Wallpaper Stamps Step-by-Step Symmetry

Ana Cannas

ETH Zürich

TMU, Wettingen, 13. Sept. 2017

Have you ever been to Lisbon?

Restauradores

Rossio

Chiado

Stepping on Mathematics

?

Simplest symmetry features

The fishnet / grid pattern is preserved under certain mirror reflections.

There are three types of mirror crossings:

- ▶ 4 mirrors cross at the center of each white square;
- 4 mirrors cross at each black node;
- ▶ 2 mirrors cross at the center of each black edge.

A new look into the symmetries of things

Murray MacBeath

Bill Thurston

John H. Conway

Conway is the most avid prophet of the new geometric perspective on symmetry and devised the terminology and signature notation. The four fundamental **features of symmetry**

kaleidoscopes, gyrations, miracles & wonders

gyrations and wonders are true to orientation \longrightarrow blue

kaleidoscopes and miracles reflect \longrightarrow red

and their symbols: *, digits or ∞ , X and O

each symmetry type corresponds to a symbolic signature such as ***** 4 4 2 or 2 2 ***** or 4 4 2 or X X

KALEIDOSCOPES

***** a **b** c symbolizes mirrors crossing with angles <u>180°</u> <u>180°</u> <u>180°</u> <u>180°</u>

Examples *** 3 3 3**

A closer look at the fishnet pattern

the three representative mirror crossings have angles $\frac{180^\circ}{4}, \frac{180^\circ}{4}, \frac{180^\circ}{2}$

 \Rightarrow pattern signature ***** 4 4 2.

GYRATIONS

a b c symbolizes gyration points by angles $\frac{360^{\circ}}{a}$, $\frac{360^{\circ}}{b}$, $\frac{360^{\circ}}{c}$, which do not lie on any mirror line.

A closer look at the ropes pattern

is preserved by rotation about three points by angles $\frac{360^{\circ}}{4}, \frac{360^{\circ}}{4}, \frac{360^{\circ}}{2}$

MIRACLES

X represents a mirrorless crossing, i.e, a path from a point to a reflected copy of itself without ever touching a mirror line.

A closer look at the four-colour cobblestone pattern

has two miracles

 \implies signature XX

WONDERS

O (Oh! or zero) represents a pattern without kaleidoscopes, nor gyrations, nor miracles.

Examples

 \mathbf{O}

The four symmetry features in Escher's work

Kaleidoscopes

Miracles

Gyrations

Wonders

How to find a signature of a pattern

- 1. Mark one kaleidoscope corner of each type with a * and the number of mirrors through it.
- 2. Mark one gyration point of each type with a and its order.
- Can you walk from some point to a reflected copy of itself without ever touching a mirror line? If so, a miracle has occurred. Mark that path with a broken red line and a X.
- 4. If you've found none of the above, then there is a wonder. Mark it with **O**.

Friezes are analysed analogously

gyration point by angle $\frac{360^{\circ}}{2}$ infinite parallel mirrors cross at infinity

Back to Lisbon

442

22*

* 4 4 2

* 2 2

* **3**

* *

* 632

* 2 2 2 2 2

* X

* 4 4 2

And a few friezes

2 * ∞

 $* \infty \infty$

 $2~2~\infty$

 $\infty\infty$

17 types of plane patterns

7 types of friezes

(signatures not involving ∞)

(signatures involving ∞)

*632	632	*442	442	*333	*22∞	22∞	2∗∞
333	*2222	2222	4*2	3*3	2*22	*∞∞	∞∞
22*	**	*X	хх	22X	о	∞*	∞X

Menu: cost of the symmetry features

Symbol	Cost (Fr.)	Symbol	Cost (Fr.)
0	2	* or X	1
2	$\frac{1}{2}$	2	$\frac{1}{4}$
3	$\frac{2}{3}$	3	$\frac{1}{3}$
:	:	:	:
number n	$\frac{n-1}{n}$	number n	$\frac{n-1}{2n}$
∞	1	∞	$\frac{1}{2}$

For instance, 3 costs $\frac{2}{3}$ and * 3 costs $1 + \frac{1}{3} = \frac{4}{3}$.

The meal **2 2** ∞ costs $\frac{1}{2} + \frac{1}{2} + 1 =$ Fr. 2.

The meal *** 4 4 2** also costs $1 + \frac{3}{8} + \frac{3}{8} + \frac{1}{4} =$ Fr. 2.

Magic Theorem

the types of patterns and friezes are exactly those with signatures (meals) of total cost 2

- There are 4 features of symmetry: kaleidoscopes, gyrations, miracles and wonders.
- The magic theorem implies that there are: 17 types of plane patterns and 7 types of friezes.

Where does this come from?!

A closer look at the waves pattern

with its mirrors, gyrations and a chosen fundamental region

A closer look at the waves pattern

A closer look at the *fishnet* pattern

A closer look at the hopping and walking friezes

wallpaper stamp

Euler Characteristic of a surface

 $\chi = (\# vertices) - (\# edges) + (\# faces)$

is independent of

the chosen polygon subdivision!

Euler Characteristic of a spherical surface

(#vertices)-(#edges) + (#faces) = 2

Examples of surfaces

O^{*m*}*^{*n*}

*ⁿX^p

or

...

×	€ *X	X ²
$\chi = 1$	$\chi = 0$	$\chi = 0$

Any (bounded and connected) surface can be obtained from a sphere by

`__*^

***n**×p

or

- * punching holes (this introduces boundaries);
- O adding handles and
- X adding crosscaps, i.e. replacing disks by Möbius bands.

These operations affect the Euler Characteristic χ :

- punching a hole or adding a crosscap decrease χ by 1;
- adding a handle decreases χ by 2.

A 2-dim orbifold is a surface endowed with special points:

either cone points of order n or mirror points (along boundary lines) or corner reflectors of order n (intersection of n mirror lines).

$$\chi = (\# \text{vertices}) - (\# \text{edges}) + (\# \text{faces})$$

where now special vertices and edges are weighted:

- an edge on a mirror contributes $-\frac{1}{2}$ (and not -1);
- if a vertex is a cone point of order n it contributes $\frac{1}{n}$;
- ► a vertex on a mirror, but that is not a corner reflector, contributes ¹/₂;
- if a vertex is a corner refl. of order n it contributes $\frac{1}{2n}$;
- ▶ ordinary vertices and edges contribute 1 and −1, as before.

Any (2-dim) orbifold can be obtained from a surface by

- ► replacing some interior points by cone points and
- ► replacing some boundary points by corner reflectors.

Introducing orbifold points affects the Euler Characteristic χ :

- a cone point of order n decreases χ by $\frac{n-1}{n}$ and
- a corner reflector of order n decreases χ by $\frac{n-1}{2n}$.

Summary of the proof of the magic theorem

- Any pattern can be folded-up into an orbifold the stamp of that pattern – by taking all points of the same kind to a single point.
- The types of Euclidean plane patterns and friezes correspond one-to-one with the 2-dim. orbifolds having orbifold Euler characteristic zero.
- Every connected 2-dimensional orbifold can be obtained by surgery on a sphere: adding cone points, holes/mirror lines, corner reflectors, handles and cross-caps.
- ► The effect of adding such a feature to an orbifold has a certain cost on its Euler characteristic (see menu). The total cost should be 2, so that *χ* = 2 − cost = 0.

The 17+7 orbifolds with zero orbifold Euler characteristic

Symmetry-related activities

- Match patterns.
- ▶ Memo game: pattern pairs. And other games.
- ► Classify patterns by writing their signature.
- Design patterns from orbifolds see DVD.
- ► Check classif. of surfaces or other parts of the proof.
- **•** Extend to patterns on sphere or on hyperbolic plane.

Frieze fitness

References:

The Symmetries of Things book by Conway, Burgiel and Goodman-Strauss

Symmetry - the Dynamical Way
interactive software by www.atractor.pt

Symmetry Step by Step – Sidewalks of Portugal book by Ana Cannas

Acknowledgments:

► NEW TALENTS IN MATHEMATICS

a **Gulbenkian Foundation** program for early college students sponsoring math projects and summer schools since 2000.

- Many displayed photos of Lisbon were taken by João Ferrand.
- The survey of Lisbon sidewalks started in 2004 with the cooperation of Bruno Montalto (ETHZ PhD 2014) and Luís Alexandre Pereira (MIT PhD 2013).