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Introduction
This bachelor thesis is about the mathematics behind the ancient English art of change ringing. The
science (mathematics) and practice (ringing actual church bells or handbells) of change ringing is con-
cerned with the ringing of distinguished sequences of permutations of a number of bells. First, I would
like to write a few words about the history and practice of change ringing. Second, I will present a short
overview over the structure of my thesis.

History and practice of change ringing
The origin of change ringing was in the 17th century and primarily due to the invention of full-circle
wheels to which the church bells were attached (see picture on the cover page). This invention made it
possible to determine the exact moment when the clapper hits the bell. Hence the timing of the ringing
of a single bell could be fully controlled. Thus, if the ringers had more than one full-circle bell and if
all these bells had different pitches, it became possible to ring them one after another and get an exact
sequence of different notes. Bell ringers defined such a sequence of notes as a change. Since it would have
been boring to keep ringing this exact sequence over and over, the ringers tried changing the position of
the bells in the sequence. However, they soon realised that they could only swap adjacent bells (notes)
in a change (sequence), the reason being the considerable amount of weight of the full-circle bells. It
was not possible to hold a bell in the balance position (see Illustration 1.1) over a longer period of time.
Thus, the first rule of change ringing was born: When transitioning from one change to the next, each
bell may not move more than one position in its sequence of ringing. Ringers became interested in ringing
all possible changes one after another until they returned to the change they have started with. In other
words, they wanted to ring an extent.

Once the basic rules of change ringing had been established, bell ringers began to study ringing pat-
terns. The word Campanology is often used to describe the study of ringing patterns. It is made up
of the Latin word campana, which means "bell", and the Greek ending -logia, which stands for "the
study of something". In the beginning, most campanologists were people who actually practised the
art of change ringing. They made use of group-theoretic ideas long before groups and their properties
were formally introduced by mathematicians. One of those campanologists was Fabian Stedman. His
book "Campanalogia" ([S66]) is considered as one of the earliest works about campanology. It was not
until the 20th century that mathematicians became interested in the study of ringing patterns. But since
then, they have found answers to unsolved questions and proven various theorems concerning this subject.

Although the ringing of changes is nowadays practised not just in England but all over the world, full-circle
bells hung for change ringing beyond the British Isles are rare. The installation and maintenance of a
ring of full-circle bells in a church tower is quite costly. This is one of the reason why practising ringers
sometimes use handbells instead of church bells. An additional reason for the use of handbells is of
course the simplicity of carrying them from one place to another. That way, ringers are not limited to
performing in one particular place like for example in a church tower. For a more detailed description
of the (geographical) history and practice of change ringing, the reader may consult Johnston’s essay "A
most public of musical performances: the English art of change-ringing" ([J06]).

Overview of my bachelor thesis
Chapter 1 of this bachelor thesis will acquaint the reader with common change ringing terminologies,
which build the foundation of all subsequent chapters. Some extents on a small number of bells, for
example the plain course of the Erin principle on four bells, will be shown in chapter 2. Chapter 3 will
introduce Cayley color graphs and their connection to change ringing. Furthermore, it will be proven
that there exists an extent for any arbitrary number of given bells. Chapter 4 will be concerned with
right and left cosets and with their use for the construction of extents. In chapter 5 the reader will get to
know the so-called Stedman principle and Colin Wyld’s answer to an old problem concerning Stedman
Triples. The non-existence of Grandsire Doubles or Triples using only plain and bob leads will be proven
in chapter 6. In chapter 7 we will present Rankin’s campanological theorem and apply it to the Grandsire
method on seven bells. Consequently, chapter 6 and chapter 7 will be closely related.

This bachelor thesis is based on many different books, journals, papers and web pages, which are all
listed in the bibliography. If, however, a whole chapter or a subsection of my work is based predomi-
nantly on a few specific papers, then I mention them at the very beginning of these sections. One of
the most extensive analysis of the subject of campanology has been done by the mathematician Arthur
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T. White (see, for example, [W85], [W87], [W,89]). Thus, his work is, in addition to Burkhard Polster’s
book [P03] and Gary McGuire’s paper [McG12], the main source for my thesis.

My concluding remarks concern the list of illustrations. If a table or a figure in my thesis is not listed
in the list of illustrations, I have created them without any templates. The ones I have done by using
available templates and making small alterations (like, for example, using colors in graphs or adding
lettering in figures) are all listed in the list of illustrations. For the creation of all figures I used a drawing
editor called Ipe.
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1. Common change ringing terms

1.1 Basic definitions
Suppose there are n bells given, identified by the natural numbers 1, 2, 3, . . . , n and arranged in order of
descending pitch. In change ringing, bells are rung at a constant beat, one bell at a time.

Definition 1.1.1. The bell with number 1, being the highest pitched bell, is called the treble. The
lowest pitched bell is known as the tenor. A change is the ringing of the n bells in a particular order
or arrangement. In other words, a change corresponds to the ringing of a permutation of [n], the ordered
set containing all integers from 1 to n in their natural order. The special change 1 2 3 . . . n, in which the
bells are rung in order of descending pitch, is called rounds. The first bell of a change is defined as the
lead.

Remark 1.1.2. Some literature suggests that a change should be defined as a row.

Definition 1.1.3. An n - bell extent is a list of n! + 1 successive changes, satisfying the following rules:
(i) The first and the last change must be rounds.
(ii) No change apart from the two rounds is repeated. (Thus in case of a list of n!+1 successive changes,

each possible change with the exception of rounds is rung exactly once.)
(iii) When transitioning from one change to the next, each bell may not move more than one position

in its order of ringing. Unless n = 2, the bells 1 and n are not adjacent and according to that their
position cannot be interchanged.

(iv) No bell occupies the same position for more than two successive changes.
(v) Apart from the treble, each bell does exactly the same amount of work (hunting, dodging, etc.).
(vi) The list of transitions is palindromic, meaning that it is self-reversing. (see subsection 1.2.1 called

"Basic operations")

Remark 1.1.4. Condition (iv) and especially conditions (v) & (vi) are sometimes omitted in practice,
since in spite of their desirability they are not seen as necessary. Therefore a list of n!+1 changes fulfilling
the requirements (i)-(iv) or sometimes even just (i)-(iii) is often defined as being an extent. Furthermore,
if in a list of changes of arbitrary length no change apart from maybe rounds is repeated and if condition
(iii) is satisfied, then we call this list of successive changes a ringing sequence.

Remark 1.1.5. While the origin of rule (i) is musical, rule (ii) is there for thoroughness, given that it
ensures some sort of perfection. Condition (iii) exists because of mechanical limitations, in particular
because of how the bells are hung and rung in church towers (see Illustration 1.1). The aim of requirements
(iv) and (v) is to keep the ringing performance interesting. The purpose of rule (vi) is to help the ringers
memorize the list of changes.

Illustration 1.1: A bell swings nearly a full circle. The clapper strikes the bell on its way
up to the balance position (depicted in the right-hand diagram) and hence the bell rings. If
ringers want to interchange the position of two adjacent bells in a change, the bell that comes
first in the change has to be swung all the way up and held in the balance position. This
until the proximate bell, which does not reach the balance position since it’s been given less
momentum, is again pulled down. Keeping a bell in the balance position is quite hard. Thus,
balancing a bell over a longer period of time (longer than the time needed to swap adjacent
bells in a change) is practically impossible.

In most practical applications, the number of bells n ranges between 3 and 12. In change ringing, the
maximum number of bells that has ever been used seems to be 16. The names of odd-bell extents
correspond to the maximum number of pairs of bells that can be interchanged when transitioning from
one change to the next. (see Table 1.1)
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number of bells name changes in extent time required to ring extent
3 Singles 7 14 seconds
4 Minimus 25 50 seconds
5 Doubles 121 4 minutes
6 Minor 721 24 minutes
7 Triples 5’041 2 hours 48 minutes
8 Major 40’321 22 hours 24 minutes
9 Caters 362’881 8 days 10 hours
10 Royal 3’628’801 84 days
11 Cinques 39’916’801 2 years 194 days
12 Maximus 479’001’601 30 years 138 days
16 20’922’789’888’001 1’326’914 years

Table 1.1: Assuming that 30 changes can be rung per minute, we obtain in the rightmost
column the time required to ring a given extent.

Ringing a Major extent seems to lie on the verge of human endurability. Through the course of history
this physical and intellectual achievement has been rung on tower bells just once without relays. Thus,
when ringing more than seven bells, the main goal for ringers is not to ring a full extent but to ring a
so-called peal.

Definition 1.1.6. Let n > 7. A peal is composed of at least 5000 successive changes satisfying conditions
(i)-(iii) of Definition 1.1.3. Hence, a peal is nothing more than a partial n - bell extent.

1.2 Concept of transition sequences (words)
This subsection follows mainly Burkhard Polster’s book [P03].

Definition 1.2.1. For k ≥ 1 and pairwise disjoint numbers i1, . . . , ik ∈ {1, . . . , n}, the permutation
(i1 . . . ik) in the symmetric group Sn with i1 7→ i2 7→ · · · 7→ ik 7→ i1 is called a k-cycle. A 2-cycle is called
a transposition and an involution is a product of disjoint transpositions.

Remark 1.2.2. Rule (iii) of Definition 1.1.3 implies that each transition from change to change is
represented by an involution in Sn, namely by a product of disjoint transpositions of consecutive numbers.

Definition 1.2.3. Any n - bell ringing sequence of length k+1 can be rewritten as an n - bell transition
sequence of length k which describes the transitions from one change to the next. We write such a
transition sequence as a word of length k (as a string of k letters), in which every letter describes a
particular kind of transition.

Remark 1.2.4. An n - bell transition sequence is nothing else than a product of elements of the symmetric
group Sn. Such a product is always evaluated from left to right.

Remark 1.2.5. Let c1 be a change on n bells and let c2 be the change which we receive by applying a
transition T to c1. As mentioned in Definition 1.1.1, we can consider the changes c1 and c2 as elements
of the symmetric group Sn and thus c1, c2, T ∈ Sn. Therefore c2 is exactly the product c1T evaluated
from left to right.

1.2.1 Basic operations

Let t = T1T2 · · ·Tk be a transition sequence of length k corresponding to an n - bell ringing sequence r.

Definition 1.2.6. A transition sequence t is called palindromic if T1 = Tk−1 (but not T1 = Tk),
T2 = Tk−2, . . . and so on.

Definition 1.2.7. The inverse of r is the ringing sequence that starts with the last change of r and
corresponds to the transition sequence tinv = TkTk−1 · · ·T1.

Definition 1.2.8. The cyclic shift of r is the ringing sequence that starts with the first change of r
and corresponds to the transition sequence tcyc = TkT1T2 · · ·Tk−1.

Definition 1.2.9. A ringing array is a ringing sequence written down in the traditional notation used
by bell ringers such that two successive changes are displayed one below the other, the sole exception
being the start of a new column in case of space limitations. If the length of an n - bell ringing sequence
r is k + 1, then the corresponding ringing array is the (k + 1) × n array (matrix) whose jth row is the
jth change of the ringing sequence.
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Definition 1.2.10. By replacing every array entry j of the ringing array of r by the number (n+ 1− j)
and afterwards reflecting the resulting array at the centred vertical axis we get a new ringing array, which
corresponds to the reverse ringing sequence of r.

Remark 1.2.11. The inverse of the inverse of the ringing sequence r and the reverse of the reverse of r
coincide with r itself. If r is, in addition to being a ringing sequence, also an n - bell extent (r has length
n! + 1 and fulfills at least conditions (i)-(iii) of Definition 1.1.3), then the inverse, the cyclic shift and the
reverse of r are also extents on n bells.

Definition 1.2.12. Let m be a positive integer. By affixing n+ 1 n+ 2 . . . n+m after each row of the
ringing array of r we receive a new ringing array, which corresponds to a (n+m) - bell ringing sequence
called the right vertical m - shift.

Definition 1.2.13. Let m be a positive integer. By adding m to every array entry of the ringing array
of r and by prefixing 1 2 . . . m before each row of the resulting array we receive a new ringing array,
which corresponds to a (n+m) - bell ringing sequence called the left vertical m - shift.

1.3 Call change ringing vs. method ringing
In call change ringing the conductor calls every single change. In other words, he tells the other ringers
how to change the position of their bells from change to change. The most used transitions in call change
ringing are done by calling up and calling down.

Definition 1.3.1. Let x and y be two bells.
(i) In calling up, the positions of the two bells mentioned have to be right next to each other in the

change, with the first-named ringing prior to the second-named. The command "x to y" results
in the swap of the position of these two bells. In short, the first-named bell moves up and thus
further away from the lead.

(ii) In calling down "x to y", the first-named bell is ordered to move one position towards the lead. In
other words xmoves down. The second-named bell does not shift its place in the change, whereas
the bell that swaps its position with x is not itself named in the call.

Example 1.3.2.

change conductor’s intent successive change call, if calling up call, if calling down
1 2 3 . . . n swap bells 2 and 3 1 3 2 4 . . . n "2 to 3" "3 to treble" or "3 to 1"
1 2 3 . . . n swap bells 1 and 2 2 1 3 . . . n "1 to 2" "2 to lead"

Table 1.2: Calling up and calling down on rounds.

In contrast to the work of the conductor (number of calls) in call change ringing, the ringers receive
almost no or just very few instructions of him in method ringing. For the most part, ringers perform
ringing sequences that are based on easy and elementary algorithms referred to as methods and principles
because of their simplicity of being memorized.

1.3.1 Difference between method and principle

Mainly, this subsection follows again Burkhard Polster’s book [P03].

Definition 1.3.3. Let G be a group. The order of an element g ∈ G is the smallest d ≥ 1 such that
gd = 1G.

Let t be an n - bell transition sequence of length k with n ≥ 3 and let t̃ be the permutation we get by
multiplying all letters in t in the order, in which they occur (from left to right). It’s obvious that t̃ has
to be an element of Sn. Let d be the order of t̃ ∈ Sn.

Definition 1.3.4. Suppose we start with rounds as our initial change. If td is the n - bell transition
sequence of a ringing sequence s, then we define s as the plain course of t. Since s has length kd + 1
(rounds count twice), the plain course can be divided into d blocks such that the first d − 1 blocks are
of length k and the last block has length k + 1. Neglecting the last change of the last block, which is
the second occurrence of rounds, each block is a so-called plain lead. The entries of the lead ringing
array are the changes of the plain course such that its d columns are the d blocks.

Remark 1.3.5. Suppose we do not start with rounds as our initial change in Definition 1.3.4. Since it
is not permitted to count a change apart from rounds twice, the plain course of t would have length kd
instead of length kd + 1 (the second appearance of the initial change does not count). As before, the
plain course could be divided into d blocks, but this time all blocks would be of length k. Hence, in this
case, each block is exactly a plain lead.
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Remark 1.3.6. If it is clear from the context that we talk about a plain lead, then the word "plain" is
not mentioned each time and we often call a plain lead just a lead.

Definition 1.3.7. One says that a bell is not working if this bell is fixed by the permutation t̃. Similarly,
the bells which are not fixed by t̃ are said to be working.

Definition 1.3.8. The transition sequence t is a principle if t̃ is a n - cycle. Hence the order of the
permutation t̃ is d = n. This is equivalent to the declaration that all bells are working.

Remark 1.3.9. Let t̃−1 be the inverse of the permutation t̃. In a principle all n bells do the same work
in the sense that the path that bell j ∈ {1, . . . , n} follows through the plain lead i ∈ {1, . . . , d} of the
plain course is exactly followed by bell t̃−1(j) in the plain lead i+ 1 for i+ 1 ≤ d and in the plain lead 1
for i+ 1 > d. (for an example see Erin principle in subsection 2.2)

Definition 1.3.10. Vaguely speaking, a bell hunts if it waves back and forth across the ringing array of
the plain course of t. (see subsection 4.3.1 called "Most popular ringing method: Plain Bob using Plain
Hunt")

Definition 1.3.11. Suppose the treble and perhaps a few other bells do not work. Let w be the number
of working bells. Then the transition sequence t is a method if t̃ is a w - cycle and the not working bells
hunt.

Remark 1.3.12. As in principles, all bells that are working in a method do precisely the same amount
of work (campare Remark 1.3.9). A hunting treble helps the ringers keep track of which change they are
ringing in a given sequence and which change comes next.

Definition 1.3.13. A cover is a bell ringing at the very end of each change of a ringing sequence while
the other bells ring a method.

Definition 1.3.14. Let t be a principle or a method. The transition sequence of an n - bell extent (not
necessarily fulfilling conditions (iv)-(vi) of Definition 1.1.3) of t is a transition sequence text = t1t2 · · · tl
such that ∀i ∈ {1, . . . , l}: ti is a transition sequence of the same length as t and it differs from t in one
letter of the word. Such different letters are called calls. In rare cases it may happen that ti differs from
t in more than one letter of the word.

Remark 1.3.15. Since the main goal is to ring an extent, ringers ring t again and again until they either
arrive back at rounds, in which case the plain course of t is exactly an extent, or the conductor orders
a call. If the plain course of t starting with rounds has length p, then there are at least n!

p−1 − 1 calls
needed to ring an extent.

Definition 1.3.16. The call single is a transition that interrupts the regular work of an even number
of bells. The call bob is a transition which pauses the usual work of an odd number of bells.

Remark 1.3.17. If ti in Definition 1.3.14 coincides with t, then it has length k and we call the sequence of
the first k changes corresponding to ti a plain lead (recall also Definition 1.3.4). If ti in Definition 1.3.14
contains the call single, then it has length k and we call the sequence of the first k changes corresponding
to ti a single lead. Similarly, if ti contains the call bob, then the associated sequence of the first k
changes is referred to as a bob lead.

Definition 1.3.18. The first change of a (plain, bob or single) lead is called a lead head, while the last
change of a lead is called a lead end.
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2. n - bell extents for n ≤ 4

Definition 2.0.1. The sequence of positions a chosen bell rings in a ringing array is called a line.

Claim 2.0.2. The 1 - bell and the 2 - bell extents are unique.

Proof. Looking at the according ringing arrays in Table 2.1, the statement follows straight-forward. �

2.1 3 - bell extents
Claim 2.1.1. There exist solely two extents on three bells.

Proof. A = (1 2) and B = (2 3) are the only transitions that can be used to construct a 3 - bell extent.
Hence the transition sequence ABABAB = (AB)3, which corresponds to the depicted ringing array in
Table 2.1, describes an extent on three bells. The sole other 3 - bell extent is its inverse. �

1 1 2 A1 2 3
1 2 1 2 A1 3

1 2 2 3 A1
3 2 �1
3 �1 2

�1 3 2

A1 2 3

Table 2.1: Ringing arrays of extents on one, two and three bells. The red dashed line in the
3 - bell extent describes the position sequence of the treble.

Definition 2.1.2. The 3 - bell extent described by the transition sequence (AB)3 is called quick six and
the one described by (BA)3 is called slow six.

2.2 4 - bell extents
Burkard Polster writes in [P03] that the mathematician Alexander E. Holroyd said that there exist exactly
10792 extents on 4 bells (162 up to inversion, cyclic shifts and reversals). Because there are this many
extents we concentrate on the Erin, Reverse Erin, Stanton and Reverse Stanton principle and on eleven
4 - bell methods. The possible transitions on 4 bells are A = (12)(34), B = (23), C = (34) and D = (12).

2.2.1 Erin principle & Reverse Erin

The Erin principle on 4 bells has transition sequence t = (DB)2DA. The associated permutation t̃ is
given by t̃ = (1243) and its inverse is t̃−1 = (3421). Looking at Table 2.2 and using Remark 1.3.9, one
can recognize that the red dashed path of the treble in lead 1 is precisely mirrored by the paths of bells
t̃−1(1) = 3 in lead 2 (blue dashed), t̃−1(3) = 4 in lead 3 (orange dashed) and t̃−1(4) = 2 in lead 4 (green
dashed). Thus all bells do exactly the same amount of work.
The Reverse Erin principle on 4 bells has transition sequence t = (CB)2CA, permutation t̃ = (1243) and
t̃−1 = (3421). As before, all 4 bells are working the same amount.

A1 2 3 4 A3 1 4 2 A4 3 2 1 A2 4 1 3 1 2 3 �4 3 1 4 �2 4 3 2 �1 2 4 1 �3
2 A1 3 4 1 A3 4 2 3 A4 2 1 4 A2 1 3 1 2 �4 3 3 1 �2 4 4 3 �1 2 2 4 �3 1
2 3 A1 4 1 4 A3 2 3 2 A4 1 4 1 A2 3 1 �4 2 3 3 �2 1 4 4 �1 3 2 2 �3 4 1
3 2 �1 4 4 1 �3 2 2 3 �4 1 1 4 �2 3 1 A4 3 2 3 A2 4 1 4 A1 2 3 2 A3 1 4
3 �1 2 4 4 �3 1 2 2 �4 3 1 1 �2 4 3 1 3 A4 2 3 4 A2 1 4 2 A1 3 2 1 A3 4

�1 3 2 4 �3 4 1 2 �4 2 3 1 �2 1 4 3 1 3 2 A4 3 4 1 A2 4 2 3 A1 2 1 4 A3
1 2 3 4 1 2 3 4

Table 2.2: The lead ringing arrays of the priciples Erin Minimus (on the left of the vertical
line) and Reverse Erin Minimus (on the right of the vertical line).

As we can see in Table 2.2, all requirements of Definition 1.1.3 except (iv) are fulfilled. With the reasoning
in Remark 1.1.4 we receive that the plain courses of the Erin and Reverse Erin principles starting with
rounds themselves are 4 - bell extents. Further, we can check that if we replace every entry j of the ringing
array of Erin Minimus by (5 − j) and afterwards reflect the resulting array at the centred vertical axis,
we get exactly the ringing array of Reverse Erin Minimus (recall Definition 1.2.10).
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Remark 2.2.1. Let t = T1T2 · · ·Tk be an n - bell transition sequence of a principle with

∀i ∈ {1, . . . , k} : Ti = (x1,i, x2,i)(x3,i, x4,i) · · · .

Then the transition sequence corresponding to the revere of the plain course of t is t̂ = T̂1T̂2 · · · T̂k, where

∀i ∈ {1, . . . , k} : T̂i = (n+ 1− x1,i, n+ 1− x2,i)(n+ 1− x3,i, n+ 1− x4,i) · · · .

2.2.2 Stanton principle & Reverse Stanton

Like the Erin principle, the Stanton and Reverse Stanton principles are generated by three transitions
each. The 4 - bell principle Stanton Minimus has transition sequence t = DBCBDA and the 4 - bell
principle Reverse Stanton Minimus has transition sequence t = CBDBCA.

A1 2 3 4 A2 4 1 3 A4 3 2 1 A3 1 4 2
2 A1 3 4 4 A2 1 3 3 A4 2 1 1 A3 4 2
2 3 A1 4 4 1 A2 3 3 2 A4 1 1 4 A3 2
2 3 4 A1 4 1 3 A2 3 2 1 A4 1 4 2 A3
2 4 3 �1 4 3 1 �2 3 1 2 �4 1 2 4 �3
4 2 3 �1 3 4 1 �2 1 3 2 �4 2 1 4 �3

1 2 3 4

Table 2.3: The lead ringing array of the Stanton Minimus principle.

Once again, one can see that the plain course of the Stanton principle starting with rounds is a 4 - bell
extent. Using Remark 1.2.11, we see that the same holds for the Reverse Stanton principle. Condition
(iv) of Definition 1.1.3 is still not fulfilled, but because of Remark 1.1.4, this does not bother us any
further.

2.2.3 Eleven methods on four bells

There are eleven 4 - bell methods for which the plain course of the transition sequence t starting with
rounds coincides with being an extent (but only the first three listed satisfy condition (iv) of Definition
1.1.3, see [W85, p. 267]):

name of the method transition sequence t permutation t̃
Plain Bob (AB)3AC (243)
Reverse Bob ABAD(AB)2 (243)
Double Bob ABADABAC (234)
Canterbury ABCDCBAB (243)
Reverse Canterbury DB(AB)2DC (234)
Double Canterbury DBCDCBDC (243)
Single Court DB(AB)2DB (243)
Reverse Court AB(CB)2AB (234)
Double Court DB(CB)2DB (234)
St. Nicholas DBADABDC (243)
Reverse St. Nicholas ABCDCBAC (234)

Table 2.4: By multiplying each letter in t from left to right we receive the permutation t̃.
Since the order of t̃ is 3 and t̃ fixes the treble for each transition sequence, the treble is the
only bell that hunts. Using Definition 1.3.11 we can see that these eleven transition sequences
are indeed methods.

Remark 2.2.2. The transition sequences of the 4 - bell extents of these eleven methods (text = t3) are
all palindromic because every t is itself palindromic (recall Definition 1.2.6).
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3. Existence of an extent
For the main part, this chapter follows the work of Arthur T. White ([W83] and [W85]). In addition, I
used [P03] in subsections 3.1 & 3.2 and W. Cherowitzo’s work [Che] for some proofs in subsection 3.3.

3.1 Construction of ringing sequences via elevation
There exists a simple procedure on how to turn an n - bell ringing sequence r starting and ending with
rounds into an (n+ 1) - bell ringing sequence relev that starts and ends with rounds.

Definition 3.1.1. The sequence relev that we will construct in this subsection is commonly known as
the elevation of r.

Let k + 1 be the length of the ringing sequence r, which starts and ends with rounds.

Definition 3.1.2. The auxiliary array is constructed in two stages: Firstly, we build an ((n+1)k+1)×n
array, where the first n+ 1 rows are the first change of r, the second n+ 1 rows the second change of r,
and so forth. The last row of the array coincides with the first change of r. Secondly, we add 1 to every
entry of the received array and as a result we get the so-called auxiliary array.

Given the auxiliary array of the ringing sequence r, one has to squeeze the number 1 into each row of the
array such that this 1 is placed in positions

1, 2, . . . , n, n+ 1, n+ 1, n, . . . , 2, 1, 1, 2, . . . , n, n+ 1, n+ 1, n, . . . , 2, 1, 1, . . .

in rows 1, 2, 3, 4, . . . , ((n + 1)k + 1). The resulting array is the ringing array of the (n + 1) - bell ringing
sequence relev.

Example 3.1.3. The following table shows how to turn a 3 - bell extent into a 4 - bell extent.

3 - bell extent r auxiliary array relev
1 2 3 2 3 4 3 4 2 4 2 3 1 2 3 4 1 3 4 2 1 4 2 3
2 1 3 2 3 4 3 4 2 4 2 3 2 1 3 4 3 1 4 2 4 1 2 3
2 3 1 2 3 4 3 4 2 4 2 3 2 3 1 4 3 4 1 2 4 2 1 3
3 2 1 2 3 4 3 4 2 4 2 3 2 3 4 1 3 4 2 1 4 2 3 1
3 1 2 3 2 4 4 3 2 2 4 3 3 2 4 1 4 3 2 1 2 4 3 1
1 3 2 3 2 4 4 3 2 2 4 3 3 2 1 4 4 3 1 2 2 4 1 3
1 2 3 3 2 4 4 3 2 2 4 3 3 1 2 4 4 1 3 2 2 1 4 3

3 2 4 4 3 2 2 4 3 1 3 2 4 1 4 3 2 1 2 4 3
2 3 4 1 2 3 4

Table 3.1: The elevation of the ringing sequence of the 3 - bell extent is exactly the extent
named Double Canterbury Minimus. The red and black colors I used in the auxiliary array
do not have any special meaning other than pointing out the structure of the array.

Proposition 3.1.4. relev is an (n+ 1) - bell extent (without fulfilling condition (iv) of Definition 1.1.3)
iff r is an n - bell extent.

Proof. This follows directly from the construction of relev. �

Corollary 3.1.5. For any integer n ≥ 1, there exists an n - bell extent satisfying requirements (i)-(iii) of
Definition 1.1.3.

Proof. (by induction)
Base case: We know that there exists a unique 1 - bell and a unique 2 - bell extent.
Induction hypothesis: We assume that the statement of the corollary holds for n.
Induction step: Constructing the elevation of the n - bell extent and using Proposition 3.1.4 we receive
the desired conclusion of our proof. �

3.2 Cayley color graph
Definition 3.2.1. Using initial condition F 0 = F 1 = 1, the nth Fibonacci number F n is defined by
the following recurrence relation:

F n = F n-1 + F n-2.
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Theorem 3.2.2. Let n ≥ 2. The number of possible transitions for n bells t(n) is given by

t(n) = Fn − 1.

Proof. (by induction)
Base case: t(2) = F 2 − 1 = 2− 1 = 1 and t(3) = F 3 − 1 = 3− 1 = 2
Induction hypothesis: We assume that the statement holds for all k < n: t(k) = F k − 1.
Induction step: Considering t(n), there are t(n− 1) admissible transitions fixing position n. In addition
to the transposition (n− 1n), we have t(n− 2) further possible transitions interchanging positions n and
n− 1. Thus by using the induction hypothesis and Definition 3.2.1 we receive:

t(n) = t(n− 1) + 1 + t(n− 2)

= F n-1 − 1 + 1 + F n-2 − 1

= F n-1 + F n-2 − 1

= F n − 1.

�

Definition 3.2.3. Let S ⊆ G be a subset of a group G. We say S is a generating set of this group if
there does not exist a proper subgroup of G containing S.

Definition 3.2.4. A directed graph Γ (sometimes also called digraph) consists of a vertex set V (Γ),
an edge set E(Γ) = V × V and a function, which assigns an ordered pair of vertices (v1, v2) to each edge
such that v1 is the tail and v2 is the head of this edge.

Definition 3.2.5. Let G be a group with generating set S. The Cayley color graph of G with respect
to S, denoted by CS(G), is a colored directed graph such that the following three conditions hold:
(i) Every vertex of CS(G) corresponds to an element of the group G.
(ii) Every element s ∈ S is assigned to a color cs.
(iii) ∀g1 ∈ G, ∀s ∈ S the vertex corresponding to g1 is connected with the vertex corresponding to

g2 = g1s by a directed edge of color cs.

Remark 3.2.6. If the set S in Definition 3.2.5 wouldn’t be a generating set, then the Cayley color graph
CS(G) wouldn’t be a connected graph. Thus, CS(G) is connected iff the group G is generated by S.

Definition 3.2.7. An automorphism of CS(G) is a permutation φ of the vertex set V (CS(G)) such
that ∀g1, g2 ∈ G and ∀s ∈ S we have g2 = g1s iff φ(g2) = φ(g1)s. The union of all automorphisms of
CS(G) forms the so-called automorphism group of CS(G).

Remark 3.2.8. The automorphism group of CS(G) acts transitively on the vertices V (CS(G)). Hence,
if we do not label the vertices in the graph CS(G), we do not lose any information about the graph itself.

Definition 3.2.9. The graph underlying the Cayley color graph CS(G) satisfying the following three
requirements:
(i) The identity element 1G is not contained in S.
(ii) If s ∈ S then, unless s2 = 1G, the inverse element s−1 is not contained in S.
(iii) If s ∈ S and s2 = 1G, then every pair of directed edges (g, gs) and (gs, s) is merged into one single

undirected edge {g, gs}.
is called a Cayley graph and is denoted by CayS(G).

Definition 3.2.10. A path in a graph Γ is a sequence of distinct vertices v1, v2, . . . , vk ∈ V (Γ) and a
sequence of edges (vi, vi+1) ∈ E(Γ). If k ≥ 3 and (vk, v1) ∈ E(Γ), then the path according to the sequence
v1, v2, . . . , vk, v1 is called a cycle.

Definition 3.2.11. A path in a graph Γ that visits each vertex of V (Γ) exactly once is called a Hamil-
tonian path. If in addition the Hamiltonian path is a cycle, then we call it a Hamiltonian cycle. A
graph that contains a Hamiltonian cycle is called a Hamiltonian graph.

Theorem 3.2.12. Let n ≥ 3 and let S be an arbitrary collection of n - bell transitions (products of disjoint
transpositions of consecutive numbers) which generates Sn. An n - bell extent, fulfilling conditions (i)-(iii)
(and not necessarily (iv)-(vi)) of Definition 1.1.3 and using transitions from S only, can be rung iff CS(Sn)
is Hamiltonian.

Proof. The statement is apparent following the above definitions. For instance, condition (ii) is fulfilled
because S is a generating set of Sn and because there exists a Hamiltonian cycle in CS(Sn). Condition
(iii) results directly from the definition of the set S. Furthermore, the assumption n ≥ 3 is essential since
otherwise the definition of what it means for a path to be a cycle would not make sense (recall Definition
3.2.10). �
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Remark 3.2.13. Let S be defined as in Theorem 3.2.12. Every Hamiltonian cycle in the underlying
Cayley graph CayS(Sn) corresponds to two oriented Hamiltonian cycles in CS(Sn). The ringing sequences
corresponding to these two Hamiltonian cycles in CS(Sn) are inverses of each other. Thus, if CayS(Sn)
is Hamiltonian then CS(Sn) is Hamiltonian as well.

Remark 3.2.14. If S, defined as in Theorem 3.2.12, contains all possible transitions for n bells, then
there are exactly t(n) edges incident to every vertex of CS(Sn) (or to every vertex of CayS(Sn)). Recall
Theorem 3.2.2 concerning the number t(n).

Example 3.2.15. Let n = 3 and let S = {A = (12), B = (23)}. By labelling the lower-left vertex of the
3 - bell Cayley graph CayS(S3) in Figure 3.1 by rounds (or rather by 1S3

), we get exactly one Hamiltonian
cycle in this Cayley graph that starts at this vertex. The transition sequences corresponding to the two
Hamiltonian cycles in CS(S3) are (AB)3 (describing the 3 - bell extent in Table 2.1) and (BA)3 (describing
its inverse).

(12) = A
(23) = B

Figure 3.1: The 3 - bell Cayley graph CayS(S3).

3.2.1 Detailed example for 4 bells

Let S = {A = (12)(34), B = (23), C = (34), D = (12)}.

(12)(34) = A
(23) = B
(34) = C
(12) = D

Figure 3.2: The 4 - bell Cayley graph CayS(S4).

Definition 3.2.16. The order of rotational symmetry is the number of times a shape or figure can
be rotated and still look the same as it did before the first rotation.

Remark 3.2.17. The 4 - bell Cayley graph CayS(S4) has rotational symmetry of order three.

Remark 3.2.18. The spacial rendering of CayS(S4) resembles a truncated octahedron with diagonals
across its square faces.

Definition 3.2.19. The crossing number of a graph Γ, denoted by cr(Γ), is the minimum number of
edge crossings of a plane drawing of Γ. For instance, a planar graph Γ has crossing number cr(Γ) = 0.
Thus if Γ is non-planar, then its crossing number is bigger than or equal to 1.

Remark 3.2.20. Figure 3.2 shows that the crossing number cr(CayS(S4)) is at most six.

The following figure shows the Hamiltonian cycles in CayS(S4) corresponding to the plain courses of
the Erin (tranistion sequence (DB)2DA), Reverse Erin ((CB)2CA), Stanton (DBCBDA) and Reverse
Stanton (CBDBCA) principle on 4 bells.
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(12)(34) = A
(23) = B
(34) = C
(12) = D

Erin Reverse Erin

Stanton Reverse Stanton

Figure 3.3: We label the upper-left vertex of the inner hexagon of CayS(S4) in Figure 3.2 by
rounds (or rather by 1S4

), which means it’s the starting vertex for all four Hamiltonian cycles
that correspond to Erin Minimus (((DB)2DA)4), Reverse Erin Minimus (((CB)2CA)4), Stan-
ton Minimus ((DBCBDA)4) and to Reverse Stanton Minimus ((CBDBCA)4) respectively.

In the following figure, we display the Hamiltonian cycles in CayS(S4) corresponding to the plain courses
of the eleven 4 - bell methods mentioned in Table 2.4. All eleven extents on 4 bells have divisions into
3 leads of 8 changes each. These symmetries of order three of the extents are converted into rotational
symmetries of order three of the according Hamiltonian cycles. Remark 2.2.2 even implies that the cycles
have to be mirror symmetric.

Plain Bob

Reverse Bob

Double Bob
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(12)(34) = A
(23) = B
(34) = C
(12) = D

Single Court Double Court

Reverse St. NicholasSt. Nicholas

Reverse Court

Canterbury Double Canterbury

Reverse
Canterbury

Figure 3.4: We label the upper-left vertex of the inner hexagon of CayS(S4) in Figure
3.2 by rounds (or rather by 1S4), which means it represents the starting vertex for all
eleven Hamiltonian cycles that correspond to Plain Bob Minimus (((AB)3AC)3), Reverse
Bob Minimus ((ABAD(AB)2)3), Double Bob Minimus ((ABADABAC)3), Canterbury Min-
imus ((ABCDCBAB)3), Reverse Canterbury Minimus ((DB(AB)2DC)3), Double Canter-
bury Minimus ((DBCDCBDC)3), Single Court Minimus ((DB(AB)2DB)3), Reverse Court
Minimus ((AB(CB)2AB)3), Double Court Minimus ((DB(CB)2DB)3), St. Nicholas Minimus
((DBADABDC)3) and to Reverse St. Nicholas Minimus ((ABCDCBAC)3) respectively.
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3.3 Rapaport’s construction: Existence of an extent using only three different
transitions

Definition 3.3.1. Given a graph Γ and a vertex v ∈ V (Γ), we define the degree of v to be the number
of neighbours of v. A vertex v ∈ V (Γ) is isolated if its degree is zero.

Definition 3.3.2. Let d be a natural number. A graph is called regular of degree d if every vertex
has d neighbouring vertices, in other words, if the degree of every vertex is d.

Elvira Strasser Rapaport based her proof on the following Lemma:

Lemma 3.3.3. A connected regular graph of degree three, denoted by Γ, has a Hamiltonian cycle if there
exists a set of polygons P and a set of quadrilaterals Q such that both P and Q partition the vertex set
of the graph and no p ∈ P contains all vertices of some q ∈ Q.

Proof. (case by case)
Assume we are given the sets P and Q as defined in the statement of the Lemma. Firstly, we define the
following operation:

v1
v4

v3

p1 q
p2

v2

Figure 3.5: Let p1, p2 ∈ P . If there exists a quadrilateral q ∈ Q which ties p1 and p2 together,
then by removing the edges {v1, v2} and {v3, v4} we get a new polygon.

By repeating the above operation until it is not longer possible, we receive a new set of polygons, denoted
by P̂ . Like P , P̂ is still a disjoint union of polygons that covers the vertex set V (Γ). If P̂ contains just a
single polygon p̂, then the sequence of all vertices and all edges on the outline of p̂ is a Hamiltonian cycle
and hence the proof would be finished.
If P̂ contains more than one polygon, then due to the connectedness of Γ there exist p̂1, p̂2 ∈ P̂ and an
edge e = {v5, v6} ∈ E(Γ) with v5 ∈ p̂1 and v6 ∈ p̂2 such that the two polygons p̂1 and p̂2 are joined
together by e.
Based on our precondition that Γ is a regular graph of degree three, we know that there are exactly two
other edges besides e which are incident to the vertex v5. If e is in some qe ∈ Q, then the only two other
incident edges to v5, defined as {v5, vp̂1} and {v5, ṽp̂1}, have to be in p̂1 and one of them, say for instance
{v5, vp̂1}, is contained in qe. Similarly, there is an edge {v6, vp̂2} ∈ qe. Therefore, one could apply the
operation of Figure 3.5 again, but this is a direct contradiction to the definition of P̂ . Thus e is in no
qe ∈ Q.
Based on the assumption that the elements of Q form a partition of V (Γ), we know that v5 is contained
in some q ∈ Q. Hence, by using the facts that every vertex is of degree three and e cannot be in q, the two
edges {v5, vp̂1} and {v5, ṽp̂1} have to be in q. That is why p̂1 contains three vertices and two consecutive
edges of q. These two consecutive edges must have been in some pi ∈ P from the beginning because they
could not have been arisen from the operation of Figure 3.5. The forth vertex of q, defined as v, cannot
be contained in this pi due to our hypothesis that no polygon contains all vertices of some quadrilateral.
Further, v is not in any other polygon pj ∈ P \ {pi}. If v would be part of a polygon pj ∈ P \ {pi}, then
the vertex would have to be connected to two vertices of pj plus to two vertices of pi. However, since the
degree of v has to be three, the two polygons pi and pj are forced to have a common vertex. This is in
direct contradiction to the definition of the set P and proves that P̂ contains only one polygon. �

Remark 3.3.4. A polygon p ∈ P with k vertices (a k - polygon) can be seen as a k - cycle in Γ. Thus, a
quadrilateral q ∈ Q is the same as a 4 - cycle.

Lemma 3.3.5. For n ≥ 2, the symmetric group Sn is generated by its transposition.

Proof. Clearly, this holds for n = 2. For n ≥ 3, we see that (1) = (12)2 and every k - cycle with k > 2 is
a product of transpositions:

(i1 . . . ik) = (i1i2)(i2i3) · · · (ik−1ik).

Using the facts that cycles generate the symmetric group Sn and all cycles are products of transpositions,
we conclude that Sn is generated by transpositions. �
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The following Lemma shows that two n - bell transitions do not suffice to ring an n - bell extent for n
bigger than three.

Lemma 3.3.6. For n ≥ 4, let F,G be two involutions in Sn such that both involutions are products
of disjoint transpositions of consecutive numbers, meaning they are n - bell transitions. Then the group
generated by the two involutions F and G is never the whole symmetric group Sn.

Proof. The proof needs the following claim:

Claim 3.3.7. Any set of transpositions which generates the symmetric group Sn has to contain at least
n− 1 transpositions.

Proof. Let α1, . . . , αk be distinct transpositions in Sn such that 〈{α1, . . . , αk}〉 = Sn. It remains to
show k ≥ n − 1. To accomplish that we’ll use graph theory. We create a graph Γ with vertex set
V (Γ) = {1, . . . , n} and edge {i, j} ∈ E(Γ) if (ij) ∈ {α1, . . . , αk}. Hence our graph consists of n vertices
and k edges. Given two vertices i and j of Γ, we say there is an element in 〈{α1, . . . , αk}〉 which sends
i to j iff there exists a path in Γ starting at vertex i and ending at vertex j. Γ is connected as a result
of our assumption 〈{α1, . . . , αk}〉 = Sn. A connected graph with n vertices has to contain at least n− 1
edges, thus k ≥ n− 1. �Claim

We assume that Sn is generated by only two n - bell transitions. Using Claim 3.3.7, we realise that
F = (12)(34)(56) · · · and G = (23)(45)(67) · · · are the only involutions in Sn that possibly could do
exactly that, since they are the only two n - bell transitions that together are created from n− 1 different
transpositions. The next claim proves that for n bigger than three, Sn is not generated by F and G and
as a result is not generated by two n - bell transitions.

Claim 3.3.8. ∀n ≥ 4 : |〈{F,G}〉| < |Sn|

Proof. The products of FG and GF can be written as

FG =

{
(1 3 5 7 . . . n− 2 n n− 1 n− 3 . . . 6 4 2), if n is odd
(1 3 5 7 . . . n− 3 n− 1 n n− 2 . . . 6 4 2), if n is even

and

GF =

{
(2 4 6 8 . . . n− 1 n n− 2 n− 4 . . . 5 3 1), if n is odd
(2 4 6 8 . . . n− 2 n n− 1 n− 3 . . . 5 3 1), if n is even.

Since F−1 = F , G−1 = G and (FG)n = 1Sn = (GF )n, the set generated by F and G is given by

〈{F,G}〉 = {
3 elements︷ ︸︸ ︷
1Sn

, F,G,

2n−2 elements︷ ︸︸ ︷
FG,FGF, (FG)2, (FG)2F, . . . , (FG)(n−1), (FG)(n−1)F ,

GF,GFG, (GF )2, (GF )2G, . . . , (GF )(n−1), (GF )(n−1)G︸ ︷︷ ︸
2n−2 elements

}. (1)

It is possible that two or more elements of the set, which is displayed on the right hand side of equation
(1), coincide. (If, for example, n is equal 4, then we have (FG)2 = (14)(23) = (GF )2.) Thus, equation
(1) yields the following relation:

|〈{F,G}〉| ≤ 3 + (2n− 2) + (2n− 2) = 4n− 1.

Claim 3.3.9. ∀n ≥ 4 : 4n− 1 < n!

Proof. (by induction)
Base case: n = 4 : 15 = 4 · 4− 1 < 24 = 4!
Induction hypothesis: We assume that the statement holds for all integers smaller than n, in particular,
4(n− 1)− 1 < (n− 1)!.
Induction step: Adding 4 to both sides of the induction hypothesis gives us the following inequality:

4n− 1 < (n− 1)! + 4. (2)

Based on our assumption that (n − 1) ≥ 4, it follows immediately that 4 < 24 = 4! ≤ (n − 1)!. Taking
the right hand side of inequality (2) and doing this exact estimation leads us to the following inequality:

(n− 1)! + 4 < (n− 1)! + (n− 1)! = 2(n− 1)! < n(n− 1)! = n!. (3)

The combination of inequalities (2) and (3) yields the desired result:

4n− 1 < (n− 1)! + 4 < n!.

�Claim 3.3.9
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Claim 3.3.9 implies that for n ≥ 4 we have |〈{F,G}〉| < |Sn|. Consequently, we have finished the proof
of Claim 3.3.8. �Claim 3.3.8

�

Lemma 3.3.10. For n ≥ 2, the symmetric group Sn is generated by the following three permutations:

E = (12), F = (12)(34)(56) · · · , G = (23)(45)(67) · · · .

Proof. The statement is clear for n = 2. Therefore, we assume that n ≥ 3. The product of EFG is
given by

EFG =

{
(2 3 5 7 . . . n− 2 n n− 1 n− 3 . . . 6 4), if n is odd
(2 3 5 7 . . . n− 3 n− 1 n n− 2 . . . 6 4), if n is even.

(4)

Let x be an integer in {2, 3, . . . , n}. We choose k ∈ {1, 2, 3, . . . , n} such that (EFG)k maps 2 to x.
The existence of such an integer k follows directly from equation (4). As a result, we can write the
transposition (1x) in the following way:

(EFG)−kE(EFG)k = (1x).

Moreover, it is possible to write any transposition (xy) with x, y 6= 1 as (xy) = (1x)(1y)(1x). It is for
this reason and because of Lemma 3.3.5 that the symmetric group Sn is generated by E, F and G. �

Theorem 3.3.11. (Rapaport)
For any integer n ≥ 4, the Cayley color graph CS(Sn) with

S = {E = (12), F = (12)(34)(56) · · · , G = (23)(45)(67) · · · }

is Hamiltonian.

Proof. Let the set S be given as described in the theorem. Then the Cayley color graph CS(Sn) is
regular of degree three, and by Remark 3.2.6 and Lemma 3.3.10 CS(Sn) is connected. It remains to show
that the other assumptions of Lemma 3.3.3 are satisfied. We start at an arbitrary vertex in CS(Sn) and
follow the path that corresponds to the transition sequence EFEF . The product EFEF is exactly the
identity transformation 1Sn

and as a consequence a quadrilateral is described by the above-mentioned
path. If two quadrilaterals generated in such a way have a common vertex, then they must be precisely
identical. Let Q be the set of all n!4 quadrilaterals that are formed in this way. The vertex set V (CS(Sn))
is partitioned by Q. We divide the rest of the proof into two cases:

n > 4: Since (EG)6 = 1Sn , let P be the set of all 12 - polygons that are determined from the transition
sequence (EG)6. There exist n!

12 disjoint 12 - polygons in P . We know that F cannot be equal to
a product of alternating E and G by considering what happens, for example, to the integers 4
and 5. Consequently, no 12 - polygon p ∈ P is able to contain three vertices of some quadrilateral
q ∈ Q. In other words, no p ∈ P contains all vertices of some q ∈ Q.

n = 4: Since (EG)3 = 1Sn , replace the 12 - polygons of P by the 6 - polygons that are formed by the
transition sequence (EG)3. There exist n!

6 such disjoint 6 - polygons in P . As before, F cannot
be equal to a product of alternating E and G since each such product does not map the integer 3
to the number 4. Thus, no 6 - polygon p ∈ P contains three (or accordingly all) vertices of some
quadrilateral q ∈ Q.

Therefore, all assumptions of Lemma 3.3.3 are fulfilled and hence there exists a Hamiltonian cycle in
CS(Sn). �

Corollary 3.3.12. For any integer n ≥ 2, there exists an n - bell extent satisfying requirements (i)-(iii)
of Definition 1.1.3 that uses only the following three transitions:

E = (12), F = (12)(34)(56) · · · , G = (23)(45)(67) · · · .

Proof. The cases n = 2 and n = 3 clearly hold as is visible in Table 2.1. For n ≥ 4, theorems 3.3.11 and
3.2.12 yield the requested result. �
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4. Composing extents using group theory
As I briefly mentioned in my preface, bell ringers made use of group-theoretic ideas, such as decompos-
ing groups into cosets of other groups, long before (more precisely 200 years before) groups and their
properties as for example Lagrange’s theorem were formally introduced. As a matter of fact, Stedman’s
book "Campanalogia" was first published in 1677 and later revised and republished in 1766 ([S66]).
Another relatively early work (though more than 100 years after Stedman) that contains examples of
ringing sequences is Shipway’s book "The Campanalogia: or, Universal Instructor in the Art of Ring-
ing: in three parts" ([S16]), which was published in 1816. The following subsection is a short repetition
of cosets. I primarily used the handwritten lecture notes I took when attending E. Kowalski’s lecture
"Algebra I & II" at ETH. Unfortunately, there does not exist an online or published version I could note
in my bibliography. Please take into consideration that in some literature the definitions of left and right
cosets are precisely reversed. I present them the way I was taught by professor Kowalski.

4.1 Recall: Cosets and Lagrange’s theorem
Let G be a group.

Definition 4.1.1. Let g ∈ G be an arbitrary element. Further, let H be a subgroup of G.
(i) The left H-coset of g is Hg = {y ∈ G | ∃h ∈ H : y = hg} ⊂ G.
(ii) A subset X ⊂ G is called a left H-coset if X = Hg for some element g ∈ G.
(iii) The right H-coset of g is gH = {y ∈ G | ∃h ∈ H : y = gh} ⊂ G.
(iv) A subset X ⊂ G is called a right H-coset if X = gH for some element g ∈ G.

Notation 4.1.2. If H is a subgroup of G, then we denote this by writing H < G.

Proposition 4.1.3. If H < G is given, then the left H-cosets (and accordingly the right H-cosets) form
a partition of G.

Proof. We only show the statement for the left H-cosets since it is nearly the same for the right H-cosets.
The proof contains the following three parts:
(i) A left H-coset Hg is not empty because it contains g = 1Hg.
(ii) For all g ∈ G, g ∈ Hg and thus every g is contained in some H-coset. ⇒

⋃
g∈G

Hg = G

(iii) Suppose X1, X2 are two left H-cosets that intersect: X1∩X2 6= ∅. Hence X1 = Hg1 and X2 = Hg2
for some g1, g2 ∈ G. Let y be in the intersectionX1∩X2, then there exist h1 ∈ H such that y = h1g1
and h2 ∈ H such that y = h2g2.
Claim 4.1.4. X1 ⊂ X2
Proof. Let x ∈ X1, so x = hg1 for some h ∈ H. We obtain x = (hg1g2

-1)g2 = (hh1
-1h2)g2 ∈ X2

since h1g1 = h2g2 ⇔ g1g2
-1 = h1

-1h2 and hh1
-1h2 ∈ H. �Claim

In a similar way, one can check that X2 ⊂ X1, so that X1 = X2. In conclusion, we get that if
X1 6= X2, then X1 ∩X2 = ∅.

�

Definition 4.1.5. Let H < G. The equivalence relation g H∼ y on G defined by g H∼ y :⇔ y ∈ Hg
gives us a quotient set, which is denoted by H\G. In a similar way, the equivalence relation g ∼H y on
G defined by g ∼H y :⇔ y ∈ gH gives us the quotient set G/H .

Theorem 4.1.6. (Lagrange)
Let G be finite and H < G. Then |H| divides |G| and |G||H| = |H\G| (and accordingly |G||H| = |G/H |).

Proof. Once again, we only show the equality for the set of left cosets since it can be proven similarly
for the set of right cosets. H\G is a finite set since it is a subset of P(G). Let d = |H\G| and let y1, . . . , yd
be elements in distinct left H-cosets such that H\G = {Hy1, . . . ,Hyd}. With Proposition 4.1.3 we get:

|G| = |Hy1|+ . . .+ |Hyd|

Claim 4.1.7. ∀y ∈ G : |Hy| = |H|

Proof. Let us construct a bijection f : H → Hy, h 7→ hy. It remains to show the well-definedness of
f . The definition of Hy implies that f is surjective. Let h1, h2 ∈ H be such that f(h1) = f(h2). Then
h1y = h2y ⇒ h1 = h2 and thus f is injective. This concludes the proof of the claim. �Claim

Assuming Claim 4.1.7, we receive |G| = |H| · d and therefore we have finished the proof of Lagrange’s
theorem. �

Definition 4.1.8. [G : H] := |H\G| (and accordingly [G : H] := |G/H |) is called the index of H in G.
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4.2 Explanation on Plain Bob Minimus
In this small subsection, I mainly used A. T. White’s work, which can be found in [W87], and Burkhard
Polster’s book [P03].

Recall the transition sequence of the 4 - bell Plain Bob method in Table 2.4: t = (AB)3AC where
A = (12)(34), B = (23) and C = (34). The product of this transition sequence gives us the associated
permutation t̃ = (243). The lead ringing array according to this method is displayed in the following
table:

1 2 3 4 1 3 4 2 1 4 2 3
2 1 4 3 3 1 2 4 4 1 3 2
2 4 1 3 3 2 1 4 4 3 1 2
4 2 3 1 2 3 4 1 3 4 2 1
4 3 2 1 2 4 3 1 3 2 4 1
3 4 1 2 4 2 1 3 2 3 1 4
3 1 4 2 4 1 2 3 2 1 3 4
1 3 2 4 1 4 3 2 1 2 4 3

1 2 3 4

Table 4.1: The lead ringing array of Plain Bob Minimus.

Definition 4.2.1. For n <∞, the dihedral group Dn of degree n has order 2n and is defined as:

Dn := 〈x, y | xn = y2 = 1, yxy−1 = x−1〉.

In the special case of n =∞, we define the dihedral group of infinite degree as follows:

D∞ := 〈x, y | x2 = y2 = 1〉.

Remark 4.2.2. ∀n <∞ : Dn
∼= 〈y, z | y2 = z2 = (yz)n = 1〉

The elements of the symmetric group S4 that correspond to the changes in the first lead (first column)
in Table 4.1 form a group, which is isomorphic to the dihedral group D4 of degree 4 and order 8 because
of Remark 4.2.2 and (AB)4 = (1342)4 = 1S4

.

D4
∼= {1S4 , A,AB,ABA, (AB)2, (AB)2A, (AB)3, (AB)3A} = 〈{A,B}〉

Note that the elements of the above group are ordered in the way they appear in the ringing sequence.
The second lead (second column) of the lead ringing array is given by the right coset

t̃D4
∼= {t̃, t̃A, t̃AB, t̃ABA, t̃(AB)2, t̃(AB)2A, t̃(AB)3, t̃(AB)3A},

and the third lead (third column) by the right coset

t̃ 2D4
∼= {t̃ 2, t̃ 2A, t̃ 2AB, t̃ 2ABA, t̃ 2(AB)2, t̃ 2(AB)2A, t̃ 2(AB)3, t̃ 2(AB)3A}.

As a consequence, we have a decomposition of S4 into the three aforementioned right cosets. Since
(t̃ 2(AB)3A)C = t̃ 2((AB)3AC) = t̃ 3 = 1S4

, the plain course of t starting with rounds coincides with be-
ing an extent.

Instead of focusing on the columns of the array in Table 4.1, we can also look at the rows of the lead
ringing array. The elements of S4 that correspond to the first row form a cyclic group H = {1S4

, t̃, t̃ 2}.
Because of Lagrange’s theorem 4.1.6, the index of H in S4 is equal [S4 : H] = |H\S4 | = |S4|

|H| = 4!
3 = 8.

Thus, the following seven disjoint left H-cosets together with H itself form a partition of S4:

HA = {A, t̃A, t̃ 2A}
HAB = {AB, t̃AB, t̃ 2AB}

HABA = {ABA, t̃ABA, t̃ 2ABA}
H(AB)2 = {(AB)2, t̃(AB)2, t̃ 2(AB)2}

H(AB)2A = {(AB)2A, t̃(AB)2A, t̃ 2(AB)2A}
H(AB)3 = {(AB)3, t̃(AB)3, t̃ 2(AB)3}

H(AB)3A = {(AB)3A, t̃(AB)3A, t̃ 2(AB)3A}.
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There is another decomposition into left cosets which is crucial to Plain Bob in particular. Let the
subgroup F4

∼= S3 of S4 consist of all permutations stabilizing 1:

F4 = {1S4
, (23), (243), (24), (234), (34)}.

These permutations correspond to rows one and eight in Table 4.1. The other three left F4-cosets in S4

correspond to rows ±i mod 9, where i = 2, 3, 4:

F4A = {(12)(34), (2431), (123), (2341), (241), (12)}
F4AB = {(1342), (24)(31), (13), (341), (2413), (132)}

F4ABA = {(14), (23)(14), (1432), (421), (2314), (143)}

Accordingly, each half lead (consisting of the first four rows or the second four rows of a plain lead)
intersects each of the four left F4-coset in S4 in exactly one element. In other words, each half lead is a
left transversal of F4 in S4.

Another rather important decomposition for bell ringers is the partitioning into the alternating group
and its complement in the according symmetric group.

Definition 4.2.3. Let σ be a permutation in Sn. A pair (i, j) with 1 ≤ i < j ≤ n and σj < σi is called
an inversion of σ. Let N(σ) be the number of inversions of σ. The number

sgn(σ) := (−1)N(σ)

is the sign of the permutation σ. A permutation with sgn(σ) = 1 is called even, one with sgn(σ) = −1
is called odd.

Definition 4.2.4. A change is in-course if the corresponding permutation in Sn is even. A change is
out-of-course if the corresponding permutation in Sn is odd.

Remark 4.2.5. The alternating group An consists of all permutations that represent the in-course
changes.

In our example of Plain Bob Minimus, the changes in rows 1, 2, 5 and 6 of the lead ringing array in
Table 4.1 are in-course. All other changes are out-of-course. Since the index of the alternating group An
in the symmetric group Sn is always equal to two, the in-course changes and the out-of-course changes
provide each a right and a left coset.

4.3 Right cosets and their application in change ringing
This subsection uses the contents of A. T. White’s work [W87], Burkhard Polster’s book [P03] and
G. McGuire’s paper [McG12].

Let us describe how right cosets are used for the construction of n - bell extents. Let H be a sub-
group of Sn of order d. Using Lagrange’s theorem 4.1.6, we know that there exist m = n!

d right H-cosets.
Let T1T2 · · ·Td−1 be a transition sequence such that the permutations of the corresponding sequence
of changes are exactly the elements of H. Let p′ ∈ Sn be the permutation we get by multiplying all
letters of the transition sequence T1T2 · · ·Td−1. Then, we attempt to construct a sequence of transitions
T̂1T̂2 · · · T̂m such that

T1T2 · · ·Td−1T̂1T1T2 · · ·Td−1T̂2 · · ·T1T2 · · ·Td−1T̂m
is the transition sequence of an n - bell extent. Thereby, it’s a necessary condition that allm rightH-cosets
given by

(p′T̂1)(p′T̂2) · · · (p′T̂j)H, where j ∈ {1, . . . ,m},

are mutually disjoint and that (p′T̂1)(p′T̂2) · · · (p′T̂m)H coincides with H.
In our explanation on Plain Bob Minimus, the subgroup 〈{A,B}〉 of S4 is isomorphic to D4. Thus, the
order of 〈{A,B}〉 is d = 8 and a working transition sequence is given by T1T2 · · ·T7 = (AB)3A. The
second sequence of transitions is given by T̂1T̂2T̂3 = CCC.

From now on we apply the following notation to ensure that our use of variables is as consistent as
possible:

Notation 4.3.1. As of now, let p be the permutation we get by multiplying all letters of the transition
sequence associated with the plain lead. Let b be the permutation we get by multiplying all letters of the
transition sequence corresponding to the bob lead. And finally, let s be the permutation we receive by
multiplying all letters of the transition sequence associated with the single lead.
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4.3.1 Most popular ringing method: Plain Bob using Plain Hunt

Let A = (12)(34)(56) · · · and B = (23)(45)(67) · · · be the given n - bell transitions. Starting with rounds,
the Plain Hunt method applies alternately the transitions A and B until we end up back at rounds.

Lemma 4.3.2. Hn := 〈A,B〉 ∼= Dn

Proof.

AB =

{
(1 3 5 7 . . . n− 2 n n− 1 n− 3 . . . 6 4 2), if n is odd
(1 3 5 7 . . . n− 3 n− 1 n n− 2 . . . 6 4 2), if n is even

Since A and B are involutions and since (AB)n = 1Sn
, we can use Remark 4.2.2. Thus, it follows that

〈A,B〉 ∼= Dn. �

Definition 4.3.3. As we have seen in Lemma 4.3.2, the permutations A and B generate a subgroup of
Sn of order 2n, denoted by Hn, which is the so-called hunting subgroup of Sn.

To compose a ringing sequence with more than 2n different changes, we have to throw another n - bell
transition into the mix. The permutation C = (34)(56) · · · is used in order to switch into the right
Hn-cosets. The Plain Bob method on n bells has transition sequence t = (AB)(n−1)AC. The permutation
we get by multiplying all letters of t is given by

p = B−1C = BC = (23)(45)(67) · · · (34)(56) · · · =

{
(2 4 6 . . . n− 1 n n− 2 . . . 5 3), if n is odd
(2 4 6 . . . n− 2 n n− 1 . . . 5 3), if n is even

and is therefore of order n− 1. Hence, the plain course of the Plain Bob method t starting with rounds
corresponds to the union of the n − 1 right Hn-cosets given by pjHn, where j ∈ {0, 1, . . . , n − 2}. As a
consequence, the plain course of t consists of 2n · (n−1)+1 changes. Keep in mind that rounds appear at
the start and at the end and thus are counted twice. Only when we have the Plain Bob method on n = 4
bells does the following hold: 2n · (n− 1) + 1 = n! + 1. If n > 4, then 2n · (n− 1) < n! since 2 < (n− 2)!.
Consequently, in the case of 4 bells, no call is needed because the plain course of the Plain Bob method
starting with rounds coincides with the full 4 - bell extent called Plain Bob Minimus. In the case of 5 or
more bells, we require the bob D = (23)(56)(78) · · · , which replaces the permutation C in our transition
sequence t. In other words, a bob lead is described by the transition sequence tb = (AB)(n−1)AD. The
associated permutation is given by

b = B−1D = BD = (23)(45)(67) · · · (23)(56)(78) · · · =

{
(4 6 . . . n− 1 n n− 2 . . . 7 5), if n is odd
(4 6 . . . n− 2 n n− 1 . . . 7 5), if n is even

and is therefore of order n−3. In the case of n = 5, no further call besidesD is required to ring an extent of
the Plain Bob method. Since it holds that p3b = (2453)3(45) = C−1D and since C−1D = (43)(23) = (423)
is of order three, the transition sequence of a 5 - bell extent of t is given by:

text = t3tbt
3tbt

3tb = (((AB)4AC)3(AB)4AD)3.

The following theorem shows us that in the case of n = 6 at least one more call is necessary, if we
want to ring an extent of Plain Bob. Traditionally, for n ≥ 6, the single call is given by the transition
E = (56)(78) · · · .

Theorem 4.3.4. There does not exist a 6 - bell extent of Plain Bob (satisfying conditions (i)-(iii) of
Definition 1.1.3) using only plain leads and bob leads.

Proof. The number of leads in a 6 - bell extent of Plain Bob is 6!
|H6| = 720

12 = 60. Assume that all 60 leads
are plain and bob leads. Note that the treble is always in the first position in each lead head and in each
lead end. Using Definition 4.2.3, we see that p = (24653), b = (465), C = (34)(56) and D = (23)(56)
are even permutations. The fact that p and b are even permutations and the fact that the product of
two even permutations is again an even permutation imply that any lead head is an even permutation
of 2 3 4 5 6. The lead end before the lead head results by applying either C−1 or D−1 to the lead head.
Since C and D are both even permutations, we see that any lead end has to be an even permutation of
2 3 4 5 6 as well. Thus, if we use only plain leads and bob leads, all 120 changes with the treble in the first
position are followed by an even permutation of 2 3 4 5 6. The number of even permutations of 2 3 4 5 6 is
equal to the order of the alternating group A5, which is |A5| = |S5|

2 = 120
2 = 60. This entails the failing

of condition (ii) of Definition 1.1.3 and therefore yields the desired contradiction. In other words, we are
not able to ring a 6 - bell extent of Plain Bob using only plain and bob leads. �
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Corollary 4.3.5. Starting with rounds and using the Plain Bob method on 6 bells and only plain and
bob leads, it is impossible to exceed the ringing of 360 successive changes before returning back to rounds.
Furthermore, there exists a 6 - bell ringing sequence r starting and ending with rounds that uses solely
plain and bob leads and has length 361 (rounds occur twice and thus are counted twice).

Proof. The proof of Theorem 4.3.4 implies that Plain Bob with only plain and bob leads has at most
|A5|
2 = 60

2 = 30 leads. Each lead has |H6| = 2 · 6 = 12 changes. Therefore, the Plain Bob method on 6
bells using only plain and bob leads has at most 30 ·12 = 360 different changes. To show that the ringing
of 360 different successive changes is indeed possible, we give a corresponding transition sequence:

tplainbobleads = tbt
3tb

2t4tbt
3tb

2t4tbt
3tb

2t4 = (tbt
3tb

2t4)3.

If we start with rounds and apply tplainbobleads, then the ringing sequence r corresponding to tplainbobleads
ends back at rounds, since

bp3b2p4 = (465)(24653)3(465)2(24653)4 = (465)(25436)(456)(23564) = (432)

is of order three. Thus, the ringing sequence r starting and ending with rounds corresponding to the
6 - bell transition sequence tplainbobleads has length 361. �

Remark 4.3.6. The ringing sequence r of Corollary 4.3.5 satisfies condition (iv) of Definition 1.1.3
because this condition is satisfied for Plain Hunt and thus also for all right cosets of Plain Hunt. Conse-
quently, r fulfills conditions (i)-(iv) of Definition 1.1.3.

4.4 Left cosets and their application in change ringing
As we have seen in the previous subsection, right cosets are extremely valuable for the study of methods
(Plain Bob). Left cosets, on the other hand, are first and foremost used for principles. This subsection
exploits this latter connection between left cosets and principles and it follows primarily A. T. White’s
work ([W87] and [W89]) and Burkhard Polster’s book [P03].

For Plain Bob Minimus, we have seen that each row, except the last one (which consists of only one change,
namely rounds), of the array in Table 4.1 corresponds to a left coset of the cyclic group H = 〈(243)〉 ∼= Z3

in S4. Our goal in this subsection is the generalization of the use of left cosets of cyclic groups for arbi-
trary methods and especially for arbitrary principles.
Suppose we start with rounds as our initial change. Let the n - bell transition sequence t be a method or a
principle and let p be the permutation we get by multiplying all letters in t. Hence, p is the permutation
corresponding to the lead head of the second plain lead. Further, let d be the number of working bells
(recall Definition 1.3.7). Then each row of changes, except the last one (which again consists of only one
change, namely rounds), of the lead ringing array corresponds to a left coset of 〈p〉 ∼= Zd in Sn.

Definition 4.4.1. If the plain course of a method or a principle t starting with rounds coincides with
an extent, then t is called a no-call method or principle because neither bobs nor singles are required
for the ringing of this extent.

Example 4.4.2. All eleven 4 - bell methods presented in subsection 2.2.3 are no-call methods.

Remark 4.4.3. If t is a no-call method or principle, then the rows of the associated lead ringing array
minus the last row (which again consists of only one rounds) yield a full coset decomposition of Sn. Thus,
the n!

d left 〈p〉-cosets corresponding to those rows form a partition of Sn.

Remark 4.4.4. Every extent of a no-call n - bell principle t automatically satisfies condition (v) of
Definition 1.1.3 because of Definition 1.3.8 (i.e. the order of the permutation p is d = n) and Remark
1.3.9. Furthermore, if the first plain lead (sometimes also called division) of a no-call principle t is self-
reversing (i.e. t is palindromic), then the plain course and thus the extent are self-reversing as well (i.e.
condition (vi) of Definition 1.1.3 is fulfilled).

Left cosets are precisely what we need to compose all no-call n - bell principles and thus to construct the
n - bell extents of those principles. But first we have to introduce the following definition form algebraic
graph theory:

Definition 4.4.5. Let G be a group with generating set S. Let H be a subgroup of G. The Schreier
left coset graph of H\G with respect to S, denoted by SS(H\G), is a colored digraph such that the
following three conditions hold:
(i) SS(H\G) has the left H-cosets in G as its vertices.
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(ii) Each element s ∈ S is assigned to a color cs.
(iii) There exists a directed edge (Hg1, Hg2), colored with cs, iff Hg1s = Hg2.

Remark 4.4.6. If H = {1G}, then the Schreier left coset graph SS(H\G) is exactly the Cayley color
graph CS(G) (as we can see by comparing with Definition 3.2.5).

Remark 4.4.7. Assume s ∈ S is of order two (i.e. s2 = 1G). If there exists a directed edge (Hg1, Hg2),
then by condition (iii) of Definition 4.4.5 we have Hg1s = Hg2. Multiplying both sides of the equation by
s yields Hg1s2 = Hg1 = Hg2s, and hence we have an edge (Hg2, Hg1). Consequently, the two directed
edges (Hg1, Hg2) and (Hg2, Hg1) can be merged into one single undirected edge {Hg1, Hg2}.
Theorem 4.4.8. Let n ≥ 4 and let S be an arbitrary collection of n - bell transitions which generates Sn.
There exists a no-call n - bell principle using only transitions from S iff there is a Hamiltonian cycle in
SS(〈p〉\Sn) whose word yields an n-cycle p by multiplying all its letters.

Proof. The assumption n ≥ 4 is essential since otherwise the definition of what it means for a path to
be a cycle would not make sense (recall Definition 3.2.10). If for example n = 3, then the Schreier left
coset graph SS(〈p〉\S3) consists of only 3!

|〈p〉| = 3!
|Z3| = 6

3 = 2 vertices and hence there could never exist a
Hamiltonian cycle in this graph.
"⇒": Let t be a no-call n - bell principle and let p be the permutation we get by multiplying all letters
in t. The word t describes a Hamiltonian cycle in SS(〈p〉\Sn), if we start at the vertex representing the
coset 〈p〉. Moreover, since t is a principle, we have by Definition 1.3.8 that p is a cycle of order n.
"⇐": Let there be a Hamiltonian cycle in SS(〈p〉\Sn) whose word t yields an n-cycle p by multiplying
all its letters. The Hamiltonian cycle takes us through (n− 1)! + 1 distinct changes, starting with rounds
corresponding to 1Sn and ending in the same coset as rounds with the change corresponding to the
permutation p. Using the same succession as before, we visit all left 〈p〉-coset once again, but this time
we ring a different representative of each coset. We repeat this process until there are not any unused
representatives left, and thus we end up back at rounds (corresponding to pn = 1Sn

) after the ringing of
n! = (n− 1)! ·n distinct changes. Hence conditions (i) and (ii) of Definition 1.1.3 are satisfied. Condition
(iii) of Definition 1.1.3 results directly from the definition of the set S and condition (v) from the fact that
the order of the permutation p is n (recall Remark 4.4.4). As a result, we’ve shown that the transition
sequence t is indeed a no-call n - bell principle. �

Remark 4.4.9. Let S be defined as in Theorem 4.4.8. Every Hamiltonian cycle in SS(〈p〉\Sn) yields
because of Remark 4.4.7 not just one but two words corresponding to the two directions in which we
can pass through the cycle. However, if one of these transition sequences is a no-call n - bell principle,
then the second transition sequence has to be a no-call n - bell principle as well. Furthermore, the extents
corresponding to these principles are inverses of each other.

Proposition 4.4.10. Let S be an arbitrary collection of n - bell transitions which generates Sn. Let the
permutations p and σ be two n-cycles in Sn. Then SS(〈p〉\Sn) ∼= SS(〈σ〉\Sn).

Proof. p and σ are conjugate because both of them are n-cycles. Hence ∃τ ∈ Sn such that σ = τpτ−1.
Let H1 = 〈p〉 and H2 = 〈σ〉. We claim that φ : H1ξ 7→ H2τξ yields the desired automorphism.

H1ξ1 = H1ξ2 ⇔ ξ1ξ
−1
2 ∈ H1

⇔ ξ1ξ
−1
2 = pj for some j ∈ {0, 1, . . . , n− 1}

⇔ τξ1ξ
−1
2 τ−1 = τpjτ−1 = (τpτ−1)j ∈ H2

⇔ H2τξ1 = H2τξ2

⇔ φ(H1ξ1) = φ(H1ξ2)

Hence the function φ is well-defined and injective, and consequently φ is surjective.
Now we have to check the coloring of the edges. Let there be an edge {H1ξ1, H1ξ2} in SS(H1

\Sn) colored
with cs. This edge is undirected since every s ∈ S is an involution (recall Remark 4.4.7). Then we have
H1ξ1s = H1ξ2 ⇔ ξ1sξ

−1
2 ∈ H1 ⇔ ξ1sξ

−1
2 = pj for some j ∈ {0, 1, . . . , n − 1}. It remains to show that

there exists an edge {φ(H1ξ1), φ(H1ξ2)} which is again colored with cs. Since H2 = 〈σ〉, we have:

(τpτ−1)j = τpjτ−1 = τξ1sξ
−1
2 τ−1 ∈ H2 ⇔ H2τξ1s = H2τξ2 ⇔ φ(H1ξ1)s = φ(H1ξ2)

and thus the edge {φ(H1ξ1), φ(H1ξ2)} has the desired color cs. Hence the proof of Proposition 4.4.10 is
complete. �

Because of Proposition 4.4.10, we can rewrite SS(〈p〉\Sn) in Theorem 4.4.8 as SS(Zn
\Sn), and as a result

we receive the following theorem:

Theorem 4.4.11. Let n ≥ 4 and let S be an arbitrary collection of n - bell transitions which generates
Sn. There exists a no-call n - bell principle using only transitions from S iff there is a Hamiltonian cycle
in SS(Zn

\Sn), whose associated word yields a cycle of order n by multiplying all its letters.
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4.4.1 No-call 4 - bell principles for the purpose of exemplification

Let S = {A = (12)(34), B = (23), C = (34), D = (12)}.

(12)(34) = A
(23) = B
(34) = C
(12) = D

Figure 4.1: The Schreier left coset graph SS(Z4
\S4).

Starting, without loss of generality, at the vertex in the lower-left corner, we find a total of eight Hamil-
tonian cycles in SS(Z4\S4). We list below one of the two words corresponding to the two directions in
which we can pass through each of these Hamiltonian cycles (recall Remark 4.4.9):

(DB)2DA = (1243)

(CB)2CA = (1243)

DBCBDA = (1342)

CBDBCA = (1342)

(DB)3 = 1S4

(CB)3 = 1S4

DBCBDB = (14)(23)

CBDBCB = (14)(23)

As we can see, the first four listed words yield by multiplying all their letters a cycle of order 4. Hence,
Theorem 4.4.11 implies that there are four no-call 4 - bell principles, namely Erin ((DB)2DA), Reverse
Erin ((CB)2CA), Stanton (DBCBDA), and Reverse Stanton (CBDBCA). The remaining no-call 4 - bell
principles are exactly the inverses of these four principles. So all in all there are eight no-call principles
on 4 bells.

4.5 Unicursal generation
This subsection follows G. McGuire’s paper "Bells, Motels and Permutation Groups" ([McG12]).

Definition 4.5.1. Let G be a finite group with order d = |G| <∞. Let S be a subset of G. S generates
G unicursally if all elements in G can be cyclically ordered (g1, . . . , gd) such that the following three
conditions are fulfilled:
(i) ∀h, j with 1 ≤ h < j ≤ d : gh 6= gj
(ii) ∀h ∈ {1, . . . , d− 1} ∃sh ∈ S : gh+1 = ghsh (We say that gh is acted on by sh.)
(iii) ∃sd ∈ S : g1 = gdsd (Similarly, we say that gd is acted on by sd.)

Remark 4.5.2. S being a generating set of G is a necessary but not sufficient condition for G being
generated unicursally by S (see Example 7.0.9).

Example 4.5.3. Let G be the symmetric group S3 and let S = {s1 = (12), s2 = (23)}. The elements in
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S3 can be cyclically ordered (1S3 , (12), (132), (13), (123), (23)) such that

1S3s1 = (12)

(12)s2 = (132)

(132)s1 = (13)

(13)s2 = (123)

(123)s1 = (23)

(23)s2 = 1S3 .

Since all three conditions of Definition 4.5.1 are satisfied, we can conclude that S3 is generated unicursally
by S.

Proposition 4.5.4. Let G be a finite group. Then G is generated unicursally by a subset S of size one
iff G is cyclic.

Proof. "⇒": Let d < ∞ be the order of the group G. Suppose G is generated unicursally by S = {s}.
Assume without loss of generality that g1 = 1G. Then for every j ∈ {1, . . . , d−1}, we have gj+1 = gjs = sj

and thus G = 〈s〉 is cyclic.
"⇐": If G is cyclic then G is by definition generated by a single element s ∈ G. Thus all elements in
G can be cyclically ordered as follows: (s, s2, s3, . . . , 1G). Since conditions (i)-(iii) of Definition 4.5.1 are
fulfilled, we draw the conclusion that the cyclic group G is generated unicursally by S = {s}. �

Theorem 4.5.5. Let n ≥ 3 and let S = {T1, . . . , Tk} be the allowed n - bell transitions.
(i) An n - bell extent, fulfilling conditions (i)-(iii) of Definition 1.1.3 and using transitions from S only,

exists iff S generates Sn unicursally.
(ii) An n - bell extent, fulfilling conditions (i)-(iv) of Definition 1.1.3 and using transitions from S only,

exists iff S generates Sn unicursally with the additional property that for any h ∈ {1, . . . , n! − 1}
the transitions sh ∈ S and sh+1 ∈ S have no common fixed point and moreover that the transitions
sn! ∈ S and s1 ∈ S have no common fixed point.

Proof. Let the set S = {T1, . . . , Tk} be the allowed n - bell transitions. For every j ∈ {1, . . . , k}, the
transition Tj has to be an involution in Sn, namely a product of disjoint transpositions of consecutive
numbers, by condition (iii) of Definition 1.1.3.
The equivalence statement (i) of Theorem 4.5.5 is therefore a straightforward conclusion of the two
definitions 1.1.3 and 4.5.1.
No bell occupying the same position for more than two successive changes (condition (iv) of Definition
1.1.3) is equivalent to no two successive transitions having a common fixed point. Hence, by using this
fact and part (i) of Theorem 4.5.5, we receive the equivalence statement (ii) of Theorem 4.5.5. �
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5. Stedman principle
The Stedman principle was invented somewhere around the year 1640. A precondition for the application
of the Stedman principle is that the number of given bells has to be odd. In this chapter I will describe
the Stedman principle for five and for seven given bells.

5.1 Stedman Doubles: Description and properties
Let A = (12)(34), B = (23)(45), C = (12)(45) and D = (34). The Stedman principle on 5 bells has
transition sequence t = CBA(CB)2CABCB. The associated permutation p = (14325) permutes the
working bells. Since the order of p is equal to the number of given bells, the transition sequence t
describes indeed a principle (recall Definition 1.3.8). The plain course of t starting with rounds consists
of 5 ·12+1 = 61 changes and contains five plain leads. Using Remark 1.3.15, we see that we need at least
one call to ring an extent. Let this call be the 5 - bell transition D. The transition sequence corresponding
to the bob lead is given by tb = CBA(CB)2CABCD. In other words, the bob D replaces the last B in
the transition sequence t.
The transition sequence of a 5 - bell extent of Stedman using plain and bob leads is given by

text = (t4tb)
2 = ((CBA(CB)2CABCB)4CBA(CB)2CABCD)2.

We see that in this transition sequence the bob D is used exactly twice.

5.2 Stedman Triples: Description and properties
Let A = (12)(34)(56), B = (23)(45)(67), C = (12)(45)(67), D = (12)(34)(67) and E = (12)(34). The
Stedman principle on 7 bells has transition sequence t = CBA(CB)2CABCB. The permutation we
get by multiplying all letters in t is p = (1743256). Indeed, by looking at Definition 1.3.8, we see that
the transition sequence t describes a principle. The plain course of t starting with rounds consists of
7 · 12 + 1 = 85 changes. Using Remark 1.3.15, we see that we need at least 7!

84 − 1 = 59 calls to ring an
extent. Since our goal is the ringing of a 7 - bell extent of t, we use the bob D and the single E instead
of A in either or both of its occurrences in our transition sequence t. Thus, the transition sequence
corresponding to a bob lead is given by tb1 = CBD(CB)2CABCB, by tb2 = CBA(CB)2CDBCB or by
tb3 = CBD(CB)2CDBCB. Similarly, the transition sequence corresponding to a single lead is given by
ts1 = CBE(CB)2CABCB, by ts2 = CBA(CB)2CEBCB or by ts3 = CBE(CB)2CEBCB.

plain lead bob leads single leads
tb1 tb2 tb3 ts1 ts2 ts3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
2 1 3 5 4 7 6 2 1 3 5 4 7 6 2 1 3 5 4 7 6 2 1 3 5 4 7 6 2 1 3 5 4 7 6 2 1 3 5 4 7 6 2 1 3 5 4 7 6
2 3 1 4 5 6 7 2 3 1 4 5 6 7 2 3 1 4 5 6 7 2 3 1 4 5 6 7 2 3 1 4 5 6 7 2 3 1 4 5 6 7 2 3 1 4 5 6 7
3 2 4 1 6 5 7 3 2 4 1 5 7 6 3 2 4 1 6 5 7 3 2 4 1 5 7 6 3 2 4 1 5 6 7 3 2 4 1 6 5 7 3 2 4 1 5 6 7
2 3 4 6 1 7 5 2 3 4 5 1 6 7 2 3 4 6 1 7 5 2 3 4 5 1 6 7 2 3 4 5 1 7 6 2 3 4 6 1 7 5 2 3 4 5 1 7 6
2 4 3 1 6 5 7 2 4 3 1 5 7 6 2 4 3 1 6 5 7 2 4 3 1 5 7 6 2 4 3 1 5 6 7 2 4 3 1 6 5 7 2 4 3 1 5 6 7
4 2 3 6 1 7 5 4 2 3 5 1 6 7 4 2 3 6 1 7 5 4 2 3 5 1 6 7 4 2 3 5 1 7 6 4 2 3 6 1 7 5 4 2 3 5 1 7 6
4 3 2 1 6 5 7 4 3 2 1 5 7 6 4 3 2 1 6 5 7 4 3 2 1 5 7 6 4 3 2 1 5 6 7 4 3 2 1 6 5 7 4 3 2 1 5 6 7
3 4 2 6 1 7 5 3 4 2 5 1 6 7 3 4 2 6 1 7 5 3 4 2 5 1 6 7 3 4 2 5 1 7 6 3 4 2 6 1 7 5 3 4 2 5 1 7 6
4 3 6 2 7 1 5 4 3 5 2 6 1 7 4 3 6 2 1 5 7 4 3 5 2 1 7 6 4 3 5 2 7 1 6 4 3 6 2 1 7 5 4 3 5 2 1 7 6
4 6 3 7 2 5 1 4 5 3 6 2 7 1 4 6 3 1 2 7 5 4 5 3 1 2 6 7 4 5 3 7 2 6 1 4 6 3 1 2 5 7 4 5 3 1 2 6 7
6 4 3 2 7 1 5 5 4 3 2 6 1 7 6 4 3 2 1 5 7 5 4 3 2 1 7 6 5 4 3 2 7 1 6 6 4 3 2 1 7 5 5 4 3 2 1 7 6

6 3 4 7 2 5 1 5 3 4 6 2 7 1 6 3 4 1 2 7 5 5 3 4 1 2 6 7 5 3 4 7 2 6 1 6 3 4 1 2 5 7 5 3 4 1 2 6 7

Table 5.1: The plain, bob and single lead of the Stedman principle on 7 bells starting with
rounds. The changes in the last row of the table do not belong to the depicted leads, but are
the lead heads of the subsequent leads.

Question. Does there exist a 7 - bell extent of Stedman using only the bob D and not the single E as a
call?

Answer. An answer to this question was non-existent until 1994, and thus this question formed an open
problem for many years. In 1994, Colin J. E. Wyld succeeded to prove the existence of such an extent
on 7 bells by using a computer. His composition contains 705 bobs as can be detected by looking at the
Appendix. For more information on Wyld’s composition please consult the Appendix.
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6. Grandsire method
In the 1650’s, Robert Roan developed the Grandsire method on five bells. Later the method was extended
to seven bells. For the majority of proofs in this subsection I will use.

6.1 Grandsire Doubles: Description and properties
Let A = (12)(34), B = (23)(45), C = (12)(45) and D = (45). The Grandsire method on 5 bells has
transition sequence t = CB(AB)4. The permutation we get by multiplying all letters in t is p = (345).
The hunting subgroup H5 of S5 is generated by the permutations A and B (recall Definition 4.3.3).
Starting with rounds and executing the transition sequence t is equivalent to saying that we run through
the right H5-coset of C. Afterwards we run through the right coset (CB(AB)4C)H5 = (CAC)H5, and
then through (CACAC)H5, which returns us back to rounds.

1 2 3 4 5 1 2 5 3 4 1 2 4 5 3
2 1 3 5 4 2 1 5 4 3 2 1 4 3 5
2 3 1 4 5 2 5 1 3 4 2 4 1 5 3
3 2 4 1 5 5 2 3 1 4 4 2 5 1 3
3 4 2 5 1 5 3 2 4 1 4 5 2 3 1
4 3 5 2 1 3 5 4 2 1 5 4 3 2 1
4 5 3 1 2 3 4 5 1 2 5 3 4 1 2
5 4 1 3 2 4 3 1 5 2 3 5 1 4 2
5 1 4 2 3 4 1 3 2 5 3 1 5 2 4
1 5 2 4 3 1 4 2 3 5 1 3 2 5 4

1 2 3 4 5

Table 6.1: The plain course of t starting with rounds has length 3 · 10 + 1 = 31 and contains
three plain leads.

The transition sequence corresponding to the bob lead is given by tb = CB(AB)3CB. In other words, the
bob C replaces the last A in the transition sequence t. Multiplying all letters of tb yields the permutation
b = (24)(35), which has order two.

Theorem 6.1.1. There does not exist a 5 - bell extent of Grandsire (satisfying conditions (i)-(iii) of
Definition 1.1.3) using only plain leads and bob leads.

Proof. The 5 - bell transitions A, B and C are even permutations (recall Definition 4.2.3). We know
that any product of even permutations is again an even permutation. Hence, the largest possible number
of permutations that A, B and C are able to generate is |A5| = 5!

2 = 60. Thus, there does not exist an
extent of Grandsire on five bells using only plain and bob leads. �

Corollary 6.1.2. Starting with rounds and using the Grandsire method on 5 bells and only plain and
bob leads, it is impossible to exceed the ringing of 60 successive changes before returning to a change that
we have already rung. Furthermore, there exists a 5 - bell ringing sequence starting with rounds that uses
solely plain and bob leads and has length 60.

Proof. In the proof of Theorem 6.1.1, we have seen that the largest possible number of permutations
that the 5 - bell transitions A, B and C are able to generate is the order of the alternating group A5.
To show that the ringing of 60 different successive changes is indeed possible, we give a corresponding
transition sequence:

tplainbobleads = (tbt
2)2 = (CB(AB)3CB(CB(AB)4)2)2.

If we start with rounds and apply tplainbobleads, then we end up with the change 1 3 4 2 5, since

(bp2)2 = ((24)(35)(345)2)2 = (234)2 = (243).

Since bpB−1 = bpB = (24)(35)(345)(23)(45) = (243), the lead end of the first plain lead according to
tplainbobleads is also the change 13425. Hence, because of condition (ii) of Definition 1.1.3 we cannot count
the appearance of this change twice. Thus, the ringing sequence corresponding to the 5 - bell transition
sequence tplainbobleads has length 60. �

To obtain all possible permutations on five bells (all elements of the symmetric group S5), we need
to use the odd permutation D. The transition sequence corresponding to the single lead is given by
ts = CB(AB)3CD. In other words, the call D replaces the last occurrence of B in the transition
sequence tb.
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plain lead bob lead single lead
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
2 1 3 5 4 2 1 3 5 4 2 1 3 5 4
2 3 1 4 5 2 3 1 4 5 2 3 1 4 5
3 2 4 1 5 3 2 4 1 5 3 2 4 1 5
3 4 2 5 1 3 4 2 5 1 3 4 2 5 1
4 3 5 2 1 4 3 5 2 1 4 3 5 2 1
4 5 3 1 2 4 5 3 1 2 4 5 3 1 2
5 4 1 3 2 5 4 1 3 2 5 4 1 3 2
5 1 4 2 3 5 1 4 2 3 5 1 4 2 3
1 5 2 4 3 1 5 4 3 2 1 5 4 3 2

1 2 5 3 4 1 4 5 2 3 1 5 4 2 3

Table 6.2: The plain, bob and single lead of the Grandsire method on 5 bells starting with
rounds. The changes in the last row of the table do not belong to the depicted leads, but are
the lead heads of the subsequent leads.

The transition sequence of a 5 - bell extent of Grandsire using plain, bob and single leads is given by

text = ((ttb)
2tts)

2 = ((CB(AB)4CB(AB)3CB)2CB(AB)4CB(AB)3CD)2.

6.2 Grandsire Triples: Description and properties
Let A = (12)(34)(56), B = (23)(45)(67), C = (12)(45)(67), D = (45)(67). The Grandsire method on 7
bells has transition sequence t = CB(AB)6. The permutation we get by multiplying all letters in t is
p = (34675). The hunting subgroup H7 of S7 is generated by the permutations A and B (recall Definition
4.3.3). Starting with rounds and executing t is equivalent to saying that we run through the right coset
CH7. A plain course of t contains five plain leads because the permutation p has order 5. The transition
sequence corresponding to the bob lead is given by tb = CB(AB)5CB. Multiplying all letters of tb yields
the permutation

b = (12)(45)(67)(23)(45)(67)(1357642)5(12)(45)(67)(23)(45)(67) = (247)(365),

which has order 3. The transition sequence corresponding to the single lead is given by ts = CB(AB)5CD.

plain lead bob lead single lead
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
2 1 3 5 4 7 6 2 1 3 5 4 7 6 2 1 3 5 4 7 6
2 3 1 4 5 6 7 2 3 1 4 5 6 7 2 3 1 4 5 6 7
3 2 4 1 6 5 7 3 2 4 1 6 5 7 3 2 4 1 6 5 7
3 4 2 6 1 7 5 3 4 2 6 1 7 5 3 4 2 6 1 7 5
4 3 6 2 7 1 5 4 3 6 2 7 1 5 4 3 6 2 7 1 5
4 6 3 7 2 5 1 4 6 3 7 2 5 1 4 6 3 7 2 5 1
6 4 7 3 5 2 1 6 4 7 3 5 2 1 6 4 7 3 5 2 1
6 7 4 5 3 1 2 6 7 4 5 3 1 2 6 7 4 5 3 1 2
7 6 5 4 1 3 2 7 6 5 4 1 3 2 7 6 5 4 1 3 2
7 5 6 1 4 2 3 7 5 6 1 4 2 3 7 5 6 1 4 2 3
5 7 1 6 2 4 3 5 7 1 6 2 4 3 5 7 1 6 2 4 3
5 1 7 2 6 3 4 5 1 7 2 6 3 4 5 1 7 2 6 3 4
1 5 2 7 3 6 4 1 5 7 6 2 4 3 1 5 7 6 2 4 3

1 2 5 3 7 4 6 1 7 5 2 6 3 4 1 5 7 2 6 3 4

Table 6.3: The plain, bob and single lead of the Grandsire method on 7 bells starting with
rounds. The changes in the last row of the table do not belong to the depicted leads, but are
the lead heads of the subsequent leads.

The next two lemmas show us identities, which we will use again later in subsection 7.2 called "Application
to Grandsire Triples".

Lemma 6.2.1. We have pb−1 = (27643).
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Proof. The permutation pb−1 is determined by direct calculation:

pb−1 = (34675)((247)(365))−1 = (34675)(742)(563) = (27643).

�

Notation 6.2.2. For n ≥ 3, Fn := {σ ∈ Sn | σ(1) = 1} is a subgroup of the symmetric group Sn.
Another subgroup of Sn is given by Kn := An ∩ Fn, where An is the alternating group in Sn. Thus, Kn

is composed of all even permutations of Sn which keep the integer 1 fixed.

Remark 6.2.3. Note that Fn ∼= Sn−1 and Kn
∼= An−1.

In Thompson’s theorem 6.2.6 we will prove that there does not exist a 7 - bell extent of Grandsire using
only plain and bob leads. But for now, suppose that there exists such an extent. This extent would
contain 7!

|H7| = 7!
14 = 5040

14 = 360 lead heads. The fact that p and b are even permutations and the
fact that any lead head corresponds to a product of p′s and b′s imply that any lead head is an even
permutation of 2 3 4 5 6 7. Thus, if {p, b} would not be a generating set of K7, then we would have
immediately shown that there cannot exist a 7 - bell extent of Grandsire using only plain and bob leads.
However, the following lemma proves that {p, b} is in fact a generating set of K7 (see lemma 4.14 of
[W87, p. 739]).

Lemma 6.2.4. K7 = 〈p, b〉

Proof. We show the following two inclusions to receive the desired equality:
"〈p, b〉 ⊂ K7": This inclusion follows from the fact that p, b and pb−1 are even permutations, which fix
the treble.
"K7 ⊂ 〈p, b〉": For the proof of this inclusion we need the following claim:

Claim 6.2.5. For n ≥ 3, {(1j2) | j ∈ {3, . . . , n}} is a generating set of the alternating group An.

Proof. For n = 3, the only such 3-cycle is given by (132). Thus, the identity

〈(132)〉 = {1S3
, (132), (123)} = A3

proves the claim for n = 3. Now let n ≥ 4. It is well known (see, for example, Lemma 3.1 of [Con, p. 5])
that for n ≥ 4, any element of An can be written as a product of 3-cycles. Thus, the 3-cycles generate
An. For any 3-cycle (ijk) not having i = 1, we have

(ijk) = (1jk)(1ij).

{(1jk) | j, k ∈ {2, . . . , n} and j 6= k} is therefore a generating set of An. Since (1j2)−1 = (12j) and

(1jk) = (1j2)(1j2)(1k2)(1j2),

it follows that the alternating group An is generated by 3-cycles of the form (1j2). �Claim

Remark 6.2.3 and Claim 6.2.5 imply that it suffices to show that {(2j3) | j ∈ {4, . . . , 7}} ⊂ 〈p, b〉. As a
matter of fact, we have

p−2b = (34675)−2(247)(365) = (57643)2(247)(365) = (243)

pb−1p = (34675)(742)(563)(34675) = (253)

(pb−1p)−1p2b−1p = (235)p(253) = (235)(34675)(253) = (24673)

(pb−1p)−1p2b−1pp−2b((pb−1p)−1p2b−1p)−1 = (24673)p−2b(24673)−1 = (24673)(243)(37642) = (273)

p−2(273)−1p2 = (57643)2(237)(34675)2 = (263).

�

6.2.1 Thompson’s theorem

In 1886, W. H. Thompson proved with his publication "A Note on Grandsire Triples" that there does
not exist an extent of Grandsire Triples using only plain leads and bob leads. According to T. J. Fletcher
([F56, p. 624]), Thompson was neither a mathematician nor a practising ringer. Allegedly he loved solving
change ringing problems as a hobby. Instead of using Thompson’s original proof, which is outlined in
Fletcher’s work [F56] and D. J. Dickinson’s paper "On Fletcher’s Paper" [D57], I will use a proof that
is based on an idea of R. A. Rankin. In the next chapter (chapter 7), I intend to present the work of
Rankin in a more general context.
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Theorem 6.2.6. (Thompson)
(i) K7 is not generated unicursally by the two permutations p = (34675) and b = (247)(365).
(ii) There does not exist a 7 - bell extent of Grandsire using only plain leads and bob leads.

Proof. We have explained the reasons why (ii) is a direct implication of the first statement (recall
also Definition 4.5.1). So it remains to show that (i) holds. The proof of statement (i) is shown by
contradiction.
Suppose that K7 is generated unicursally by p and b. By Definition 4.5.1 this means that all elements of
K7 can be cyclically ordered (g1, g2, . . . , g360) such that for each h ∈ {1, . . . , 359} there exists sh ∈ {p, b}
with gh+1 = ghsh. Further, there exists s360 ∈ {p, b} such that g1 = g360s360. In other words, every
element of K7 is acted on by either p or b. We will call any sequence of cyclically ordered elements
(g1, g2, . . . , gm) a chain of length m if for each h ∈ {1, . . . ,m}, gh is acted on by some sh ∈ {p, b}
(recall Definition 4.5.1). The key part of the proof is to consider right Q-cosets, where Q = 〈σ〉 and
σ = bp−1 = (27643)−1 = (34672). For the calculation of σ we used Lemma 6.2.1. W. H. Thompson called
these Q-cosets Q-sets. K7 can be partitioned into 360

5 = 72 disjoint Q-sets.
The proof of part (i) of Theorem 6.2.6 is based on a series of claims:

Claim 6.2.7. Let xQ be a Q-sets. Then, ∃s ∈ {p, b} ∀y ∈ xQ : y is acted on by s.

Proof. W.l.o.g., suppose y = xσi is acted on by p. Hence, the next element in the chain after y is
yp = xσip. But we have yp = xσi−1(bp−1)p = xσi−1b. Since we want to avoid repetition, b cannot act
on xσi−1. Therefore, p has to act on xσi−1. This argument holds for any i ∈ {1, . . . , 5}. �Claim 6.2.7

For i ∈ {1, . . . , 5}, define ki ∈ {1, . . . , 5} in such a way that the next element of xQ in the chain after xσi
is xσki . This yields a permutation in the symmetric group S5 for each right coset xQ:

τ(x) =
(

1 2 3 4 5
k1 k2 k3 k4 k5

)
.

Claim 6.2.8. τ(x) is a 5-cycle.

Proof. Since we have assumed that there exists a chain of length 360 = |K7|, we know that τ(x) has to
be a 5-cycle. �Claim 6.2.8

Now we will execute a rearrangement of this single chain of length 360. Rearranging this chain may lead
to several disjoint chains of smaller length than 360. The procedure of the rearrangement is done as
follows:
Let xQ be a right coset, whose elements are acted on by b. Such a right coset has to exist because
otherwise each element of K7 would be acted on by p, which is impossible since we have only a single
chain. Thus, the next element in the chain after xσi is xσib. As a next step, we divide the chain into five
segments with respect to the right coset xQ such that each segment is beginning with xσib and ending
with xσki :

. . . , xσi][xσib, . . . , xσki ][xσkib, . . . (5)

The definition of ki implies that the last element of a segment is the only element in this segment, which
is contained in the right coset xQ. Permuting the five segment of (5) in such a way that the segment
after xσi is starting with xσi−1b and ending with xσki−1 , leads to:

. . . , xσi][xσi−1b, . . . , xσki−1 ][xσki−1b, . . . (6)

By doing this we finish our rearrangement procedure.

Claim 6.2.9. After the rearrangement, the elements in xQ are acted on by p. Furthermore, the rear-
rangement does not affect the other Q-cosets apart from xQ, regarding whether their elements are acted
on by p or b.

Proof. Since xσi−1b = xσi−1bp−1p = xσip, we see by looking at (6) that the element following xσi is
xσip. This means that xσi is acted on by p after our rearrangement. Hence, because of Claim 6.2.7, all
elements in xQ are acted on by p. The second part of our claim follows directly from the construction of
our rearrangement (6). �Claim 6.2.9

Claim 6.2.10. After the rearrangement, it is possible that we have more than one chain. Every chain,
however, contains an element of xQ.
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Proof. We show the possibility of having more than one chain with the help of an example: Let k1 = 4
and let k3 = 2. After our rearrangement, we have

[xσb, . . . , xσ4][xσ3b, . . . , xσ2].

These two segments form a chain, while the remaining segments form at least another chain. Thus, in
this case, we would have at least two chains.
Now we proceed with the proof of the second part of Claim 6.2.10, which is done by contradiction.
Suppose that after the rearrangement there exists a chain that does not contain any element of xQ.
Hence, by Claim 6.2.9, this chain must have existed before the rearrangement. But this is contradicted
by the fact that there was only one chain before our rearrangement, and this chain contained all elements
of xQ. �Claim 6.2.10

The next element of xQ in the new arrangement after xσi is xσki−1 . This yields a permutation π(x) in
S5 similar to τ(x):

π(x) =
(

1 2 3 4 5
k5 k1 k2 k3 k4

)
.

Claim 6.2.11. The number of disjoint cycles (including 1-cylces) in π(x) is equal to the number of chains
after our rearrangement.

Proof. This is a direct consequence of Claim 6.2.10. �Claim 6.2.11

Claim 6.2.12. (12345)π(x) = τ(x)

Proof. The statement of this claim is straight-forward. �Claim 6.2.12

Claim 6.2.13. The number of disjoint cycles (including 1-cylces) in π(x) is odd.

Proof. Suppose π(x) has r disjoint cycles. The number of disjoint cycles in (15)π(x) is r − 1 if the
integers 1 and 5 are not in the same cycle in π(x), and r+ 1 if the integers 1 and 5 are in the same cycle
in π(x). Therefore, it follows that the number of disjoint cycles in (14)(15)π(x) has exactly the same
parity as r. Similarly, the number of disjoint cycles in (12)(13)(14)(15)π(x) has the same parity as r.
Note that (12)(13)(14)(15)π(x) = (12345)π(x), so Claim 6.2.12 combined with Claim 6.2.8 yields that r
is odd. �Claim 6.2.13

The number of chains after the rearrangement with respect to the right coset xQ is denoted by cx.

Claim 6.2.14. cx is odd.

Proof. Combining Claim 6.2.11 and Claim 6.2.13 yields the desired result. �Claim 6.2.14

Now, let us do the same rearrangement as before, but this time with respect to another right coset x̃Q,
whose elements are acted on by b. If there does not exist such a right coset, then skip to the end of the
proof of Claim 6.2.19. The number of chains after the rearrangement with respect to the right coset x̃Q
is denoted by cx̃. Let ki = ki(x̃) and τ(x̃) be defined in a similar way as before. Claim 6.2.8 becomes

Claim 6.2.15. The number of disjoint cycles in τ(x̃) is equal to the number of chains that do contain
elements of x̃Q before our rearrangement with respect to the right coset x̃Q.

Claim 6.2.9 proves that after the rearrangement with respect to x̃Q, the elements in x̃Q are acted on by
p. Hence, the proof of Claim 6.2.10 leads to the following claim:

Claim 6.2.16. The number of chains that do not contain any element of x̃Q does not vary during the
rearranging process.

Let π(x̃) be defined in a similar way as π(x).

Claim 6.2.17. cx − (number of disjoint cycles in τ(x̃)) = cx̃ − (number of disjoint cycles in π(x̃))

Proof. Claim 6.2.15 yields that left hand side of the equation is equal to the number of chains that do
not contain any element of x̃Q before our rearrangement with respect to the right coset x̃Q. The right
hand side of the equation is equal to the number of chains that do not contain any element of x̃Q after
our rearrangement. Thus, the equality of the left hand side and the right hand side is implied by Claim
6.2.16. �Claim 6.2.17

Claim 6.2.18. (12345)π(x̃) = τ(x̃)

Proof. The statement of this claim is again straight-forward. �Claim 6.2.18
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Claim 6.2.19. (number of disjoint cycles in π(x̃)) ≡ (number of disjoint cycles in τ(x̃)) mod 2

Proof. Doing the same proof as for Claim 6.2.13, but using π(x̃) instead of π(x) and Claim 6.2.18 instead
of Claim 6.2.12, gives us the desired result. �Claim 6.2.19

Claim 6.2.20. cx̃ is odd.

Proof. Claim 6.2.17 and Claim 6.2.19 yield that cx̃ has to have the same parity as cx. Hence, as a result
of Claim 6.2.14, cx̃ must be odd. �Claim 6.2.20

We repeat the rearranging process with respect to every right Q-coset, whose elements are acted an by
b. Once this is done, the elements in all right Q-coset are acted on by p. Thus, every element of K7 is
acted on by p. Consequently, the chains we have must be the right 〈p〉-cosets. The number of such chains
is odd because of Claim 6.2.20. However, since p is a 5-cycle, there exists an even number of 〈p〉-cosets,
namely exactly [K7 : 〈p〉] = 360

5 = 72. This contradiction finally finishes the proof of part (i) of Theorem
6.2.6. �

Corollary 6.2.21. Starting with rounds and using the Grandsire method on 7 bells and only plain and
bob leads, it is impossible to exceed the ringing of 4998 successive changes before returning to a change
that we have already rung.

Proof. Because of Thompson’s theorem 6.2.6 we know that the elements of K7 cannot be cyclically
ordered in a single chain of length 360. Since b has order three, the shortest possible chain is of length
three. Consequently, the longest possible chain is of length smaller than or equal to 360− 3 = 357. Since
a chain of length 357 corresponds to 357 consecutive leads, the largest number of successive changes that
can be rung using only plain and bob leads is 357 · |H7| = 357 · 14 = 4998 (recall that H7 is the hunting
subgroup of S7). �

In 1751, John Holt showed that there exists a ringing sequence of length 4998 using the Grandsire method
and only plain and bob leads. This proves that the maximum possible length given by Corollary 6.2.21
is in fact achievable.
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7. Rankin’s theorem
As I mentioned in subsection 6.2.1, R. A. Rankin ([R48] and [R66]) generalised in 1948 Thompson’s idea
concerning the Grandsire method. As a matter of fact, Rankin’s result is even more general and detailed
than the version we will follow in this section. In 1999, a paper of Richard G. Swan was published in The
American Mathematical Monthly ([S99]) in which he rewrote Rankin’s end result in a group theoretic
language. Thus, our proofs in this chapter will mainly follow Swan’s work.

Definition 7.0.1. Let S be a set of permutations of a given finite set I. An S - cycle in I is a
cyclically ordered non-empty subset of I, which we denoted by (i1, . . . , ik), that satisfies the following
three conditions:
(i) ∀h, j with 1 ≤ h < j ≤ k : ih 6= ij
(ii) ∀h ∈ {1, . . . , k − 1} ∃σh ∈ S : ih+1 = σh(ih)
(iii) ∃σk ∈ S : i1 = σk(ik)

Lemma 7.0.2. Let S = {σ1, σ2} be a set containing two permutations of a given finite set I such that
σ1 has m1 orbits and σ2 has m2 orbits, respectively. Suppose that the set I can be partitioned into
m disjoint S - cycles. Let us further assume that the permutation σ = σ−12 σ1 has odd order. Then
m ≡ m1 ≡ m2 mod 2.

Proof. There exists a one-to-one correspondence between the partitions of I into disjoint S - cycles and
the permutations τ of I with the S - cycles being the orbits of τ : Let (i1,1, . . . , i1,k1), . . . , (im,1, . . . , im,km)
be the m disjoint S - cycles that partition the finite set I. By defining the permutation τ of I in the
following way:

τ := (i1,1, . . . , i1,k1) · · · (im,1, . . . , im,km),

we see that the above one-to-one correspondence actually holds. For h ∈ {1, 2}, we define the sets
Jh := {i ∈ I | τ(i) = σh(i)} and we notice that J1 ∪ J2 = I. Let π = σ−12 τ . Then the following holds:
π|J1 = σ|J1 and π|J2 = idJ2 . Since J1 ∪ J2 = I, we see that J1 \ J2 = I \ J2 is stable under π and
therefore also stable under σ. In particular, J1 is stable under π and therefore also an invariant set
of σ. Consequently, π|J1 = σ|J1 has odd order since by assumption σ has odd order. Further, since
π|I\J1 = idI\J1 , the order of π|I is odd.

Claim 7.0.3. If a permutation π of a finite set I has odd order, then π must be an even permutation.

Proof. If π has odd order, then there exists an integer q such that π2q+1 = idI . If we write π as a product
k transpositions and insert this into π2q+1 = idI , then idI is equal to a product of k(2q+1) transpositions.
It is only possible to write idI as a product of an even number of transpositions. Therefore, k(2q+ 1) has
to be even, which in turn implies that k must be even as well. Definition 4.2.3 explains why π has to be
an even permutation. �Claim

Using Claim 7.0.3 and Definition 4.2.3 we find sgn(σ−12 ) · sgn(τ) = sgn(π) = 1.

Claim 7.0.4. (see Appendix A of [K55])
Let τ be a permutation of a finite set I having m cycles. Then sgn(τ) = (−1)|I|−m.

Proof. Write the permutation τ in the following form: τ = (i1,1, . . . , i1,k1) · · · (im,1, . . . , im,km), where
∀h ∈ {1, . . . ,m} and ∀j(h) ∈ {1, . . . , kh} it holds that ih,j(h) ∈ I. Since

∑m
h=1 kh = |I| and since every

cycle of length kh can be written as a product of kh−1 transpositions, it follows by using Definition 4.2.3
that

sgn(τ) =

m∏
h=1

(−1)kh−1 = (−1)
∑m

h=1(kh−1) = (−1)|I|−m.

�Claim

Using Claim 7.0.4 and sgn(σ−12 ) · sgn(τ) = 1, we get

(−1)|I|−m = sgn(τ) = sgn(σ−12 ) = sgn(σ2) = (−1)|I|−m2

and hence m ≡ m2 mod 2. Our assumption that σ−12 σ1 has odd order implies that σ−11 σ2 = (σ−12 σ1)−1

has odd order as well. As a result, we are able to swap the roles of σ1 and σ2 in our proof, and by doing
so obtain m ≡ m1 mod 2. This evidently finishes the proof of Lemma 7.0.2. �

Remark 7.0.5. Let S = {σj | j = 1, 2} be a set containing two permutations of a given finite set I. The
orbit of an element i ∈ I is exactly the set of points in the cycle that contain i. Thus, saying in Lemma
7.0.2 that the permutation σj has mj orbits is equivalent to saying that σj has mj cycles.
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Definition 7.0.6. Let S be a subset of a given finite group G. An S - cycle in G is a cyclically ordered
non-empty subset of G, which we denoted by (g1, . . . , gk), that satisfies the following three conditions:
(i) ∀h, j with 1 ≤ h < j ≤ k : gh 6= gj
(ii) ∀h ∈ {1, . . . , k − 1} : g−1h gh+1 ∈ S
(iii) g−1k g1 ∈ S

Theorem 7.0.7. Let S = {s1, s2} be a subset of a finite group G. Suppose that G can be partitioned into
m disjoint S - cycles and assume that s1s−12 has odd order. Then m is equivalent to the index of 〈s1〉 in
G modulo 2 and to the index of 〈s2〉 in G modulo 2, respectively: m ≡ [G : 〈s1〉] ≡ [G : 〈s2〉] mod 2.

Proof. Let I be the finite groupG. For j = 1, 2, let σj be the permutation ofG given by σj : g 7→ gsj . The
orbits of σj are exactly the right 〈sj〉-cosets, meaning σj has [G : 〈sj〉] orbits. Hence, let m1 = [G : 〈s1〉]
and m2 = [G : 〈s2〉]. Further, σ−12 σ1 : g 7→ gs1s

−1
2 has obviously the same order as s1s−12 . Since the

S - cycles in G correspond to the {σ1, σ2} - cycles in G, we can apply Lemma 7.0.2 and by doing so we
receive the desired result. �

The next corollary describes Rankin’s conclusion in the most popular manner, meaning in most change
ringing literature it can be found written in exactly this wording.

Corollary 7.0.8. Let S = {s1, s2} be a generating set of a finite group G. Suppose that s1s−12 has odd
order. If G is generated unicursally by S, then the index of 〈s1〉 in G and the index of 〈s2〉 in G are both
odd.

Proof. If S generates G unicursally, then by Definition 4.5.1 we cannot partition G into more than one
disjoint S - cycle. Thus, we are able to apply Theorem 7.0.7 with m = 1. Since m is odd, we get the
desired result. �

Example 7.0.9. Let S = {s1 = (123 . . . n−1), s2 = (n−1n)}. The permutation s1 is a (n−1)-cycle, and
s2 is a transposition. One can easily check that S is a generating set of the symmetric group Sn. Suppose
that n is odd and that n > 3. The order of s1s−12 = (123 . . . n− 1)(n− 1n) = (123 . . . n− 3n− 2nn− 1)
is n, and thus it follows that s1s−12 has odd order. For n > 3, using Theorem 4.1.6 (Lagrange’s theorem)
yields that the index of 〈s2〉 in Sn is n!

2 and hence [Sn : 〈s2〉] is even. We conclude that Sn cannot be
generated unicursally by S by applying Corollary 7.0.8.

7.1 Translation and extension into a graph theoretic result
In this subsection we will translate and extend Rankin’s work into a graph theoretic result as it was done
by D. Griffiths in her paper "Twin Bob Plan compositions of Stedman Triples" ([G94]). The remaining
contents of chapter 7 are all based on this paper.

Definition 7.1.1. A covering C of a digraph Γ is a union of disjoint directed cycles such that every
vertex in V (Γ) is used exactly once.

Remark 7.1.2. If a covering C of a digraph Γ involves just one cycle, then the cycle is a Hamiltonian
cycle and Γ is Hamiltonian (recall Definition 3.2.11).

Definition 7.1.3. Let Γ be a digraph such that every vertex in V (Γ) has in-degree two as well as
out-degree two. An alternating 2m - gon is a sequence of edges of Γ of the form e1e

−1
2 e3e

−1
4 . . . e−12me1

where e−1j signifies the edge ej used in the opposite direction (see Figure 7.1).

e1
e2

e3

e4

e2m

Figure 7.1: Alternating 2m - gon.
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Definition 7.1.4. Let Γ be a digraph such that every vertex in V (Γ) has in-degree two as well as
out-degree two. Let C1 be a covering of Γ such that the edge e1 is part of C1. The edge e1 belongs to
a unique alternating 2m - gon e1e−12 e3e

−1
4 . . . e−12me1. Let C2 be a covering of Γ such that the edge e1 is

not part of C2. The procedure of transforming C1 into C2 is called a one-step transformation of C1

which uses the alternating 2m - gon e1e−12 e3e
−1
4 . . . e−12me1.

Remark 7.1.5. As a direct consequence of the three above-mentioned definitions, we have the following
two properties:
(i) ∀j ∈ {1, . . . ,m} : e2j−1 ∈ C1 and e2j /∈ C1

(ii) ∀j ∈ {1, . . . ,m} : e2j−1 /∈ C2 and e2j ∈ C2

A one-step transformation of C1 which uses the alternating 2m - gon e1e−12 e3e
−1
4 . . . e−12me1 does not affect

the segments of cycles in C1 that do not contain the edges e1, e2, . . . , e2m.

Theorem 7.1.6. Let Γ be a digraph such that every vertex in V (Γ) has in-degree two as well as out-degree
two. Let C1 be a covering of Γ. Let C2 be the covering we get by doing a one-step transformation of C1

which uses the alternating 2m - gon e1e−12 e3e
−1
4 . . . e−12me1. Let m1 and m2 be the numbers of cycles in C1

and C2, respectively. If m is odd, then m2 ≡ m1 mod 2. If m is even, then m2 6≡ m1 mod 2.

Proof. Let e1 ∈ E(Γ) be used in one of the m1 cycles of the covering C1. It follows by Remark 7.1.5 (i)
that the edges e1, e3, . . . , e2m−1 are contained in C1, and by Remark 7.1.5 (ii) that the edges e2, e4, . . . , e2m
are not contained in the cycles of C1. Let the permutation τ1 =

( 1 2 3 ··· m−1 m
k1 k2 k3 ··· km−1 km

)
describe the suc-

cession in which the edges e1, e3, . . . , e2m−1 appear in C1 in such a way that for any j ∈ {1, . . . ,m} the
first edge of e1, e3, . . . , e2m−1 following e2j−1 is e2kj−1. It is possible that kj = j, namely if there exists
a cycle of C1 that contains only the edge e2j−1 of the edges e1, e3, . . . , e2m−1. Let mτ1 be the number
of cycles in C1 involving the edges e1, e3, . . . , e2m−1. Thus, the number of cycles in C1 not involving the
edges e1, e3, . . . , e2m−1 is m1 −mτ1 . Our specification of the permutation τ1 implies that τ1 has to have
mτ1 disjoint cycles.
Now we are doing a one-step transformation of C1 which uses the alternating 2m - gon e1e−12 e3e

−1
4 . . . e−12me1:

By removing the edges e1, e3, . . . , e2m−1 from the covering C1, we get segments of the mτ1 cycles in C1.
These segments are uniquely joined together by the edges e2, e4, . . . , e2m such that we receive the covering
C2. Studying the following figure, we can see that the uniqueness of the "joining together-step" is actually
ensured.

e2j−1

e2j
e2kj−2

segment of C1 not involving e1, e3, . . . , e2m−1

e2kj−1

Figure 7.2: For any j ∈ {1, . . . ,m}, removing the edges e2j−1 and e2kj−1 from a cycle of
the covering C1, leaves us with a segment of C1 which does not involve e1, e3, . . . , e2m−1.
Furthermore, this segment clearly does not involve the edges e2, e4, . . . , e2m because of Remark
7.1.5. Since the graph Γ has in-degree two, there exists a unique edge apart from e2j−1 with
its head adjacent to the start of the segment, namely e2j . Similarly, since the graph Γ has
out-degree two, there exists a unique edge apart from e2kj−1 with its tail adjacent to the end
of this segment, namely e2kj−2. Therefore, the edge e2j , this segment of C1 and the edge
e2kj−2 form together a segment of a cycle of the covering C2. Hence, because this holds for
any j ∈ {1, . . . ,m}, the uniqueness of the "joining together-step" is given.

Let mτ2 be the number of cycles in the covering C2 involving the edges e2, e4, . . . , e2m. Then there are
m2 −mτ2 = m1 −mτ1 cycles in C2 which do not involve the edges e2, e4, . . . , e2m. Let the permutation
τ2 =

( 1 2 3 ··· m−1 m

k̂1 k̂2 k̂3 ··· k̂m−1 k̂m

)
describe the succession in which the edges e2, e4, . . . , e2m appear in C2 in such

a way that for any j ∈ {1, . . . ,m} the first edge of e2, e4, . . . , e2m following e2j is e
2k̂j

. Our specification
of the permutation τ2 implies that τ2 has to have mτ2 disjoint cycles. Studying once again Figure 7.2,
we see that if τ1(j) = kj 6= 1 then τ2(j) = kj − 1, and if τ1(j) = 1 then τ2(j) = m. Let the permutation
π be m-cycle π = (12 . . .m). Then we have τ2 = τ1π

−1. For h ∈ {2, . . . ,m}, let πh be the transposition
πh := (h1). The number of cycles (including 1-cycles) in τ1πh is mτ1 + 1 when h and 1 occur in the same
cycle of τ1, and it is mτ1 − 1 when h and 1 occur in different cycles of τ1. Since the permutation π−1 can
be written as product of m− 1 transpositions

π−1 = (m. . . 21) = (m1)(m− 1 1) · · · (31)(21) = πmπm−1 · · ·π3π2,
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we have (see Lemma 2 of [R48, p. 20])

mτ2 −mτ1 ≡ m− 1 mod 2.

If m is odd, then mτ2 ≡ mτ1 mod 2 and hence m2 ≡ m1 mod 2. If m is even, then mτ2 6≡ mτ1 mod 2
and hence m2 6≡ m1 mod 2. �

Corollary 7.1.7. Let Γ be a digraph such that every vertex in V (Γ) has in-degree two as well as out-degree
two. Let C1 and C2 be arbitrary coverings of Γ. Let m1 and m2 be the numbers of cycles in C1 and C2,
respectively. If m is odd for all alternating 2m - gons, then m2 ≡ m1 mod 2. If m is even for all
alternating 2m - gons and if C1 is transformed into C2 by k one-step transformations, then the following
holds:
(i) If k is even, then m2 ≡ m1 mod 2.
(ii) If k is odd, then m2 6≡ m1 mod 2.

Proof. Let C1 and C2 be arbitrary coverings of Γ. First we explain why it is possible to transform C1

into C2 by a finite number of one-step transformations. Let Cold := C1.
As a first step we order the edges used in the covering Cold. Then we take the first edge used in Cold which
is not contained in any cycle of the covering C2. The application of the one-step transformation of Cold
which uses the unique alternating 2m - gon containing this exact edge yields a new covering Cnew of Γ.
All edges that are changed by this procedure are used in the covering C2. All edges that coincided with
edges used in C2 prior to the application of this procedure will still coincide with C2 after the one-step
transformation. Redefine Cold := Cnew.
Iterate the above described process (above paragraph) until the covering Cnew coincides with the covering
C2. Hence, it is possible to transform C1 into C2 using a finite number of one-step transformations, and
consequently the statement of the corollary is a direct conclusion of Theorem 7.1.6. �

Corollary 7.1.8. Let S = {s1, s2} be a generating set of a finite group G. The Cayley color graph of G
with respect to S as defined in Definition 3.2.5 has in-degree two as well as out-degree two. Let d be the
order of s1s−12 . Suppose that d is odd. If C1 is a covering of CS(G) that involves just one cycle, meaning
if CS(G) is Hamiltonian, then any arbitrary covering of CS(G) consists of an odd number of cycles.

Proof. Studying the following figure, we can see that every edge of CS(G) is part of an alternating
2d - gon.

g

gs1

gs2

gs21

gs22

gs1s2

gs1s
−1
2g(s1s

−1
2 )2

gs2s1

gs1s
−1
2 s1

g(s1s
−1
2 )d−2s1

g(s1s
−1
2 )d−1

Figure 7.3: Let g be an arbitrary element of the group G. Then the edge (g, gs1) is part of
the unique 2d - gon

(g, gs1)(gs1, gs1s
−1
2 ) · · · (g(s1s

−1
2 )d−1, g(s1s

−1
2 )d−1s1)(g(s1s

−1
2 )d−1s1, g(s1s

−1
2 )d)(g, gs1)

(represented by the blue part of the figure). Our assumption that s1s−12 has order d implies
that s2s−11 = (s1s

−1
2 )−1 has order d as well. Thus, similarly as before, the edge (g, gs2) is

part of the unique 2d - gon

(g, gs2)(gs2, gs2s
−1
1 ) · · · (g(s2s

−1
1 )d−1, g(s2s

−1
1 )d−1s2)(g(s2s

−1
1 )d−1s2, g(s2s

−1
1 )d)(g, gs2).

Since g was arbitrarily chosen, we can see that every edge of CS(G) is part of an alternating
2d - gon.
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Let C1 be a covering of CS(G) that involves just one cycle, meaning the number of cycles in C1 is m1 = 1.
Let C2 be an arbitrary covering of CS(G) and let m2 be the number of cycles in C2. Using Corollary
7.1.7 and the assumption that d is odd, we get m2 ≡ 1 mod 2 and thus the number of cycles in C2 has
to be odd. �

7.2 Application to Grandsire Triples
In subsection 6.2.1 we have shown a very long and complicated proof of Thompson’s theorem 6.2.6, which
was based on a series of fourteen different claims. Now that we have gotten to know Rankin’s work in a
more general context, we will use the above derived corollaries to present two shorter, alternative proofs
of Thompson’s theorem. More specifically, we will prove the theorem by using Corollary 7.0.8 and then
by using Corollary 7.1.8.

Using Corollary 7.0.8: We know by Lemma 6.2.4 that {p, b} is a generating set of the group K7.
Furthermore, by using Lemma 6.2.1, we see that pb−1 = (27643) has odd order, namely order five. The
index of 〈b〉 in K7 is given by

[K7 : 〈b〉] =
|K7|
|〈b〉|

=
|A6|

|〈(247)(365)〉|
=

720
2

3
=

360

3
= 120,

and hence it is even. We conclude that K7 cannot be generated unicursally by {p, b} by applying Corol-
lary 7.0.8. This means that part (i) of Thompson’s theorem 6.2.6 holds true. Since we know that part
(ii) of the theorem is a direct consequence of part (i), we see that there does not exist a 7 - bell extent of
Grandsire using only plain leads and bob leads. �

Using Corollary 7.1.8: We know by Lemma 6.2.4 that {p, b} is a generating set of the group K7.
Furthermore, by using Lemma 6.2.1, we see that pb−1 = (27643) has odd order, namely order five. The
Cayley color graph of K7 with respect to {p, b}, denoted by C{p,b}(K7), has the elements of K7 as its
vertices (recall Definition 3.2.5). By Definition 3.2.5, C{p,b}(K7) has in-degree two as well as out-degree
two. Based on the permutation p = (34675), we are able to cover C{p,b}(K7) by directed cycles of
length five. These cycles correspond to the plain courses of the Grandsire method (recall Definition 1.3.4
and Remark 1.3.5). Hence, C{p,b}(K7) can be covered by an even number of directed cycles, namely
by |K7|

5 = 360
5 = 72 disjoint directed cycles. We conclude that C{p,b}(K7) cannot be Hamiltonian by

applying Corollary 7.1.8. In other words, we can never get a single directed cycle covering C{p,b}(K7).
Consequently, K7 cannot be generated unicursally by {p, b} (recall Definition 4.5.1). Thus, since part (i)
of Thompson’s theorem 6.2.6 holds true, part (ii) follows immediately. �
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Appendix
Colin J. E. Wyld’s composition of Stedman Triples

Wyld’s composition does not start with rounds. Instead it begins and thus ends with the change 2314567.
This change is exactly the third change of the plain lead starting with rounds, which can be detected
by looking at Table 5.1. The fact that Wyld’s composition starts with 2 3 1 4 5 6 7 does not have any
important consequences other than the failing of condition (i) in Definition 1.1.3. For j ∈ {0, . . . , 42},
every (1 + j · 120)th change of the extent is displayed in the leftmost column. Every entry in the above
(42 × 20) - array, containing either a line or an empty space, corresponds to a block of six successive
changes. We call such a block of six successive changes a Six. The first change of a Six is called a Six
Head, while the last change of a Six is a so-called Six End. Each empty space in the array symbolizes that
the new Six Head results from applying A = (12)(34)(56) to the previous Six End. Similarly, each line
in the array symbolizes that the Six End to Six Head transition results from the bob D = (12)(34)(67).
We can count 705 lines in the above array. Thus, Wyld’s composition contains 705 bobs.
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