzolmolekül
- Drehmoment, Lorentz-Kraft ►
- Korrelation von Latein-, Mathematik- und Physiknoten


Aufbau:

- Elementare Vektoroperationen (graphisch)
- Vektoren in Komponentendarstellung
- Grundoperationen (rechnerisch)
- Skalar-, Vektor- und Spatprodukt ►

Besonderes: Anwendungen auch ausserhalb der Mathematik

- Boot im Fluss, Flugzeug im Wind
- CH₄-Molekül und Symmetrien
- Planarität der C-Atome im Benzolmolekül
- Drehmoment, Lorentz-Kraft ►
- Korrelation von Latein-, Mathematik- und Physiknoten

$$\vec{F} = q \left(\vec{v} \times \vec{B} \right)$$

Weiterführende Aufgaben: Rechnen mit Matrizen und Vektoren

• Ziel: Erste Begegnung mit Matrizen und einfachen Rechenregeln

Weiterführende Aufgaben: Rechnen mit Matrizen und Vektoren

- Ziel: Erste Begegnung mit Matrizen und einfachen Rechenregeln
- Exemplarische Anwendungen

Entstehung und Überblick

Weiterführende Aufgaben: Rechnen mit Matrizen und Vektoren

- Ziel: Erste Begegnung mit Matrizen und einfachen Rechenregeln
- Exemplarische Anwendungen
 - Beispiel aus der Abbildungsgeometrie:

Erzeugung von perfekten Dreiecken (d.h. rechtwinkligen Gitter-Dreiecken mit ganzzahligen Seiten) im Raum z.B. mit der Matrix
$$\begin{pmatrix} 4 & 8 & -1 \\ 4 & -1 & 8 \\ 7 & -4 & -4 \end{pmatrix}$$
 mittels der Eckpunkte $(0,0,0)$, $(12,0,0)$ und $(0,5,0)$

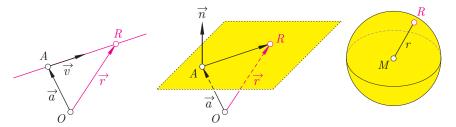
Entstehung und Überblick

Weiterführende Aufgaben: Rechnen mit Matrizen und Vektoren

- Ziel: Erste Begegnung mit Matrizen und einfachen Rechenregeln
- Exemplarische Anwendungen
 - Beispiel aus der Abbildungsgeometrie:

Erzeugung von perfekten Dreiecken (d.h. rechtwinkligen Gitter-Dreiecken mit ganzzahligen Seiten) im Raum z.B. mit der Matrix $\begin{pmatrix} 4 & 8 & -1 \\ 4 & -1 & 8 \\ 7 & 4 & 4 \end{pmatrix}$ mittels der Eckpunkte (0,0,0), (12,0,0) und (0,5,0)

 Beispiel aus der Populationsdynamik ► 3: Wachstum von Kaninchenpaaren nach Fibonacci mit der Matrix $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ und dem Anfangsvektor $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

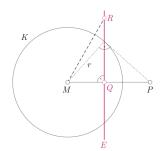

Aufbau (klassisch):

- Geraden und Kreise in der Ebene (nicht vektoriell)
- Geraden im Raum ►
- Ebenen ►
- Kugeln ►

Aufbau (klassisch):

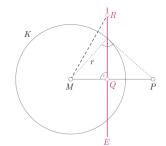
Entstehung und Überblick

- Geraden und Kreise in der Ebene (nicht vektoriell)
- Geraden im Raum ▶
- Ebenen ►
- Kugeln ►



Besonderes:

- Viele Lernaufgaben, um wesentliche Konzepte selbstständig zu erarbeiten
- Beispiele von Maturaufgaben
- Zum Vertiefen: Pol und Polarebene ►


Besonderes:

- Viele Lernaufgaben, um wesentliche Konzepte selbstständig zu erarbeiten
- Beispiele von Maturaufgaben
- Zum Vertiefen: Pol und Polarebene ►

Besonderes:

- Viele Lernaufgaben, um wesentliche Konzepte selbstständig zu erarbeiten
- Beispiele von Maturaufgaben
- Zum Vertiefen: Pol und Polarebene ▶

Weiterführende Aufgaben:

• Parameterdarstellungen von Raumkurven ▶ 9

 ${\sf Klassische\ Aufgabensammlungen:}$

Klassische Aufgabensammlungen:

• Die "Theorie" wird vorausgesetzt und impliziert eine vorgängige diesbezügliche Erarbeitung.

Klassische Aufgabensammlungen:

- Die "Theorie" wird vorausgesetzt und impliziert eine vorgängige diesbezügliche Erarbeitung.
- Eine klassische Aufgabensammlung hat oft den Charakter von Übungen, um die Theorie anzuwenden und die Inhalte zu festigen.

Klassische Aufgabensammlungen:

- Die "Theorie" wird vorausgesetzt und impliziert eine vorgängige diesbezügliche Erarbeitung.
- Eine klassische Aufgabensammlung hat oft den Charakter von Übungen, um die Theorie anzuwenden und die Inhalte zu festigen.

Geometrie 1 & 2:

Klassische Aufgabensammlungen:

- Die "Theorie" wird vorausgesetzt und impliziert eine vorgängige diesbezügliche Erarbeitung.
- Eine klassische Aufgabensammlung hat oft den Charakter von Übungen, um die Theorie anzuwenden und die Inhalte zu festigen.

Geometrie 1 & 2:

• Die Theorie ist oft eingebettet und die entsprechenden Aufgaben werden als Lernaufgaben bezeichnet, welche entweder selbstständig oder allenfalls teilweise im Klassenunterricht erarbeitet werden können.

Klassische Aufgabensammlungen:

- Die "Theorie" wird vorausgesetzt und impliziert eine vorgängige diesbezügliche Erarbeitung.
- Eine klassische Aufgabensammlung hat oft den Charakter von Übungen, um die Theorie anzuwenden und die Inhalte zu festigen.

Geometrie 1 & 2:

- Die Theorie ist oft eingebettet und die entsprechenden Aufgaben werden als Lernaufgaben bezeichnet, welche entweder selbstständig oder allenfalls teilweise im Klassenunterricht erarbeitet werden können.
- Die Aufgabensammlung hat vermehrt den Charakter von entdeckendem Üben mit dem Ziel, die Theorie zu erarbeiten.

Klassische Aufgabensammlungen:

- Die "Theorie" wird vorausgesetzt und impliziert eine vorgängige diesbezügliche Erarbeitung.
- Eine klassische Aufgabensammlung hat oft den Charakter von Übungen, um die Theorie anzuwenden und die Inhalte zu festigen.

Geometrie 1 & 2:

- Die Theorie ist oft eingebettet und die entsprechenden Aufgaben werden als Lernaufgaben bezeichnet, welche entweder selbstständig oder allenfalls teilweise im Klassenunterricht erarbeitet werden können.
- Die Aufgabensammlung hat vermehrt den Charakter von entdeckendem Üben mit dem Ziel, die Theorie zu erarbeiten.
- Daneben hat es natürlich auch viele klassische Übungen, um das vorher Erarbeitete zu festigen und anzuwenden.

Zum "Geist" der beiden Bände:

Beispiele

Zum "Geist" der beiden Bände:

• Der Geometrieunterricht im Gymnasium kann (und soll auch) nicht deduktiv aufgebaut sein.

- Der Geometrieunterricht im Gymnasium kann (und soll auch) nicht deduktiv aufgebaut sein.
- Heuristisches Vorgehen (Analysieren, Vermuten, Begründen, Reflektieren, ...)
 soll im Vordergrund sein.

- Der Geometrieunterricht im Gymnasium kann (und soll auch) nicht deduktiv aufgebaut sein.
- Heuristisches Vorgehen (Analysieren, Vermuten, Begründen, Reflektieren, ...)
 soll im Vordergrund sein.
- An vielen Stellen soll aber auch ein Beweisbedürfnis entwickelt werden.
 Geometrische Sätze werden dann aufbauend auf erworbenen Kenntnissen bewiesen. (im Sinne von Freudenthals "lokalem Ordnen")

- Der Geometrieunterricht im Gymnasium kann (und soll auch) nicht deduktiv aufgebaut sein.
- Heuristisches Vorgehen (Analysieren, Vermuten, Begründen, Reflektieren, ...)
 soll im Vordergrund sein.
- An vielen Stellen soll aber auch ein Beweisbedürfnis entwickelt werden.
 Geometrische Sätze werden dann aufbauend auf erworbenen Kenntnissen bewiesen. (im Sinne von Freudenthals "lokalem Ordnen")
- Die Geometrie eignet sich vorzüglich, um Problemlösefähigkeiten zu erwerben und diesbezügliche Strategien zu üben.

- Der Geometrieunterricht im Gymnasium kann (und soll auch) nicht deduktiv aufgebaut sein.
- Heuristisches Vorgehen (Analysieren, Vermuten, Begründen, Reflektieren, ...)
 soll im Vordergrund sein.
- An vielen Stellen soll aber auch ein Beweisbedürfnis entwickelt werden.
 Geometrische Sätze werden dann aufbauend auf erworbenen Kenntnissen bewiesen. (im Sinne von Freudenthals "lokalem Ordnen")
- Die Geometrie eignet sich vorzüglich, um Problemlösefähigkeiten zu erwerben und diesbezügliche Strategien zu üben.
- Das Aufgabenmaterial ist thematisch sehr breit gefächert und soll auch Individualisierung bzw. Spezialisierung ermöglichen.

Beispiele aus Geometrie 2

Die Beispiele eignen sich z.T. auch für kleinere Unterrichtsprojekte.

- Streckendrittelung durch Papierfalten mit dem Satz von Haga
- Orientierung mit dem GPS
- **3** Additionstheoreme selber herleiten
- Spatprodukt aus dem Skalar- und Vektorprodukt entwickeln
- 6 Silberne Rechtecke untersuchen
- **10** Näherungskonstruktion für Winkeldrittelung untersuchen
- 🕡 "edle" und "perfekte" Gitterdreiecke untersuchen
- 8 Kaninchenpopulation nach Fibonacci mit Hilfe einer Matrix untersuchen
- **9** Geschwindigkeit und Beschleunigung auf einer Schraubenlinie untersuchen