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Introduction

In these notes, we deal with nonlinear (or more precisely with quasilinear) elliptic
and parabolic systems of partial differential equations in divergence form. The
ellipticity (and parabolicity) of such systems can be phrased by imposing certain
monotonicity conditions on the operator. The classical assumptions in this context
have been formulated by Leray and Lions in [LeLi-65]. These conditions guarantee
solvability of the corresponding elliptic and parabolic equations. The aim of this text
is to prove analogous existence results under relaxed monotonicity assumptions. The
main technical tool we advocate and use throughout the proofs are Young measures.

This text is set up in the following way: Chapter 1 states a refined version of Ball’s
fundamental theorem on Young measures (see Section 1.1 and 1.2): For a sequence
uj : Ω ⊂ IRn → IRm generating the Young measure νx, x ∈ Ω, Ball’s Theorem
asserts, that a tightness condition, preventing mass in the target space from escaping
to infinity, implies that νx is a probability measure and that f(uk) ⇀ 〈νx, f〉 in L1

provided the sequence is equiintegrable. We show that Ball’s tightness condition
is necessary for the conclusions to hold and that in fact all three, the tightness
condition, the assertion ‖νx‖M = 1, and the convergence conclusion, are equivalent.
This theorem is then used to prove several technical lemmas (see Section 1.3) which
build the basic tools in the Chapters 3 and 4. Most of Chapter 1 follows [Hu-97].
We also recall in this chapter some relevant facts about gradient Young measures
(see Section 1.4) which will be used throughout the text.

Chapter 2 gives a brief overview on monotone operator theory and its applications
to nonlinear partial differential equations. The aim of this chapter is to explain the
connection of the known theory to the new results in the Chapters 3 and 4. In
particular, we recall the result on Leray-Lions operators (see Theorem 2.7).

In Chapter 3 we prove the Leray-Lions result in the elliptic case but with con-
siderably relaxed monotonicity assumptions. In particular, we can drop the strict
monotonicity condition and replace it by monotonicity (together with a mild regu-
larity condition, which can as well be dropped if the problem is variational in the
gradient variable). We also deal with an integrated form of monotonicity (called
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quasimonotonicity). Its definition is phrased in terms of gradient Young measures
(see Definition 3.1). The main result is stated in Theorem 3.2. The main technical
point is a div-curl inequality, which allows to pass to the limit in the approximate
equations and hence to prove existence of a solution.

In Chapter 3 we treat the parabolic problem which corresponds to Chapter 3. That
is, we consider a time dependent Leray-Lions operator and relax its monotonicity
assumption to those stated in the stationary case. Again, the use of Young measures
allows to prove existence of a solution.

Each chapter (with the exception of Chapter 2) starts with a short abstract which
summarizes the contents and which should allow the reader to navigate easily
through the text.



Chapter 1

A refinement of Ball’s Theorem on
Young measures

Abstract: For a sequence uj : Ω ⊂ IRn → IRm generating the Young
measure νx, x ∈ Ω, Ball’s Theorem on Young measures asserts, that a
tightness condition, preventing mass in the target space from escaping to
infinity, implies that νx is a probability measure and that f(uk) ⇀ 〈νx, f〉
in L1 provided the sequence is equiintegrable. We show that Ball’s tight-
ness condition is necessary for the conclusions to hold and that in fact
all three, the tightness condition, the assertion ‖νx‖M = 1, and the con-
vergence conclusion, are equivalent. We give some simple applications
of this observation which are useful in the theory of nonlinear partial
differential equations, in particular in the Chapters 3 and 4. We also
recall some basic facts about gradient Young measures which will be
used throughout this text.

1.1 The fundamental theorem on Young measures

Young measures have in recent years become an increasingly indispensable tool in
the calculus of variations and in the theory of nonlinear partial differential equations
(see, e.g., [Ta-79], [Ta-82], or [DoHuMü-97]. For a list of references for general Young
measure theory see, e.g., [Val-94]). In [Ball-89] Ball stated the following version of
the fundamental theorem of Young measures which is tailored for applications in
these fields:

Mathematics Subject Classification: 46E27, 28A33, 28A20



4 A refinement of Ball’s Theorem on Young measures

Theorem 1.1 Let Ω ⊂ IRn be Lebesgue measurable, let K ⊂ IRm be closed, and
let uj : Ω → IRm, j ∈ IIN, be a sequence of Lebesgue measurable functions satisfying
uj → K in measure as j →∞, i.e. given any open neighborhood U of K in IRm

lim
j→∞
|{x ∈ Ω: uj(x) /∈ U}| = 0.

Then there exists a subsequence uk of uj and a family (νx), x ∈ Ω, of positive
measures on IRm, depending measurably on x, such that

(i) ‖νx‖M :=
∫

IRm
dνx 6 1 for a.e. x ∈ Ω,

(ii) spt νx ⊂ K for a.e. x ∈ Ω, and

(iii) f(uk)
∗
⇀ 〈νx, f〉 =

∫
IRm

f(λ)dνx(λ) in L∞(Ω) for each continuous function
f : IRm → IR satisfying lim|λ|→∞ f(λ) = 0.

Suppose further that {uk} satisfies the boundedness condition

∀R > 0: lim
L→∞

sup
k∈IIN
|{x ∈ Ω ∩BR : |uk(x)| > L}| = 0, (1.1)

where BR = BR(0). Then

‖νx‖M = 1 for a.e. x ∈ Ω (1.2)

(i.e. νx is a probability measure), and there holds:
For any measurable A ⊂ Ω and any continuous function f : IRm →
IR such that {f(uk)} is sequentially weakly relatively compact in
L1(A) we have f(uk) ⇀ 〈νx, f〉 in L1(A).

(1.3)

Improved versions of this theorem can be found, e.g., in [Kr-94]. The main result of
this chapter is to prove that (1.1) is necessary for (1.2) and (1.3) to hold, and that
in fact (1.1), (1.2) and (1.3) are equivalent. We will give some simple consequences
of this fact which will be useful in the subsequent chapters on nonlinear elliptic and
parabolic systems of partial differential equations.

Theorem 1.2 Let Ω, uj and νx be as in Theorem 1.1. Then (1.1), (1.2) and (1.3)
are equivalent.
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Remarks:

(a) It was proved in [Ball-89] that (1.1) is equivalent to the following tightness
condition: Given any R > 0 there exists a continuous nondecreasing function
gR : [0,∞)→ IR, with limt→∞ gR(t) =∞, such that

sup
k∈IIN

∫
Ω∩BR

gR(|uk(x)|)dx <∞.

(b) In [Ball-89] it is also shown, that under hypothesis (1.1) for any measurable
A ⊂ Ω

f(·, uk) ⇀ 〈νx, f(x, ·)〉 in L1(A)

for every Carathéodory function f : A × IRm → IR such that {f(·, uk)} is se-
quentially weakly relative compact in L1(A). Hence, this fact is also equivalent
to (1.1), (1.2) and (1.3).

(c) Ball also shows in [Ball-89], that if uk generates the Young measure νx, then
for ψ ∈ L1(Ω;C0(IRm))

lim
k→∞

∫
Ω

ψ(x, uk(x))dx =

∫
Ω

〈νx, ψ(x, ·)〉dx.

Here, C0(IRm) denotes the Banach space of continuous functions f : IRm → IR
satisfying lim|λ|→∞ f(λ)→ 0 equipped with the L∞-norm.

The proof of Theorem 1.2 which we give in the following section follows [Hu-97].

1.2 Proof of the refined theorem

First we prove (1.2) =⇒ (1.1). We assume by contradiction that (1.2) holds and that
there exists R > 0 and ε > 0 with the following property: There exists a sequence
Li → ∞ and integers ki such that |{x ∈ Ω ∩ BR : |uki(x)| > Li}| > ε for all i ∈ IIN.
For ρ > 0 consider the function

αρ(t) :=


1 if t 6 ρ

0 if t > ρ+ 1

ρ+ 1− t if ρ < t < ρ+ 1.

Then ϕρ : IRm → IR, x 7→ αρ(|x|), is in C0(IRm). Hence, applying the first part of
Theorem 1.1, we have that

lim
k→∞

∫
Ω

ϕρ(uk)χBRdx =

∫
Ω

∫
IRm

ϕρ(λ)dνx(λ)χBRdx. (1.4)
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Notice that ki → ∞ for i → ∞ since the functions uj are finite for a.e. x ∈ Ω.
Hence, uki is a subsequence of uk and for i large enough, we find

|Ω ∩BR| − ε >
∫

Ω

ϕρ(uki)χBRdx

such that (1.4) implies

|Ω ∩BR| − ε >
∫

Ω

∫
IRm

ϕρ(λ)dνx(λ)χBRdx. (1.5)

On the other hand, by the monotone convergence theorem, we conclude that the
right hand side of (1.5) converges for ρ→∞ to∫

Ω

∫
IRm

dνx(λ)χBRdx =

∫
Ω

‖νx‖M χBRdx = |Ω ∩BR|

by (1.2) and this contradicts (1.5).

Second we prove that (1.3) =⇒ (1.2). Let R > 0 be fixed and let f denote the
function constant 1 on IRm. Then f(uj) is sequentially weakly relative compact on
Ω ∩BR and (1.3) implies

|Ω ∩BR| =
∫

Ω∩BR
f(uk)χBRdx→

→
∫

Ω∩BR

∫
IRm

f(λ)dνx(λ)χBRdx =

∫
Ω∩BR

‖νx‖M dx. (1.6)

Since ‖νx‖M 6 1 by (i) in Theorem 1.1, we conclude that ‖νx‖M = 1 for a.e. x ∈
Ω ∩BR. Since R was arbitrary, the claim follows. 2

1.3 Applications

In this section we make available some tools which will be used in Chapter 3 and 4.
The following propositions are certainly well known to people working in the field,
but we want to show that the sharp version of Ball’s theorem which we now have
at our disposal, comes in very handy in the proofs.

Proposition 1.3 If |Ω| <∞ and νx is the Young measure generated by the (whole)
sequence uj then there holds

uj → u in measure ⇐⇒ νx = δu(x) for a. e. x ∈ Ω.
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A weak form of this proposition can be found e.g. in [Ev-90] (see also [Kr-94]).

Proof. Let us first assume that uj → u in measure, i.e. for all ε > 0 we have

lim
j→∞
|{|uj − u| > ε}| = 0. (1.7)

For ϕ ∈ C∞c (IRm) and ζ ∈ L1(Ω) there holds

|
∫

Ω

ζ (ϕ(uj)− ϕ(u))dx| 6

|
∫
|uj−u|>ε

ζ (ϕ(uj)− ϕ(u))dx|+ |
∫
|uj−u|6ε

ζ (ϕ(uj)− ϕ(u))dx| =: I + II.

By choosing ε appropriately, we can make II as small as we want, since we observe
that II 6 ε‖Dϕ‖L∞‖ζ‖L1 . For I we then have

I 6 2‖ϕ‖L∞
∫
|uj−u|>ε

|ζ|dx

which converges to 0 as j tends to∞ by absolute continuity of the integral and (1.7).
Since C∞c is dense in C0 we conclude that for all ϕ ∈ C0

ϕ(uj)
∗
⇀ 〈δu(x), ϕ〉 in L∞(Ω)

and hence νx = δu(x).

Now, for the opposite implication, we assume νx = δu(x), hence (1.2) is fulfilled.

First step: we consider the case that uj is bounded in L∞. Then by (1.3) we conclude
that for ϕ(x) := |x|2

‖uj‖2
L2 =

∫
Ω

ϕ(uj)dx→
∫

Ω

ϕ(u)dx = ‖u‖2
L2 (1.8)

for j → ∞. On the other hand choosing ϕ = id we similarly find that uj ⇀ u
weakly in L2(Ω), which in combination with (1.8) gives that uj → u in L1(Ω). Thus
for all α > 0 we have

α|{|uj − u| > α}| 6
∫

Ω

|uj − u|dx→ 0

as j →∞, and hence uj → u in measure.

Second step: We show that if uj generates the Young measure δu(x) then TR(uj)→
TR(u) in measure, if TR denotes the truncation TR(x) := xmin{1, R|x|}, R > 0

fixed. In fact, for f ∈ C0(IRm) we have that f ◦ TR is continuous and f(TR(uj))
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is equiintegrable (and hence by the Dunford-Pettis theorem sequentially weakly
precompact in L1(Ω)). Since (1.2) is fulfilled, we conclude by (1.3) that for ζ ∈
L∞(Ω) ∫

Ω

ζ f(TR(uj))dx→
∫

Ω

ζ f(TR(u))dx.

This implies that TR(uj) generates the Young measure δTR(u(x)) and by the first step,
the claim follows.

Third step: We show, that uj → u in measure. Let ε > 0 be given. Then we have:

|{|uj − u| > ε}| 6 |{|uj − u| > ε, |u| 6 R, |uj| 6 R}|+
+|{|u| > R}|+ |{|uj| > R}| =: I + II + III.

II can be made arbitrarily small by choosing R > 0 large enough. By (1.2) we
have (1.1) which implies that III is, again for R large enough, uniformly in j as
small as we want. Finally by the second step, I → 0 for j →∞. 2

Our second application is the following proposition:

Proposition 1.4 Let |Ω| < ∞. If the sequences uj : Ω → IRm and vj : Ω → IRk

generate the Young measures δu(x) and νx respectively, then (uj, vj) generates the
Young measure δu(x) ⊗ νx.

This result also holds for sequences µj, λj of Young measures converging in the
narrow topology to µ and λ respectively: see [Val-94]. However it is false if both
µ and λ are not Dirac measures. E.g. consider the Rademacher functions u1(x) :=
(−1)bxc and un(x) = u1(nx). un and −un generate the Young measure 1

2
(δ−1 + δ1),

but (un, un) and (−un, un) obviously generate different measures (consider the sets
K = {(−1,−1), (1, 1)} and K = {(−1, 1), (1,−1)} respectively in Theorem 1.1).

Proof of Proposition 1.4. We have to show that for all ϕ ∈ C∞c (IRm× IRk) there

holds ϕ(uj, vj)
∗
⇀
∫

IRk
ϕ(u(x), λ)dνx(λ). So, let ζ ∈ L1(Ω). We have

|
∫

Ω

ζ (ϕ(uj, vj)−
∫

IRk
ϕ(u, λ)dνx(λ))dx| 6

6 |
∫
|uj−u|<ε

ζ (ϕ(uj, vj)− ϕ(u, vj))dx|+ |
∫
|uj−u|>ε

ζ (ϕ(uj, vj)− ϕ(u, vj))dx|

+ |
∫

Ω

ζ (ϕ(u, vj)−
∫

IRk
ϕ(u, λ)dνx(λ))dx| =: I + II + III.

Since I 6 ε‖ζ‖L1(Ω)‖Dϕ‖L∞ , the first term is small for ε > 0 small. For ε > 0 fixed,
we have for j →∞

II 6 2‖ϕ‖L∞
∫
|uj−u|>ε

|ζ|dx→ 0
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since by Proposition 1.3 the sequence uj converges to u in measure. Since L∞(Ω) is
dense in L1(Ω) we may assume that ζ ∈ L∞(Ω). Thus, the function ζ(x)ϕ(u(x), ·)
is in L1(Ω, C0(IRk)) and hence III → 0 as j →∞ by Remark (c). 2

The following Fatou-type lemma will also be used in the Chapters 3 and 4. The
proof follows [DoHuMü-97]. In the sequel, by IIMm×n we mean the linear space of
real m× n matrices.

Lemma 1.5 Let F : Ω×IRm×IIMm×n → IR be a Carathéodory function and uk : Ω→
IRm a sequence of measurable functions such that uk → u in measure and such that
Duk generates the Young measure νx, with ‖νx‖M = 1 for almost every x ∈ Ω.
Then

lim inf
k→∞

∫
Ω

F (x, uk(x), Duk(x)) dx >
∫

Ω

∫
IIMm×n

F (x, u, λ) dνx(λ) dx (1.9)

provided that the negative part F−(x, uk(x), Duk(x)) is equiintegrable.

More general versions of this lemma may be found in [Bald-84], [Bald-91] and
[Val-94], [Val-90]. Our assumptions allow the following more elementary proof.

Proof
We may assume that the limes inferior on the left-hand side of (1.9) agrees with the
limit and is not equal to +∞. Consider the Carathéodory functions FR(x, u, p) =
min{R,F (x, u, p)} for R > 0. For fixed R > 0 the sequence {FR(x, uk(x), Duk(x))}k
is equiintegrable. We have∫

Ω

FR(x, uk(x), Duk(x)) dx 6
∫

Ω

F (x, uk(x), Duk(x)) dx 6 C <∞

for all k and R > 0. Since, by assumption, ‖νx‖M = 1 for almost every x ∈ Ω, we
have by Remark (b) in Section 1.1 that for all R > 0

lim
k→∞

∫
Ω

FR(x, uk(x), Duk(x)) dx =

∫
Ω

∫
IIMm×n

FR(x, u(x), λ) dνx(λ) dx 6 C,

and by monotone convergence of the integrands as R→∞∫
Ω

∫
IIMm×n

F (x, u(x), λ) dνx(λ) dx 6 C <∞ . (1.10)
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On the other hand∫
Ω

F (x, uk(x), Duk(x)) dx−
∫

Ω

∫
IIMm×n

F (x, u(x), λ) dνx(λ) dx =

=

∫
Ω

F (x, uk(x), Duk(x)) dx−
∫

Ω

FR(x, uk(x), Duk(x)) dx+

+

∫
Ω

FR(x, uk(x), Duk(x)) dx−
∫

Ω

∫
IIMm×n

FR(x, u(x), λ) dνx(λ) dx+

+

∫
Ω

∫
IIMm×n

FR(x, u(x), λ) dνx(λ) dx−
∫

Ω

∫
IIMm×n

F (x, u(x), λ) dνx(λ) dx

=: Ik + IIk + III .

Now we have

Ik > 0 ,

IIk → 0 for any fixed R > 0 as k →∞,

III → 0 as R→∞, because of (1.10) and monotone convergence,

and the claim follows. 2

As a last application of the refined Young measure Theorem 1.2, we consider a
criterion for the pointwise convergence of Fourier series, which is similar to Dini’s
test (see [Zy-77]).

Theorem 1.6 Let f ∈ L1
loc(IR) be a 2π periodic complex function. If z ∈ IR is a

point with the property that ∫ π

−π

∣∣∣∣f(x)− f(z)

x− z

∣∣∣∣ dx <∞ (1.11)

then the Fourier series of f converges in z to f(z).

Proof
With

DN(x) :=
sin(N + 1

2
)x

sin x
2

the Nth Fourier approximation of f is sN(z) = 1
2π

∫ π
−π f(z−x)DN(x)dx. The Young

measure generated by the (whole) sequence sin(N + 1
2
)x is a probability measure

νx with vanishing first moment 〈νx, id〉 = 0 (see e.g. [Val-94]). Hence, the Young
measure µx generated by the sequence (f(z − x) − f(z))DN(x) has for a. e. x also
these properties. Now, (1.11) implies that the sequence (f(z − x) − f(z))DN(x) is
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equiintegrable and hence (since µx is a probability measure for a. e. x) by equivalence
of (1.2) and (1.3), we have as N →∞

sN(z) =
1

2π

∫ π

−π
(f(z − x)− f(z))DN(x)dx+

f(z)

2π

∫ π

−π
DN(x)dx→ f(z)

since the first term converges to zero and the second term equals f(z) for all N .
2

1.4 Gradient Young measures

In this section, we briefly summarize the relevant facts about W 1,p gradient Young
measures that we are going to use in the Chapters 3 and 4. In the sequel, we confine
ourselves to the case 1 6 p <∞. For the case p =∞ see [KiPe-91a]–[KiPe-94].

For the rest of this section, Ω denotes a measurable bounded set in IRn. Suppose, fk
is a bounded sequence in Lp(Ω; IRN). Then, according to Theorem 1.2, there exists
a family of probability measures (νx), x ∈ Ω, and a (not relabeled) subsequence of
the fk, such that whenever

ψ(fk) ⇀ ψ̄ in L1(Ω), for ψ ∈ C(IRN),

then

ψ̄(x) =

∫
IRN

ψ(λ)dνx(λ) in Ω a.e. (1.12)

For example, from Hölder’s inequality and the Dunford-Pettis theorem, the conclu-
sion (1.12) follows if

|ψ(λ)| 6 C(1 + |λ|q), for all λ ∈ IRN (1.13)

whenever q < p. In order to deal with the case q = p, one considers the space

Ep := {ψ ∈ C(IIMn×N) : lim
|A|→∞

ψ(A)

1 + |A|p
exists}.

Ep is isomorphic to the continuous functions on the Alexandrov one-point compact-
ification of IIMn×N and is separable. Thus, we arrive at the definition of p-Young
measures (see [KiPe-94]):

Definition 1.7 A family (νx), x ∈ Ω, is a p-Young measure, provided there is a
sequence fk ∈ Lp(Ω; IRN), 1 6 p <∞, and a g ∈ L1(Ω) such that
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(i) |fk|p ⇀ g in L1(Ω),

(ii) ψ(fk) ⇀ ψ̄ in L1(Ω), where

ψ̄(x) =

∫
IRN

ψ(λ)dνx(λ) in Ω a.e. for ψ ∈ Ep.

Alternatively, one may define biting Young measures for an arbitrary sequence: Re-
call that if gk is a bounded sequence in L1(Ω), then there is a sequence of measurable
sets Ej ⊂ Ω, Ej+1 ⊂ Ej, |Ej| → 0, and a g ∈ L1(Ω) such that for a (not relabeled)
subsequence of the gk,

gk ⇀ g in L1(Ω \ Ej) for each j.

This is the conclusion of Chacon’s biting lemma (see [BrCh-80], and [BaMu-89]) and
is usually written as

gk
b
⇀ g in L1(Ω).

The corresponding notion of biting Young measures is

Definition 1.8 A family (νx), x ∈ Ω, is a biting Young measure, provided there is
a sequence fk ∈ Lp(Ω; IRN), 1 6 p <∞, and a g ∈ L1(Ω) such that

(i) |fk|p
b
⇀ g in L1(Ω),

(ii) ψ(fk)
b
⇀ ψ̄ in L1(Ω), where

ψ̄(x) =

∫
IRN

ψ(λ)dνx(λ) in Ω a.e. for ψ ∈ Ep

The bitten sets Ej do not depend on the particular ψ. A p-Young measure is a
biting Young measure.

Now, we impose the constraint that the functions fk that generate the Young mea-
sure are gradients. The associated measures are called H1,p Young measures and
H1,p biting Young measures respectively (or W 1,p Young measures and W 1,p bit-
ing Young measures if the spaces H1,p and W 1,p coincide). The principal result
in [KiPe-94] is that H1,p Young measures and H1,p biting Young measures are the
same and can be characterized as follows:

Theorem 1.9 (Kinderlehrer-Pedregal) Let (ν)x, x ∈ Ω, be a family of proba-
bility measures in C(IIMn×N)′. Then, (νx)x∈Ω is an H1,p Young measure if and only
if
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(i) there is a u ∈ H1,p(Ω; IRn) such that

Du(x) =

∫
IIMn×N

Adνx(A) in Ω a.e.,

(ii) Jensen’s inequality

ϕ(Du(x)) 6
∫

IIMn×N
ϕ(A)dνx(A)

holds for all ϕ ∈ Xp quasiconvex, and

(iii) the function

Ψ(x) =

∫
IIMn×N

|A|pdνx(A) ∈ L1(Ω).

Here, Xp denotes the (not separable) space

Xp := {ψ ∈ C(IIMn×N) : |ψ(A)| 6 C(1 + |A|p) for all A ∈ IIMn×N}

that is suggested by (1.13).

For improved versions of this characterization, see [FoMüPe-98] and [Kr-99, Theorem
8.1].

An important special case, which we will encounter in the Chapters 3 and 4 are
homogeneous gradient Young measures:

Definition 1.10 The W 1,p gradient Young measure (νx)x∈Ω is called homogeneous,
if it does not depend on x, i.e., if νx = ν for almost all x ∈ Ω.





Chapter 2

Review on monotone operator theory

2.1 Monotone operators in Banach spaces

An operator A : D(A) ⊂ X → X∗ on a normed vector space X is called monotone
if

〈Au− Av, u− v〉 > 0 for all u, v ∈ D(A), (2.1)

strongly monotone if

〈Au− Av, u− v〉 > 0 for all u, v ∈ D(A) with u 6= v, (2.2)

and strongly monotone if

〈Au− Av, u− v) > ‖u− v‖γ(‖u− v‖) for all u, v ∈ D(A), (2.3)

where γ : IR+ → IR+ is a function with γ(t) → +∞ for t → ∞, and with γ(t) = 0
only if t = 0. If in addition, t 7→ tγ(t) is strictly monotone increasing, then A is
called uniformly monotone. Finally, A is dissipative, if −A is monotone. If X is a
complex space, one requires that the inequalities (2.1)–(2.3) hold for the real part.
In particular, if A is linear, then A is monotone if and only if A is a positive operator.
If X has an inner product structure, we may identify X with the dual space X∗ in
the usual way, and hence one can define A : D(A) ⊂ X → X to be monotone if
(Au−Av|u− v) > 0. If, in this case, X = D(A) = IR is one dimensional, then A is
monotone if and only if A is a monotone increasing function. If, still in case X = IR,
A is continuous and satisfies a coercivity condition

(Au|u) > γ(|u|)|u| as u→∞

for a function γ : IR+ → IR+ with γ(t) → +∞ as t → +∞, then Bolzano’s inter-
mediate value theorem assures that A is surjective. And strict monotonicity of A
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easily implies (for general X) injectivity. The tremendous success of the theory of
monotone operators is based on the fact that the stated surjectivity result for one
dimension carries over to general reflexive Banach spaces X. On the other hand, the
theory of monotone operators amplifies parts of the calculus of variations: Namely,
if Ω is an open convex set in a real vector space and F a potential operator on Ω
with potential f , then F is (strictly) monotone if and only if f is (strictly) convex.

Monotone operators have good analytic properties: A monotone operator A : X →
X∗ on a real reflexive Banach space X is, e.g., automatically locally bounded (see,
e.g., [Ze-90]). In particular, a linear positive operator which is defined on the whole
Banach space X is always continuous. Furthermore, already very weak continu-
ity properties for monotone operators imply numerous convergence theorems like
Minty’s trick (see below).

We start our overview with the main theorem on monotone operators, which was
proved by Browder [Bro-63] and Minty [Mi-63] (see also [Bro-63a]):

Theorem 2.1 (Browder, Minty) Let X be a real reflexive Banach space and A :
X → X∗ monotone, hemicontinuous and coercive. Then A is surjective.

Here, A is hemicontinuous if the map

t 7→ 〈A(u+ tv), w〉

is continuous on [0, 1] for all u, v, w ∈ X. And A is coercive if

lim
‖u‖→∞

〈Au, u〉
‖u‖

= +∞.

A Hilbert space version of this theorem has been proved beforehand by Minty
in [Mi-62]. Similar results in connection with partial differential equations appear
in [Vi-61] and [Vi-63].

One possible proof of the main theorem of monotone operators uses Minty’s trick
for which we give here a slightly refined version:

Theorem 2.2 (Minty’s Trick) If A : X → X∗ is monotone and hemicontinuous

on a real Banach space X, and if un ⇀ u in X and Aun
∗
⇀ b in X∗, then the

following is true:

(a) lim infn→∞〈Aun, un〉 6 〈b, u〉 =⇒ Au = b.

(b) lim supn→∞〈Aun, un〉 6 〈b, u〉 =⇒ 〈Aun, un〉 → 〈b, u〉 and Au = b.
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Minty’s trick follows easily from the maximal monotonicity property :

Proposition 2.3 If A : X → X∗ is monotone and hemicontinuous on a real Banach
space X, then A is maximal monotone, i.e., for all u ∈ X and all b ∈ X∗ the
following implication holds:

〈b− Av, u− v〉 > 0 for all v ∈ X =⇒ Au = b.

For the theory of maximal monotone operators (in particular time dependent prob-
lems), see [Bré-73].

2.2 Applications to nonlinear partial differential

equations

Monotone operator theory goes hand in hand with progress in the theory of non-
linear partial differential equations: see, e.g., the monographs [Bro-68/76], [Li-69],
[Vai-72] (in connection with variational methods and Hammerstein integral equa-
tions), [Sk-73] and [Sk-86] (on mapping degree and elliptic equations), [GGZ-74],
[Lang-76] (monotone potential operators), [Bar-76] (on time dependent problems),
[PS-78], [Kl-79] (variational inequalities), [De-85]. As far as applications of mono-
tone operator theory to quasilinear elliptic differential equations is concerned (see
next chapter of this text), we refer to [Li-69], [Bro-68], [Du-76], [FuFu-80], [Pe-80],
[Pe-81], [Ne-83], [Sk-86].

The main theorem for monotone operators applies directly to the model problem
involving the p-Laplace operator

− div(|Du|p−2Du) = f on Ω

(with appropriate boundary conditions), which is of variational form. Also nonlinear
problems of non-variational form are accessible, e.g.,

Lu+ F (u) = f on Ω (2.4)

with boundary conditions
u = 0 on ∂Ω. (2.5)

Here,
Lu = − div σ(Du)

and we are looking for a solution u ∈ W 1,p
0 (Ω) for some 1 < p <∞ and a bounded

open set Ω ∈ IRn. We impose the following conditions:
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(i) Monotonicity for the principle part Lu:

(σ(ξ)− σ(ξ′)) · (ξ − ξ′) > 0 for all ξ, ξ′ ∈ IRn.

(ii) Monotonicity for Fu:

(F (u)− F (u′))(u− u′) > 0 for all u, v ∈ IR.

(iii) Coerciveness for Lu+ F (u): For some fixed c > 0

σ(ξ) · ξ + F (u)u > c(|ξ|p − 1)

holds for all ξ ∈ IRn, u ∈ IR.

(iv) Growth condition: The functions σ and F are continuous and there exists a
constant d > 0 such that

|F (u)| 6 d(1 + |u|p−1) for all u ∈ IR,

|σ(ξ)| 6 d(1 + |ξ|p−1) for all ξ ∈ IRn.

The solvability of problem (2.4), (2.5) under the given conditions (i)–(iv) follows from
the following variant (Theorem 2.4) of the main theorem for monotone operators
stated in the previous section: Again, let Ω ⊂ IRn be open and bounded, and
2 6 p < ∞. We are looking for a solution u ∈ W 1,p

0 (Ω) of the following elliptic
system of order 2m

Lu = f in Ω (2.6)

Dβu = 0 on ∂Ω, for all β with |β| < m, (2.7)

where

(Lu)(x) =
∑
|α|6m

(−1)|α|DαAα(x,Du(x))

with m > 1 and Du = (Dγu)|γ|6m. We think of Aα as a real function of the variables
x ∈ Ω and ξ ∈ IRM , where ξ = (ξγ)|γ|6m. The following conditions are assumed:

(H1) Carathéodory condition: For all α with |α| 6 m, the functions Aα : Ω×IRM →
IR has the properties

x 7→ Aα(x, ξ) is measurable on Ω for all ξ ∈ IRM ,

ξ 7→ Aα(x, ξ) is continuous on IRM for almost all x ∈ Ω.
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(H2) Growth condition: There exists g ∈ Lp′(Ω) and C > 0 such that for all ξ ∈ IRM ,
|α| 6 m, x ∈ Ω there holds

|Aα(x, ξ)| 6 C
(
g(x) +

∑
|γ|6m

|ξγ|p−1
)

(H3) Monotonicity condition: For all ξ, ξ′ ∈ IRM , x ∈ Ω∑
|α|6m

(Aα(x, ξ)− Aα(x, ξ′))(ξ − ξ′) > 0.

(H4) Coerciveness condition: There exists c > 0 such that for all ξ ∈ IRM , x ∈ Ω∑
|α|6m

Aα(x, ξ)ξα > c
∑
|γ|=m

|ξγ|p − h(x)

for a function h ∈ L1(Ω).

An operator L satisfying the conditions (H1) through (H4) is called monotone co-
ercive quasilinear elliptic differential operator. Now, let X = W 1,p

0 (Ω), and let us
set

a(u, v) =

∫
Ω

∑
|α|6m

Aα(x,Du(x))Dαv(x)dx

and

b(v) =

∫
Ω

fv dx

with f ∈ Lp′(Ω). Then the following holds:

Theorem 2.4 (Browder, Vis̆ik) Assume that (H1)–(H4) is satisfied. Then there
exists a unique operator A : X → X∗ such that

〈Au, v〉 = a(u, v) for all u, v ∈ X.

The problem
a(u, v) = b(v) for all v ∈ X

is equivalent to the operator equation

Au = b u ∈ X

and the operator A : X → X∗ is monotone, coercive, continuous and bounded. Thus
the main theorem for monotone operators (Theorem 2.1) applies and hence (2.6),
(2.7) has a solution for arbitrary f ∈ Lp

′
(Ω). The set of solutions is closed and

convex.

As usual, uniform monotonicity would give uniqueness of the solution.
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2.3 Pseudomonotone operators

In case the nonlinear lower order term F of problem (2.4), (2.5) does not satisfy
the monotonicity assumption (ii), then the theory of proper monotone operators,
pseudomonotone operators and semimonotone operators has to be used instead. We
give a brief overview on that part of the theory next.

An operator A : X → X∗ on a real reflexive Banach space X is called pseudomono-
tone if

un ⇀ u in X as n→∞

and
lim sup
n→∞

〈Aun, un − u〉 6 0

implies
〈Au, u− w〉 6 lim inf

n→∞
〈Aun, un − w〉 for all w ∈ X.

For example, a monotone and hemicontinuous operator is pseudomonotone. In fact,
the class of pseudomonotone operators is “intermediate” between monotone, hemi-
continuous and so called type M operators (see, e.g. [Sh-97]). And is is easy to
see, that this class is “strictly intermediate”. Pseudomonotone operators have good
properties, to mention one, the sum of two pseudomonotone operators is again pseu-
domonotone. Moreover, the sum of a pseudomonotone and a strongly continuous
operator is pseudomonotone. (We recall that A is strongly continuous if un ⇀ u in
X implies that Aun → Au in Y .)

We should also mention the connection to proper maps: we recall, that a map
is called proper, if the preimages of compact sets are again compact. Then, the
following is true:

Theorem 2.5 Let A1, A2 : X → X∗ be operators on the real reflexive Banach space
X and A = A1 + A2. If

(i) A1 is uniformly monotone and continuous,

(ii) A2 is compact,

(iii) A is coercive,

then A is proper. If, moreover, A2 is strongly continuous, then A is pseudomonotone.

For relations with semimonotone operators, we refer to [Ze-90].

The main theorem on pseudomonotone operators is due to Brézis (see [Bré-68]):
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Theorem 2.6 (Brézis) Assume, the operator A : X → X∗ is pseudomonotone,
bounded and coercive on the real separable and reflexive Banach space X. Then, for
each b ∈ X∗ the equation

Au = b

has a solution.

As an application, we consider the problem

− div σ(Du) + g(u) = f in Ω (2.8)

u = 0 on ∂Ω, (2.9)

for a function u : Ω → IR on a bounded open domain Ω ⊂ IRn. Here Du denotes
(in contrast to the example before) the usual gradient of u. We make the following
assumptions:

(A1) Coerciveness for g: The function g : IR→ IR is continuous and infu∈IR g(u)u >
−∞.

(A2) Growth condition for g : For all u ∈ IR

|g(u)| 6 C(1 + |u|r−1),

where 1 < p, r <∞, p−1 − n−1 < r−1.

(A3) Monotonicity condition for the principle part: For all ξ, ξ′ ∈ IRn

(σ(ξ)− σ(ξ′)) · (ξ − ξ′) > 0.

(A4) Coerciveness condition for the principle part: There is a number c > 0 such
that for all ξ ∈ IRn

σ(ξ) · ξ > c|ξ|p.

(A5) Growth condition for the principle part: The function σ is continuous and for
all ξ ∈ IRn

|σ(ξ)| 6 c(1 + |ξ|p−1)

Then, we consider

a1(u, v) =

∫
Ω

σ(Du) ·Dvdx

a2(u, v) =

∫
Ω

g(u)vdx

b(v) =

∫
Ω

fv dx
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and we seek u ∈ X = W 1,p
0 (Ω) such that

a1(u, v) + a2(u, v) = b(v) for all v ∈ X.

Under these assumptions it is not hard to show that A1 : X → X∗ characterized
by 〈A1u, v〉 = a1(u, v) is monotone, coercive continuous and bounded. Moreover,
the operator A2 : X → X∗ given by 〈A2u, v〉 = a2(u, v) is strongly continuous.
Therefore, (2.8), (2.9) is equivalent to the operator equation

Au := A1u+ A2u = b.

As mentioned before, A is the sum of a pseudomonotone and a strongly continu-
ous operator, and is hence pseudomonotone. A is clearly also coercive, and hence
the main theorem on pseudomonotone operators applies and ensures existence of a
solution to (2.8), (2.9).

More generally, we recall now the classical result of Leray and Lions (see [LeLi-65]).
Ω ⊂ IRn continues to denote a bounded open set and X = W 1,p

0 (Ω), 1 < p < ∞.
We consider the elliptic problem

− div σ(x, u,Du) = f in Ω, (2.10)

u = 0 on ∂Ω. (2.11)

We impose the following conditions

(L1) Carathéodory condition: σ(x, u, ξ) is measurable in x for all (u, ξ) ∈ IR × IRn

and continuous in (u, ξ) for almost all x ∈ Ω.

(L2) Growth: |σ(x, u, ξ)| 6 c(k(x) + |u|p−1 + |ξ|p−1) on Ω× IR× IRn for a constant
c > 0 and a function k ∈ Lp′(Ω).

(L3) Monotonicity: For all ξ, ξ′ ∈ IRn with ξ 6= ξ′ and all (x, u) ∈ Ω× IR

(σ(x, u, ξ)− σ(x, u, ξ′) · (ξ − ξ′) > 0.

(L4) Coercivity:
σ(x, u, ξ) · ξ
|ξ|p−1

→ +∞ as |ξ| → ∞

uniformly for u bounded, at almost every x ∈ Ω.

Theorem 2.7 Let V be a closed subspace, W 1,p
0 (Ω) ⊂ V ⊂ W 1,p(Ω), such that the

embedding V ⊂ Lp(Ω) is compact. Then, the operator A : V → V ∗, given by

〈Au, v〉 =

∫
Ω

σ(x, u,Du) ·Dv dx

with σ satisfying (L1)–(L4), is pseudomonotone.
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Of course, in combination with Brézis’ existence result for pseudomonotone opera-
tors (Theorem 2.6), solvability of the corresponding elliptic equation (2.10), (2.11)
follows.

Browder has recently proved in [Bro-97] that the pseudomonotonicity property of a
Leray-Lions operator follows without a coercivity assumption.

Recently, perturbations of Leray-Lions operators have attracted attention, for ex-
ample, lower order terms with critical growth in the gradient. We refer to the work
of Landes and Mustonen listed in the bibliography.

It is a matter of experience, that results obtained by monotone operator theory for
elliptic equations usually carry over to the corresponding parabolic problems. The
next chapter on elliptic problems basically tries to prove the Leray-Lions result but
with relaxed monotonicity assumptions compared to (L3). In particular, we will
deal with an integrated form of monotonicity (called quasimonotonicity). The aim
of Chapter 4 is to carry out the analogous idea for parabolic systems.

Clearly, the given historical overview is limited to the milestones of the development
of monotone operator theory and to some results which are related to the following
two chapters. For more detailed descriptions of the historical context, we refer
to [Pe-70], [Vai-72], [Bré-73], [Du-76] and [Ze-90].

For a good overview on recent topics and trends in monotone operators and nonlinear
partial differential equations, see [Sh-97].





Chapter 3

Quasilinear elliptic systems in
divergence form with weak
monotonicity

Abstract: We consider the Dirichlet problem for the quasilinear
elliptic system

−div σ(x, u(x), Du(x)) = f on Ω

u(x) = 0 on ∂Ω

for a function u : Ω→ IRm, where Ω is a bounded open domain in IRn.
For arbitrary right hand side f ∈W−1,p′(Ω) we prove existence of a weak
solution under classical regularity, growth and coercivity conditions, but
with only very mild monotonicity assumptions.

3.1 Introduction

On a bounded open domain Ω ⊂ IRn we consider the Dirichlet problem for the
quasilinear elliptic system

− div σ(x, u(x), Du(x)) = f on Ω (3.1)

u(x) = 0 on ∂Ω (3.2)

for a function u : Ω→ IRm. Here, f ∈ W−1,p′(Ω) := (W 1,p
0 (Ω)′ for some p ∈ (1,∞),

and σ satisfies the conditions (E0)–(E2) below. A feature of the Young measure

Mathematics Subject Classification: 35J65, 47H15
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technique we are going to use is that we can treat a class of problems for which
the classical monotone operator methods developed by Vĭsik [Vi-63], Minty [Mi-62],
Browder [Bro-68], Brézis [Bré-73], Lions [Li-69] and others do not apply. The reason
for this is that σ does not need to satisfy the strict monotonicity condition of a
typical Leray-Lions operator (see [LeLi-65]). The tool we use in order to prove the
needed compactness of approximating solutions is Young measures. The methods
are inspired by [DoHuMü-97] and the proofs follow [Hu-99].

To fix some notation, let IIMm×n denote the real vector space of m × n matrices
equipped with the inner product M : N = MijNij (with the usual summation
convention).

The following notion of monotonicity will play a rôle in part of the exposition:
Instead of assuming the usual pointwise monotonicity condition for σ, we will also
use a weaker, integrated version of monotonicity which is called quasimonotonicity
(see [DoHuMü-97]). The definition is phrased in terms of gradient Young measures
(see Section 1.4). Note, however, that although quasimonotonicity is “monotonicity
in integrated form”, the gradient Dη of a quasiconvex function η is not necessarily
quasimonotone.

Definition 3.1 A function η : IIMm×n → IIMm×n is said to be strictly p-quasi-
monotone, if ∫

IIMm×n
(η(λ)− η(λ̄)) : (λ− λ̄)dν(λ) > 0

for all homogeneous W 1,p gradient Young measures ν with center of mass λ̄ = 〈ν, id〉
which are not a single Dirac mass.

A simple example is the following: Assume that η satisfies the growth condition

|η(F )| 6 C |F |p−1

with p > 1 and the structure condition∫
Ω

(η(F +∇ϕ)− η(F )) : ∇ϕdx > c

∫
Ω

|∇ϕ|rdx

for constants c > 0, r > 0, and for all ϕ ∈ C∞0 (Ω) and all F ∈ IIMm×n. Then η is
strictly p-quasimonotone. This follows easily from the definition if one uses that for
every W 1,p gradient Young measure ν there exists a sequence {Dvk} generating ν
for which {|Dvk|p} is equiintegrable (see [FoMüPe-98], [KiPe-94]).

Now, we state our main assumptions.

(E0) (Continuity) σ : Ω × IRm × IIMm×n → IIMm×n is a Carathéodory function, i.e.
x 7→ σ(x, u, F ) is measurable for every (u, F ) ∈ IRm × IIMm×n and (u, F ) 7→
σ(x, u, F ) is continuous for for almost every x ∈ Ω.
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(E1) (Growth and coercivity) There exist c1 > 0, c2 > 0, λ1 ∈ Lp
′
(Ω), λ2 ∈ L1(Ω),

λ3 ∈ L(p/α)′(Ω), 0 < α < p and 0 < q 6 n p−1
n−p such that

|σ(x, u, F )| 6 λ1(x) + c1(|u|q + |F |p−1)

σ(x, u, F ) : F > −λ2(x)− λ3(x)|u|α + c2|F |p

(E2) (Monotonicity) σ satisfies one of the following conditions:

(a) For all x ∈ Ω and all u ∈ IRm, the map F 7→ σ(x, u, F ) is a C1-function
and is monotone, i.e.

(σ(x, u, F )− σ(x, u,G)) : (F −G) > 0

for all x ∈ Ω, u ∈ IRm and F,G ∈ IIMm×n.

(b) There exists a function W : Ω×IRm×IIMm×n → IR such that σ(x, u, F ) =
∂W
∂F

(x, u, F ), and F 7→ W (x, u, F ) is convex and C1.

(c) σ is strictly monotone, i.e. σ is monotone and (σ(x, u, F )− σ(x, u,G)) :
(F −G) = 0 implies F = G.

(d) σ(x, u, F ) is strictly p-quasimonotone in F .

The condition (E0) ensures that σ(x, u(x), U(x)) is measurable on Ω for measurable
functions u : Ω → IRm and U : Ω → IIMm×n. (E1) states standard growth and
coercivity conditions. The main point is that we do not require strict monotonicity
or monotonicity in the variables (u, F ) in (E2) as it is usually assumed in previous
work (see, e.g., [La-80] or [LaMu-80]). For example, take a potential W (x, u, F ),
which is only convex but not strictly convex in F , and consider the corresponding
elliptic problem (3.1)–(3.2) with σ(x, u, F ) = ∂W

∂F
(x, u, F ). Even such a very simple

situation cannot be treated by conventional methods: The problem is that the
gradients of approximating solutions do not converge pointwise where W is not
strictly convex. The idea is now, that in a point where W is not strictly convex, it
is locally affine, and therefore, passage to the limit should locally still be possible.
Technically, this can indeed be achieved by a suitable blow-up process, or (and this
seems to be much more efficient) by considering the Young measure generated by
the sequence of gradients of approximating solutions.

The assumption (d) in (E2) is motivated by the study of nonlinear elastostatics
by Ball (see [Ball-76/77] and [Ball-77]): For non-hyperelastic materials the static
equation is not given by a potential map. Subsequently quasimonotone systems
have been studied by Zhang (see [Zh-88], [Zh-92]) and by Zhang and Chabrowski
(see [ChZh-92]) who investigated the existence of solutions for perturbed systems.
However, a slightly different notion of quasimonotonicity is used in the mentioned
papers. The regularity problems for such systems were studied by Fuchs [Fu-87].

We prove the following result:
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Theorem 3.2 If σ satisfies the conditions (E0)–(E2), then the Dirichlet problem (3.1),
(3.2) has a weak solution u ∈ W 1,p

0 (Ω) for every f ∈ W−1,p(Ω).

3.2 Galerkin approximation

Let V1 ⊂ V2 ⊂ . . . ⊂ W 1,p
0 (Ω) be a sequence of finite dimensional subspaces with the

property that ∪i∈IINVi is dense in W 1,p
0 (Ω). We define the operator

F : W 1,p
0 (Ω) → W−1,p′(Ω)

u 7→
(
w 7→

∫
Ω

σ(x, u(x), Du(x)) : Dw dx− 〈f, w〉
)
,

where 〈·, ·〉 denotes the dual pairing of W−1,p′(Ω) and W 1,p
0 (Ω). Observe that for

arbitrary u ∈ W 1,p
0 (Ω), the functional F (u) is well defined by the growth condition

in (E1), linear, and bounded (again by the growth condition in (E1)).

By the continuity assumption (E0) and the growth condition in (E1), it is easy to
check, that the restriction of F to a finite linear subspace of W 1,p

0 (Ω) is continuous.

Let us fix some k and assume that Vk has dimension r and that ϕ1, . . . , ϕr is a basis
of Vk. Then we define the map

G : IRr → IRr,


a1

a2

...
ar

 7→

〈F (aiϕi), ϕ1〉
〈F (aiϕi), ϕ2〉

...
〈F (aiϕi), ϕr〉

 .

G is continuous, since F is continuous on finite dimensional subspaces. Moreover,
for a = (a1, . . . , ar)

t and u = aiϕi ∈ Vk, we have by the coercivity assumption in
(E1) that

G(a) · a = (F (u), u)→∞

as ‖a‖IRr → ∞. Hence, there exists R > 0 such that for all a ∈ ∂BR(0) ⊂ IRr we
have G(a) · a > 0 and the usual topological argument (see, e.g., [Mi-62] or [Li-69])
gives that G(x) = 0 has a solution x ∈ BR(0). Hence, for all k there exists uk ∈ Vk
such that

〈F (uk), v〉 = 0 for all v ∈ Vk. (3.3)
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3.3 The Young measure generated by the Galerkin

approximation

From the coercivity assumption in (E1) it follows that there exists R > 0 with the
property, that 〈F (u), u〉 > 1 whenever ‖u‖W 1,p

0 (Ω) > R. Thus, for the sequence of

Galerkin approximations uk ∈ Vk constructed above, we have a uniform bound

‖uk‖W 1,p
0 (Ω) 6 R for all k. (3.4)

Thus, we may extract a subsequence (for convenience not relabeled) such that

uk ⇀ u in W 1,p
0 (Ω)

and such that
uk ⇀ u in measure and in Ls(Ω)

for all s < p∗. The sequence of gradients Duk generates a Young measure νx, and
since uk converges in measure to u, we infer from Proposition 1.3 and Proposition 1.4
that the sequence (uk, Duk) generates the Young measure δu(x) ⊗ νx. Moreover, for
almost all x ∈ Ω, νx

(i) is a probability measure,

(ii) is a homogeneous W 1,p gradient Young measure, and

(iii) satisfies 〈νx, id〉 = Du(x).

The proofs for (i)–(iii) are standard. In particular, (i) follows directly from Theo-
rem 1.2. For (ii) and (iii) see, e.g., [DoHuMü-97].

3.4 A div-curl inequality

In this section, we prove a div-curl inequality, which will be the key ingredient to
pass to the limit in the approximating equations and to prove, that the weak limit
u of the Galerkin approximations uk is indeed a solution of (3.1)–(3.2).

Let us consider the sequence

Ik :=
(
σ(x, uk, Duk)− σ(x, u,Du)

)
:
(
Duk −Du

)
and prove, that its negative part I−k is equiintegrable: To do this, we write I−k in
the form

Ik = σ(x, uk, Duk) : Duk − σ(x, uk, Duk) : Du

−σ(x, u,Du) : Duk + σ(x, u,Du) : Du =: IIk + IIIk + IVk + Vk.



30 Quasilinear elliptic systems with weak monotonicity

The sequences II−k and V −k are easily seen to be equiintegrable by the coercivity
condition in (E1). Then, to see equiintegrability of the sequence IIIk we take a
measurable subset Ω′ ⊂ Ω and write∫

Ω′
|σ(x, uk, Duk) : Du|dx 6

6
(∫

Ω′
|σ(x, uk, Duk)|p

′
dx
)1/p′(∫

Ω′
|Du|pdx

)1/p

6 C
(∫

Ω′
(|λ1(x)p

′
+ |uk|qp

′
+ |Duk|p)dx

)1/p′(∫
Ω′
|Du|pdx

)1/p
.

The first integral is uniformly bounded in k by (3.4). The second integral is arbi-
trarily small if the measure of Ω′ is chosen small enough. A similar argument gives
the equiintegrability of the sequence IVk.

Having established the equiintegrability of I−k , we may use the Fatou-Lemma 1.5 of
Chapter 1 which gives that

X := lim inf
k→∞

∫
Ω

Ik >
∫

Ω

∫
IIMm×n

σ(x, u, λ) : (λ−Du)dνx(λ)dx. (3.5)

On the other hand, we will now see that X 6 0. To do this, we choose a sequence
vk such that

(i) vk belongs to the same finite dimensional space Vk as uk,

(ii) vk → u in W 1,p
0 (Ω).

This allows us in particular, to use uk − vk as a test function in (3.3). We have

X = lim inf
k→∞

∫
Ω

σ(x, uk, Duk) : (Duk −Du)dx

= lim inf
k→∞

(∫
Ω

σ(x, uk, Duk) : (Duk −Dvk)dx+

+

∫
Ω

σ(x, uk, Duk) : (Dvk −Du)dx
)

6 lim inf
k→∞

((∫
Ω

|σ(x, uk, Duk)|p
′
dxdt

)1/p′‖vk − u‖W 1,p(Ω)) +

+〈f, uk − vk〉). (3.6)

The term ∫
Ω

|σ(x, uk, Duk)|p
′
dx
)1/p′
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is bounded uniformly in k by the growth condition in (E1) and (3.4). The second
factor

‖vk − u‖W 1,p(Ω))

converges to zero for k → ∞ by construction of the sequence vk. Hence, the first
term on the right of (3.6) vanishes in the limit.

The second term in (3.6)

〈f, uk − vk〉

converges to zero, since uk − vk ⇀ 0 in Lp(W 1,p(Ω)). This proves X 6 0.

We conclude from (3.5) the following “div-curl inequality”:

Lemma 3.3 The Young measure νx generated by the gradients Duk of the Galerkin
approximations uk has the property, that∫

Ω

∫
IIMm×n

σ(x, u, λ) : λdνx(λ)dx 6
∫

Ω

∫
IIMm×n

σ(x, u, λ) : Dudνx(λ)dx. (3.7)

Remark: The naming (“div-curl inequality”) can be explained as follows: Suppose
for a moment that div σ(x, uk, Duk) = 0 for all k and that σ(x, uk, Duk) : Duk is
equiintegrable. Then, the weak limit of σ(x, uk, Duk) : Duk in L1(Ω) is given by∫

IIMm×n σ(x, u, λ) : λdνx(λ). On the other hand, by the usual div-curl lemma (see
[Mu-78], [Ta-79], [Ta-82]) we conclude that

∫
Ω
σ(x, uk, Duk) : Dukdx converges to∫

Ω

∫
IIMm×n σ(x, u, λ) : Dudνx(λ)dx and hence, the lemma would follow with equality.

3.5 Passage to the limit

Now, we prove Theorem 3.2 separately in the cases (a), (b), (c) and (d) of (E2). We
start with the easiest case:

Case (d): Assume that νx is not a Dirac mass on a set x ∈M of positive Lebesgue
measure |M | > 0. Then, by the strict p-quasimonotonicity of σ(x, u, ·) and the fact
that νx is a homogeneous W 1,p gradient Young measure for almost every x ∈ Ω (see
Section 3.3), we have for a.e. x ∈M∫

IIMm×n
σ(x, u, λ) : λdνx(λ) >

∫
IIMm×n

σ(x, u, λ)dνx(λ) :

∫
IIMm×n

λdνx(λ)︸ ︷︷ ︸
= Du(x)

.
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Hence, by integrating over Ω and using Lemma 3.3, we get∫
Ω

∫
IIMm×n

σ(x, u, λ)dνx(λ) : Du(x)dx >∫
Ω

∫
IIMm×n

σ(x, u, λ) : λdνx(λ)dx >

∫
Ω

∫
IIMm×n

σ(x, u, λ)dνx(λ) : Du(x)dx

which is a contradiction. Hence, we have νx = δDu(x) for almost every x ∈ Ω. From
this, it follows by Proposition 1.3 that Duk → Du in measure for k → ∞, and
thus, σ(x, uk, Duk)→ σ(x, u,Du) almost everywhere (after extraction of a suitable
subsequence, if necessary). Since, by the growth condition in (E1), σ(x, uk, Duk) is
equiintegrable, it follows that σ(x, uk, Duk) → σ(x, u,Du) in L1(Ω) by the Vitali
convergence theorem. This implies that 〈F (u), v〉 = 0 for all v ∈ ∪k∈IINVk and hence
F (u) = 0, which proves the theorem in this case.

To prepare the proof in the remaining cases (a)–(c), we proceed as follows: From
inequality (3.7) in Lemma 3.3, we infere, that∫

Ω

∫
IIMm×n

(
σ(x, u, λ)− σ(x, u,Du)

)
:
(
λ−Du

)
dνx(λ)dx 6 0. (3.8)

On the other hand, the integrand in (3.8) is nonnegative by monotonicity. It fol-
lows that the integrand must vanish almost everywhere with respect to the product
measure dνx ⊗ dx. Hence, we have that for almost all x ∈ Ω

(σ(x, u, λ)− σ(x, u,Du)) : (λ−Du) = 0 on spt νx (3.9)

and thus
spt νx ⊂ {λ | (σ(x, u, λ)− σ(x, u,Du)) : (λ−Du) = 0}. (3.10)

Now, we proceed with the proof in the single cases.

Case (c): By strict monotonicity, it follows from (3.9) that νx = δDu(x) for almost
all x ∈ Ω, and hence Duk → Du in measure, again by Proposition 1.3. The reminder
of the proof in this case is exactly as in case (d).

Case (b): We start by showing that for almost all x ∈ Ω, the support of νx
is contained in the set where W agrees with the supporting hyper-plane L :=
{(λ,W (x, u,Du) + σ(x, u,Du)(λ−Du))} in Du(x), i.e. we want to show that

spt νx ⊂ Kx =

= {λ ∈ IIMm×n : W (x, u, λ) = W (x, u,Du) + σ(x, u,Du) : (λ−Du)}.

If λ ∈ spt νx then by (3.10)

(1− t)(σ(x, u,Du)− σ(x, u, λ)) : (Du− λ) = 0 for all t ∈ [0, 1]. (3.11)
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On the other hand, by monotonicity, we have for t ∈ [0, 1] that

0 6 (1− t)(σ(x, u,Du+ t(λ−Du))− σ(x, u, λ)) : (Du− λ). (3.12)

Subtracting (3.11) from (3.12), we get

0 6 (1− t)(σ(x, u,Du+ t(λ−Du))− σ(x, u,Du)) : (Du− λ) (3.13)

for all t ∈ [0, 1]. But by monotonicity, in (3.13) also the reverse inequality holds and
we may conclude, that

(σ(x, u,Du+ t(λ−Du))− σ(x, u,Du)) : (λ−Du) = 0 (3.14)

for all t ∈ [0, 1], whenever λ ∈ spt νx. Now, it follows from (3.14) that

W (x, u, λ) = W (x, u,Du) +

∫ 1

0

σ(x, u,Du+ t(λ−Du)) : (λ−Du)dt

= W (x, u,Du) + σ(x, u,Du) : (λ−Du)

as claimed.

By the convexity of W we have W (x, u, λ) ≥ W (x, u,Du) + σ(x, u,Du) : (λ−Du)
for all λ ∈ IIMm×n and thus L is a supporting hyper-plane for all λ ∈ Kx. Since the
mapping λ 7→ W (x, u, λ) is by assumption continuously differentiable we obtain

σ(x, u, λ) = σ(x, u,Du) for all λ ∈ Kx ⊃ spt νx (3.15)

and thus

σ̄ :=

∫
IIMm×n

σ(x, u, λ) dνx(λ) = σ(x, u,Du) . (3.16)

Now consider the Carathéodory function

g(x, u, p) = |σ(x, u, p)− σ̄(x)| .

The sequence gk(x) = g(x, uk(x), Duk(x)) is equiintegrable and thus

gk ⇀ ḡ weakly in L1(Ω)

and the weak limit ḡ is given by

ḡ(x) =

∫
IRm×IIMm×n

|σ(x, η, λ)− σ̄(x)| dδu(x)(η)⊗ dνx(λ)

=

∫
spt νx

|σ(x, u(x), λ)− σ̄(x)| dνx(λ) = 0

by (3.15) and (3.16). Since gk > 0 it follows that

gk → 0 strongly in L1(Ω).
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This again suffices to pass to the limit in the equation and the proof of the case (b)
is finished.

We remark, that (3.16) already states that σ(x, u,Du) is the weak L1 limit of
σ(x, uk, Duk), which is enough to pass to the limit in the equation. However, we
wanted to point out that in this case, the convergence is even strong in L1.

Case (a): We claim that in this case for almost all x ∈ Ω the following identity
holds for all µ ∈ IIMm×n on the support of νx:

σ(x, u, λ) : µ = σ(x, u,Du) : µ+ (∇σ(x, u,Du)µ) : (Du− λ), (3.17)

where ∇ is the derivative with respect to the third variable of σ. Indeed, by the
monotonicity of σ we have for all t ∈ IR

(σ(x, u, λ)− σ(x, u,Du+ tµ)) : (λ−Du− tµ) ≥ 0,

whence, by (3.9),

−σ(x, u, λ) : (tµ) >

≥ −σ(x, u,Du) : (λ−Du) + σ(x, u,Du+ tµ) : (λ−Du− tµ)

= t
(
(∇σ(x, u,Du)µ)(λ−Du)− σ(x, u,Du) : µ

)
+ o(t).

The claim follows from this inequality since the sign of t is arbitrary. Since the
sequence σ(x, uk, Duk) is equiintegrable, its weak L1-limit σ̄ is given by

σ̄ =

∫
spt νx

σ(x, u, λ)dνx(λ)

=

∫
spt νx

σ(x, u,Du)dνx(λ) + (∇σ(x, u,Du))t
∫

spt νx

(Du− λ)dνx(λ)

= σ(x, u,Du),

where we used (3.17) in this calculation. This finishes the proof of the case (a) and
hence of the theorem.

Remark. Notice, that in case (a), we only have σ(x, uk, Duk) ⇀ σ(x, u,Du) weakly
in L1(Ω), whereas in case (b), (c) and (d) we have σ(x, uk, Duk) → σ(x, u,Du) in
L1(Ω). In the cases (c) and (d), we even have Duk → Du in measure as k →∞.



Chapter 4

Quasilinear parabolic systems in
divergence form with weak
monotonicity

Abstract: We consider the initial and boundary value problem for
the quasilinear parabolic system

∂u

∂t
− div σ(x, t, u(x, t), Du(x, t)) = f on Ω× (0, T )

u(x, t) = 0 on ∂Ω× (0, T )

u(x, 0) = u0(x) on Ω

for a function u : Ω × [0, T ) → IRm, T > 0. Here, f ∈
Lp
′
(0, T ;W−1,p′(Ω; IRm)) for some p ∈ ( 2n

n+2 ,∞), and u0 ∈ L2(Ω; IRm).
We prove existence of a weak solution under classical regularity, growth
and coercivity conditions for σ, but with only very mild monotonicity
assumptions.

4.1 Introduction

On a bounded open domain Ω ⊂ IRn we consider the initial and boundary value
problem for the quasilinear parabolic system

Mathematics Subject Classification: 35K55
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∂u

∂t
− div σ(x, t, u(x, t), Du(x, t)) = f on Ω× (0, T ) (4.1)

u(x, t) = 0 on ∂Ω× (0, T ) (4.2)

u(x, 0) = u0(x) on Ω (4.3)

for a function u : Ω × [0, T ) → IRm, T > 0. Here, f ∈ Lp′(0, T ;W−1,p′(Ω; IRm)) for
some p ∈ ( 2n

n+2
,∞), u0 ∈ L2(Ω; IRm), and σ satisfies the conditions (P0)–(P2) below.

As in the previous chapter on the corresponding elliptic problem, existence of a weak
solution follows by standard methods in the classical theory of monotone operators
(see [Vi-62], [Mi-62], [Bro-68], [Bré-73], [Li-69]) if one is willing to impose strict
monotonicity of σ(x, t, u, F ) in F or monotonicity in (u, F ). However, we will only
assume weaker monotonicity properties for σ (see below). The tool we use in order
to prove the needed compactness of approximating solutions is (as in the previous
chapter) Young measures.

As before, we denote by IIMm×n the real vector space of m × n matrices equipped
with the inner product M : N = MijNij (with the usual summation convention).

Now, we state our main assumptions.

(P0) (Continuity) σ : Ω×(0, T )×IRm×IIMm×n → IIMm×n is a Carathéodory function,
i.e. (x, t) 7→ σ(x, t, u, F ) is measurable for every (u, F ) ∈ IRm × IIMm×n and
(u, F ) 7→ σ(x, t, u, F ) is continuous for almost every (x, t) ∈ Ω× (0, T ).

(P1) (Growth and coercivity) There exist c1 > 0, c2 > 0, λ1 ∈ Lp
′
(Ω × (0, T )),

λ2 ∈ L1(Ω× (0, T )), λ3 ∈ L(p/α)′(Ω× (0, T )), 0 < α < p, such that

|σ(x, t, u, F )| 6 λ1(x, t) + c1(|u|p−1 + |F |p−1)

σ(x, t, u, F ) : F > −λ2(x, t)− λ3(x, t)|u|α + c2|F |p

(P2) (Monotonicity) σ satisfies one of the following conditions:

(a) For all (x, t) ∈ Ω× (0, T ) and all u ∈ IRm, the map F 7→ σ(x, t, u, F ) is a
C1-function and is monotone, i.e.

(σ(x, t, u, F )− σ(x, t, u,G)) : (F −G) > 0

for all (x, t) ∈ Ω× (0, T ), u ∈ IRm and F,G ∈ IIMm×n.

(b) There exists a function W : Ω × (0, T ) × IRm × IIMm×n → IR such that
σ(x, t, u, F ) = ∂W

∂F
(x, t, u, F ), and F 7→ W (x, t, u, F ) is convex and C1 for

all (x, t) ∈ Ω× (0, T ) and all u ∈ IRm.
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(c) σ is strictly monotone, i.e. σ is monotone and (σ(x, t, u, F )−σ(x, t, u,G)) :
(F −G) = 0 implies F = G.

(d) σ(x, t, u, F ) is strictly p-quasimonotone in F .

The Carathéodory condition (P0) ensures that σ(x, t, u(x, t), U(x, t)) is measurable
on Ω × (0, T ) for measurable functions u : Ω × (0, T ) → IRm and U : Ω × (0, T ) →
IIMm×n (see, e.g., [Ze-90]). (P1) states standard growth and coercivity conditions:
They are used in the construction of approximate solutions by a Galerkin method
and when we pass to the limit. The strict monotonicity condition (c) in (P2) ensures
existence of weak solutions of the corresponding parabolic systems by standard
methods. However, the main point is that we do not require strict monotonicity
or monotonicity in the variables (u, F ) in (a) (b) or (d) as it is usually assumed
in previous work (see, e.g., [BoMu-92], [BréBro-79], [La-85], [LaMu-87], [La-90],
[LaMu-94] and the references therein).

We prove the following result:

Theorem 4.1 If σ satisfies the conditions (P0)–(P2) for some p ∈ ( 2n
n+2

,∞), then

the parabolic system (4.1)–(4.3) has a weak solution u ∈ Lp(0, T ;W 1,p
0 (Ω)) for every

f ∈ Lp′(0, T ; W−1,p(Ω)) and every u0 ∈ L2(Ω).

Remark: The result for the case (d) in (P2) answers in particular a question by
Frehse [Fr-99].

4.2 Choice of the Galerkin base

Let s > 1 + n(1
2
− 1

p
). Then, W s,2

0 (Ω) ⊂ W 1,p
0 (Ω). For ζ ∈ L2(Ω) we consider the

linear bounded map
ϕ : W s,2

0 (Ω)→ IR, v 7→ (ζ, v)L2

where (·, ·)L2 denotes the inner product of L2. By the Riesz Representation Theorem
there exists a unique Kζ ∈ W s,2

0 (Ω) such that

ϕ(v) = (ζ, v)L2 = (Kζ, v)W s,2 for all v ∈ W s,2
0 (Ω).

The map L2 → L2, ζ 7→ Kζ, is linear, symmetric, bounded and (due to the compact
embedding W s,2

0 (Ω) ⊂ L2(Ω)) compact. Moreover, since

(ζ,Kζ)L2 = (Kζ,Kζ)W s,2 > 0

the operator K is (strictly) positive. Hence there exists an L2-orthonormal base
W := {w1, w2, . . .} of eigenvectors of K and positive real eigenvalues λi with Kwi =
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λiwi. This in particular means that wi ∈ W s,2
0 (Ω) for all i and that for all v ∈

W s,2
0 (Ω)

λi(wi, v)W s,2 = (Kwi, v)W s,2 = (wi, v)L2 . (4.4)

Notice that therefore the functions wi are orthogonal also with respect to the inner
product of W s,2(Ω): In fact, for i 6= j, we get by choosing v = wj in (4.4)

0 =
1

λi
(wi, wj)L2 = (wi, wj)W s,2 .

Notice also that, by choosing v = wi in (4.4),

1 = ‖wi‖2
L2 = (wi, wi)L2 = λi(wi, wi)W s,2 = λi‖wi‖2

W s,2 .

Thus, W̃ = {w̃1, w̃2, . . .}, with w̃i :=
√
λiwi, is an orthonormal set for W s,2

0 (Ω).

Actually, W̃ is a basis for W s,2
0 (Ω). To see this, observe that for arbitrary v ∈

W s,2
0 (Ω), the Fourier series

sn(v) :=
n∑
i=1

(w̃i, v)W s,2w̃i → ṽ in W s,2
0 (Ω)

converges to some ṽ. On the other hand, we have

sn(v) =
n∑
i=1

(wi, v)L2wi → v in L2(Ω)

and by the uniqueness of the limit, ṽ = v.

We will need below the L2-orthonormal projector Pk : L2 → L2 onto span(w1,
w2, . . . , wk), k ∈ IIN. Of course, the operator norm ‖Pk‖L (L2,L2) = 1. But notice
that also ‖Pk‖L (W s,2,W s,2) = 1 since for u ∈ W s,2(Ω)

Pku =
k∑
i=1

(wi, u)L2wi =
k∑
i=1

(w̃i, u)W s,2w̃i.

4.3 Galerkin approximation

We make the following ansatz for approximating solutions of (4.1)–(4.3):

uk(x, t) =
k∑
i=1

cki(t)wi(x),

where cki : [0, T ) → IR are supposed to be measurable bounded functions. Each
uk satisfies the boundary condition (4.2) by construction in the sense that uk ∈
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Lp(0, T ;W 1,p
0 (Ω)). We take care of the initial condition (4.3) by choosing the initial

coefficients cki(0) := (u0, wi)L2 such that

uk(·, 0) =
k∑
i=1

cki(0)wi(·)→ u0 in L2(Ω) as k →∞. (4.5)

We try to determine the coefficients cik(t) in such a way, that for all k ∈ IIN the
system of ordinary differential equations

(∂tuk, wj)L2 +

∫
Ω

σ(x, t, uk, Duk) : Dwjdx = 〈f(t), wj〉 (4.6)

(with j ∈ {1, 2, . . . , k}) is satisfied in the sense of distributions. In (4.6), 〈·, ·〉 denotes
the dual pairing of W−1,p′(Ω) and W 1,p

0 (Ω). Now, we fix k ∈ IIN for the moment.
Let 0 < ε < T and J = [0, ε]. Moreover we choose r > 0 large enough, such that
the set Br(0) ⊂ IRk contains the vector (c1k(0), . . . , ckk(0)), and we set K = Br(0).
Observe that by (P0), the function

F : J ×K → IRk

(t, c1, . . . , ck) 7→
(
〈f(t), wj〉

−
∫

Ω

σ(x, t,
k∑
i=1

ciwi,
k∑
i=1

ciDwi) : Dwjdx
)
j=1,...,k

is a Carathéodory function. Moreover, each component Fj may be estimated on
J ×K by

|Fj(t, c1, . . . , ck)| 6 ‖f(t)‖W−1,p′‖wj‖W 1,p
0

+

+
(∫

Ω

|σ(x, t,
k∑
i=1

ciwi,

k∑
i=1

ciDwi)|p
′
dx
)1/p′(∫

Ω

|Dwj|pdx
)1/p

. (4.7)

Using the growth condition in (P1), the right hand side of (4.7) can be estimated in
such a way that

|Fj(t, c1, . . . , ck)| 6 C(r, k)M(t) (4.8)

uniformly on J × K, where C(r, k) is a constant which depends on r and k, and
where M(t) ∈ L1(J) (independent of j, k and r). Thus, the Carathéodory existence
result on ordinary differential equations (see, e.g., [Ka-60]) applied to the system

c′j(t) = Fj(t, c1(t), . . . , ck(t)) (4.9)

cj(0) = ckj(0) (4.10)

(for j ∈ {1, . . . , k}) ensures existence of a distributional, continuous solution cj
(depending on k) of (4.9)–(4.10) on a time interval [0, ε′), where ε′ > 0, a priori,
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may depend on k. Moreover, the corresponding integral equation

cj(t) = cj(0) +

∫ t

0

Fj(τ, c1(τ), . . . , ck(τ))dτ (4.11)

holds on [0, ε′). Then, uk :=
∑k

j=1 cj(t)wj is the desired (short time) solution of (4.6)
with initial condition (4.5).

Now, we want to show, that the local solution constructed above can be extended to
the whole interval [0, T ) independent of k. As a word of warning we should mention,
that the solution need not be unique.

The first thing we want to establish is a uniform bound on the coefficients |cki(t)|:
Since (4.6) is linear in wj, it is allowed to use uk as a test function in equation (4.6)
in place of wj. This gives for an an arbitrary time τ in the existence interval∫ τ

0

(∂tuk, uk)L2dt︸ ︷︷ ︸
=:I

+

∫ τ

0

∫
Ω

σ(x, t, uk, Duk) : Dukdxdt︸ ︷︷ ︸
=:II

=

∫ τ

0

〈f(t), uk〉︸ ︷︷ ︸
=:III

.

For the first term we have

I = 1
2
‖uk(·, τ)‖2

L2(Ω) − 1
2
‖uk(·, 0)‖2

L2(Ω).

Using the coercivity in (P1) for the second term, we obtain

II > −‖λ2‖L1(Ω×(0,T )) − ‖λ3‖L(p/α)′ (Ω×(0,T ))‖uk‖
α
Lp(Ω×(0,τ))+

+ c2‖uk‖pLp(0,τ ;W 1,p
0 (Ω))

.

For the third term, we finally get

III 6 ‖f‖Lp′ (0,T ;W−1,p′ (Ω))‖uk‖Lp(0,τ ;W 1,p
0 (Ω)).

The combination of these three estimates gives

|(cki(τ))i=1,...,k|2IRk = ‖uk(·, τ)‖2
L2(Ω) 6 C̄

for a constant C̄ which is independent of τ (and of k).

Now, let

Λ := {t ∈ [0, T ) : there exists a weak solution of (4.9)–(4.10) on [0, t)}.

Λ is non-empty since we proved local existence above.
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Moreover Λ is an open set: To see this, let t ∈ Λ and 0 < τ1 < τ2 6 t. Then,
by (4.11) and (4.8), we have

|ckj(τ1)− ckj(τ2)| 6
∫ τ2

τ1

|Fj(τ, ck1(τ), . . . , ckk(τ))|dτ

6 C(C̄, k)

∫ τ2

τ1

|M(t)|dτ.

Since M ∈ L1(0, T ), this implies that τ 7→ ckj(τ) is uniformly continuous. Thus, we
can restart to solve (4.6) at time t with initial data limτ↗t uk(τ) and hence get a
solution of (4.9)–(4.10) on [0, t+ ε).

Finally, we prove that Λ is also closed. To see this, we consider a sequence τi ↗ t,
τi ∈ Λ. Let ckj,i denote the solution of (4.9)–(4.10) we constructed on [0, τi] and
define

c̃kj,i(τ) :=

{
ckj,i(τ) if τ ∈ [0, τi]

ckj,i(τi) if τ ∈ (τi, t).

The sequence {ckj,i}i is bounded and equicontinuous on [0, t), as seen above. Hence,
by the Arzela-Ascoli Theorem, a subsequence (again denoted by c̃kj,i(τ)) converges
uniformly in τ on [0, t) to a continuous function ckj(τ). Using Lebesgue’s convergence
theorem in (4.11) it is now easy to see that ckj(τ) solves (4.9) on [0, t). Hence t ∈ Λ
and thus Λ is indeed closed. And as claimed, it follows that Λ = [0, T ).

4.4 Compactness of the Galerkin approximation

By testing equation (4.6) by uk in place of wj we obtain, as above in Section 4.3,
that the sequence {uk}k is bounded in

L∞(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)).

Therefore, by extracting a suitable subsequence which is again denoted by uk, we
may assume

uk
∗
⇀ u in L∞(0, T ;L2(Ω))

uk ⇀ u in Lp(0, T ;W 1,p
0 (Ω))

At this point, the idea is to use Aubin’s Lemma in order to prove compactness of the
sequence {uk} in an appropriate space. Technically this is achieved by the following
Lemma which is slightly more flexible than e.g. the version in [Li-69, Chap. 1, Sect.
5.2] or in [Si-87].
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Lemma 4.2 Let B,B0 and B1 be Banach spaces, B0 and B1 reflexive. Let i : B0 →
B be a compact linear map and j : B → B1 an injective bounded linear operator.
For T finite and 1 < pi <∞, i = 0, 1,

W := {v | v ∈ Lp0(0, T ;B0),
d

dt
(j ◦ i ◦ v) ∈ Lp1(0, T ;B1)}

is a Banach space under the norm ‖v‖Lp0 (0,T ;B0) + ‖j ◦ i ◦ v‖Lp1 (0,T ;B1). Then, if
V ⊂ W is bounded, the set {i ◦ v | v ∈ V } is precompact in Lp0(0, T ;B).

The proof of Lemma 4.2 is given in Appendix I.

Now, we apply Lemma 4.2 to the following case: B0 := W 1,p
0 (Ω), B := Lq(Ω)

(for some q with 2 < q < p∗ := np
n−p if p < n and 2 < p < ∞ if p > n) and

B1 := (W s,2
0 (Ω))′. Since we assumed that p ∈ ( 2n

n+2
,∞), we have the following chain

of continuous injections:

B0
i
↪→ B

i0
↪→ L2(Ω)

γ∼= (L2(Ω))′
i1
↪→ B1. (4.12)

Here, L2(Ω) ∼= (L2(Ω))′ is the canonical isomorphism γ of the Hilbert space L2(Ω)
and its dual. For i : B0 → B we take simply the injection mapping, and for
j : B → B1 we take the concatenation of injections and the canonical isomorphism
given by (4.12), i.e. j := i1 ◦ γ ◦ i0.

Then, as stated at the beginning of this section, {uk}k is a bounded sequence in
Lp(0, T ;B0). Observe that the time derivative d

dt
(j ◦ i ◦ uk) is according to (4.6)

given by

d

dt
(j ◦ i ◦ uk) : [0, T ) → B1 = (W s,2

0 (Ω))′

t 7→
(
ϕ 7→ −

∫
Ω

σ(x, t, uk, Duk) : D(Pkϕ)dx+

+〈f(t), Pkϕ〉
)
.

(We recall that the projection operators Pk are selfadjoint with respect to the L2

inner product.) Now we claim that indeed {∂tj ◦ i ◦ uk}k is a bounded sequence in
Lp
′
(0, T ; (W s,2

0 (Ω))′): Namely, we have by the growth condition in (P1) that

| −
∫ T

0

∫
Ω

σ(x, t, uk, Duk) : D(Pkϕ)dxdt+ 〈f, Pkϕ〉| 6

6 C(‖λ1‖Lp′ ((0,T )×Ω) + ‖uk‖p−1

Lp(0,T ;W 1,p
0 (Ω))

+

+ ‖f‖Lp′ (0,T ;W−1,p′ (Ω)))‖Pkϕ‖Lp(0,T ;W 1,p
0 (Ω)) (4.13)
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and the claim follows since

‖Pkϕ‖Lp(0,T ;W 1,p
0 (Ω)) 6 ‖Pkϕ‖Lp(0,T ;W s,2

0 (Ω)) 6 ‖ϕ‖Lp(0,T ;W s,2
0 (Ω)).

In the last inequality we used the remark at the end of Section 4.2.

Hence, from Lemma 4.2, we may conclude that there exists a subsequence, which
we still denote by uk, having the property that

uk → u in Lp(0, T ;Lq(Ω)) for all q < p∗ and in measure on Ω× (0, T ).

Notice that in order to have the strong convergence simultaneously for all q < p∗,
the usual diagonal sequence procedure applies.

For further use, we note that from (4.13) we can conclude that ∂tu (or rather ∂t(j ◦
i ◦ u)) is an element of the space Lp

′
(0, T ;W−1,p′(Ω)). (This follows easily from the

fact, that the set {ϕ ∈ Lp(0, T ;W 1,p
0 (Ω)) : ∃k ∈ IIN such that Pkϕ = ϕ} is dense in

Lp(0, T ;W 1,p
0 (Ω)), as proved in Appendix II.) See also Appendix III.

Recall that the space

{u ∈ Lp(0, T ;W 1,p
0 (Ω)) : ∂t(j ◦ i ◦ u) ∈ Lp′(0, T ;W−1,p′(Ω))}

is continuously embedded in
C0([0, T ];L2(Ω)).

Hence, we have that u ∈ C0([0, T ];L2(Ω)) after possible modification of u on a
Lebesgue zero-set of [0, T ]. This gives u(t, ·) ∈ L2(Ω) a pointwise interpretation for
all t ∈ [0, T ] and allows in particular to state that u(t, ·) attains its initial value

u(·, 0) = u0 (4.14)

continuously in L2(Ω) (see Appendix III for a proof of (4.14)).

At this point, we would like to mention, that in the case when σ depends only on t
and in a strictly quasimonotonic way on Du, a quite simple proof gives the existence
result. This is carried out in Appendix IV. However, to obtain the general result
stated in Theorem 4.1, some more work is needed in order to pass to the limit.

4.5 The Young measure generated by the Galerkin

approximation

The sequence (or at least a subsequence) of the gradients Duk generates a Young
measure ν(x,t), and since uk converges in measure to u on Ω × (0, T ), the sequence
(uk, Duk) generates the Young measure δu(x,t) ⊗ ν(x,t) (see Proposition 1.3 and 1.4).
Now, we collect some facts about the Young measure ν in the following proposition:
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Proposition 4.3 The Young measure ν(x,t) generated by the sequence {Duk}k has
the following properties:

(i) ν(x,t) is a probability measure on IIMm×n for almost all (x, t) ∈ Ω× (0, T ).

(ii) ν(x,t) satisfies Du(x, t) = 〈ν(x,t), id〉 for almost every (x, t) ∈ Ω× (0, T ).

(iii) ν(x,t) has finite p-th moment for almost all (x, t) ∈ Ω× (0, T ).

(iv) ν(x,t) is a homogeneous W 1,p gradient Young measure for almost all (x, t) ∈
Ω× (0, T ).

Proof
(i) The first observation is simple: To see that ν(x,t) is a probability measure on
IIMm×n for almost all (x, t) ∈ Ω × (0, T ) it suffices to recall the fact that Duk is a
bounded sequence in L1(Ω× (0, T )) and to use Theorem 1.2.

(ii) As we have stated at the beginning of Section 4.4 {Duk}k is bounded in Lp(0, T ;
Lp(Ω)) and we may assume that

Duk ⇀ Du in Lp(0, T ;Lp(Ω)).

On the other hand it follows that the sequence {Duk}k is equiintegrable on Ω×(0, T )
and hence, by the Dunford-Pettis Theorem (see, e.g., [DuSc-88]), the sequence is
sequentially weakly precompact in L1(Ω× (0, T )) which implies that

Duk ⇀ 〈ν(x,t), id〉 in L1(0, T ;L1(Ω)).

Hence, we have Du(x, t) = 〈ν(x,t), id〉 for almost every (x, t) ∈ Ω× (0, T ).

(iii) The next thing we have to check is, that ν(x,t) has finite p-th moment for almost
all (x, t) ∈ Ω× (0, T ). To see this, we choose a cut-off function η ∈ C∞0 (B2α(0); IRm)
with η = id on Bα(0) for some α > 0. Then, the sequence

D(η ◦ uk) = (Dη)(uk)Duk

generates a probability Young measure νη(x,t) on Ω× (0, T ) with finite p-th moment,
i.e. ∫

IIMm×n
|λ|pdνη(x,t)(λ) <∞

for almost all (x, t) ∈ Ω× (0, T ). Now, for ϕ ∈ C∞0 (IIMm×n) we have

ϕ(D(η ◦ uk)) ⇀ 〈νη(x,t), ϕ〉 =

∫
IIMm×n

ϕ(λ)dνη(x,t)(λ)
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weakly in L1(Ω× (0, T )). Rewriting the left hand side, we have (by Proposition 1.4)
also

ϕ((Dη)(uk)Duk) ⇀

∫
IIMm×n

ϕ(Dη(u(x, t))λ)dν(x,t)(λ).

Hence,
νη(x,t) = ν(x,t) if |u(x, t)| < α.

Since α was arbitrary, it follows that indeed ν(x,t) has finite p-th moment for almost
all (x, t) ∈ Ω× (0, T ).

(iv) Finally, we have to show, that {ν(x,t)}x∈Ω is for almost all t ∈ (0, T ) a W 1,p

gradient Young measure. To see this, we take a quasiconvex function q on IIMm×n

with q(F )/|F | → 1 as F → ∞. Then, we fix x ∈ Ω, δ ∈ (0, 1) and use inequality
(1.21) from [Kr-99, Lemma 1.6] with u replaced by uk(x, t), with a := u(x, t) −
Du(x, t)x and with X := Du(x, t). Furthermore, we choose r > 0 such that Br(x) ⊂
Ω. Observe, that the singular part of the distributional gradient vanishes for uk and,
after integrating the inequality over the time interval [t0− ε, t0 + ε] ⊂ (0, T ), we get∫ t0+ε

t0−ε

∫
Br(x)

q(Duk(y, t))dydt+

+
1

(1− δ)r

∫ t0+ε

t0−ε

∫
Br(x)\Bδr(x)

|uk(y, t)− u(x, t)−Du(x, t)(y − x)|dydt >

> |Bδr(x)|
∫ t0+ε

t0−ε
q(Du(x, t))dt.

Letting k tend to infinity in the inequality above, we obtain∫ t0+ε

t0−ε

∫
Br(x)

∫
IIMm×n

q(λ)dν(y,t)(λ)dydt+

+
1

(1− δ)r

∫ t0+ε

t0−ε

∫
Br(x)\Bδr(x)

|u(y, t)− u(x, t) +Du(x, t)(y − x)|dydt >

> |Bδr(x)|
∫ t0+ε

t0−ε
q(Du(x, t))dt.

Now, we let ε → 0 and r → 0 and use the differentiability properties of Sobolev
functions (see, e.g., [EvGa-92]) and obtain, that for almost all (x, t0) ∈ Ω× (0, T )∫

IIMm×n
q(λ)dν(x,t0)(λ) >

|Bδr(x)|
|Br(x)|

q(Du(x, t0)).

Since δ ∈ (0, 1) was arbitrary, we conclude that Jensen’s inequality holds true for q
and the measure ν(x,t) for almost all (x, t) ∈ Ω× (0, T ). Using the characterization
of W 1,p gradient Young measures of [KiPe-94] (e.g., in the form of [Kr-99, Theorem
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8.1]), we conclude that in fact {νx,t}x∈Ω is a W 1,p gradient Young measure on Ω for
almost all t ∈ (0, T ). By the localization principle for gradient Young measures, we
conclude then, that ν(x,t) is a homogeneous W 1,p gradient Young measure for almost
all (x, t) ∈ Ω× (0, T ). 2

4.6 A parabolic div-curl inequality

In this section, we prove a parabolic version of the div-curl Lemma 3.3, which will
be the key ingredient to pass to the limit in the approximating equations and to
prove, that the weak limit u of the Galerkin approximations uk is indeed a solution
of (4.1)–(4.3).

Let us consider the sequence

Ik :=
(
σ(x, t, uk, Duk)− σ(x, t, u,Du)

)
:
(
Duk −Du

)
and prove, that its negative part I−k is equiintegrable on Ω× (0, T ): To do this, we
write I−k in the form

Ik = σ(x, t, uk, Duk) : Duk − σ(x, t, uk, Duk) : Du

−σ(x, t, u,Du) : Duk + σ(x, t, u,Du) : Du =: IIk + IIIk + IVk + Vk.

The sequences II−k and V −k are easily seen to be equiintegrable by the coercivity
condition in (P1). Then, to see equiintegrability of the sequence IIIk, we take a
measurable subset S ⊂ Ω× (0, T ) and write∫

S

|σ(x, t, uk, Duk) : Du|dxdt 6

6
(∫

S

|σ(x, t, uk, Duk)|p
′
dxdt

)1/p′(∫
S

|Du|pdxdt
)1/p

6 C
(∫

S

(|λ1(x, t)p
′
+ |uk|p + |Duk|p)dxdt

)1/p′(∫
S

|Du|pdxdt
)1/p

.

The first integral is uniformly bounded in k (see Section 4.4). The second integral
is arbitrarily small if the measure of S is chosen small enough. A similar argument
gives the equiintegrability of the sequence IVk.

Having established the equiintegrability of I−k , we may use, as in the previous section,
the Fatou-Lemma 1.5 which gives that

X := lim inf
k→∞

∫ T

0

∫
Ω

Ikdxdt >

>
∫ T

0

∫
Ω

∫
IIMm×n

σ(x, t, u, λ) : (λ−Du)dν(x,t)(λ)dxdt. (4.15)
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On the other hand, we will now see that X 6 0: According to Mazur’s Theorem
(see, e.g., [Yo, Theorem 2, page 120]), there exists a sequence vk in Lp(0, T ;W 1,p

0 (Ω))
where each vk is a convex linear combination of {u1, . . . , uk} such that vk → u in
Lp(0, T ;W 1,p

0 (Ω)). In particular, vk(t, ·) ∈ span(w1, w2, . . . , wk) for all t ∈ [0, T ].

Now, we have

X = lim inf
k→∞

∫ T

0

∫
Ω

σ(x, t, uk, Duk) : (Duk −Du)dxdt

= lim inf
k→∞

(∫ T

0

∫
Ω

σ(x, t, uk, Duk) : (Duk −Dvk)dxdt+

+

∫ T

0

∫
Ω

σ(x, t, uk, Duk) : (Dvk −Du)dxdt
)

6 lim inf
k→∞

((∫ T

0

∫
Ω

|σ(x, t, uk, Duk)|p
′
dxdt

)1/p′‖vk − u‖Lp(0,T ;W 1,p(Ω)) +

+〈f, uk − vk〉 −
∫ T

0

∫
Ω

(uk − vk)∂tukdxdt
)
. (4.16)

Observe that uk − vk ∈ span(w1, w2, . . . , wk) which allowed to use (4.6) in the in-
equality above. The first factor in the first term in (4.16)∫ T

0

∫
Ω

|σ(x, t, uk, Duk)|p
′
dxdt

)1/p′

is uniformly bounded in k by the growth condition in (P1) and the bound for uk in
Lp(0, T ;W 1,p(Ω)) (see Section 4.4). The second factor

‖vk − u‖Lp(0,T ;W 1,p(Ω))

converges to zero for k → ∞ by construction of the sequence vk. Hence, the first
term in (4.16) vanishes in the limit.

The second term in (4.16)
〈f, uk − vk〉

converges to zero, since uk − vk ⇀ 0 in Lp(0, T ;W 1,p(Ω)).

Finally, for the last term in (4.16) , we have

−
∫ T

0

∫
Ω

(uk − vk)∂tukdxdt =

= −
∫ T

0

∫
Ω

1
2
∂tu

2
kdxdt+

∫ T

0

∫
Ω

vk∂tukdxdt

= −1
2
‖uk(·, T )‖2

L2(Ω) + 1
2
‖uk(·, 0)‖2

L2(Ω) +

∫ T

0

∫
Ω

vk∂tukdxdt. (4.17)
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Concerning the last term in (4.17) we claim that for k →∞ we have∫ T

0

∫
Ω

vk∂tukdxdt→
∫ T

0

∫
Ω

u∂tudxdt = 1
2
‖u(·, T )‖2

L2(Ω) − 1
2
‖u0‖2

L2(Ω). (4.18)

To see this, let ε > 0 be given. Then, there exists M such that for all l > m > M
we have

(i) |
∫ T

0

∫
Ω

(u− vm)∂tudxdt| 6 ε. This is possible, since ∂t(j ◦ i ◦ u) ∈ Lp
′
(0, T ;

W−1,p′(Ω)) and vm → u in Lp(0, T ;W 1,p
0 (Ω)).

(ii) |
∫ T

0

∫
Ω

(vl − vm)∂tuldxdt| 6 ε. This is possible by (4.13) since vl − vm ∈

span(w1, . . . , wl) for all fixed t ∈ (0, T ).

Now, we fix m >M and choose m0 > m such that for all l > m0

|
∫ T

0

∫
Ω

vm(∂tu− ∂tul)dxdt| 6 ε.

This is possible, since ∂tul
∗
⇀ ∂tu in Lp

′
(0, T ; (W s,2

0 (Ω))′). Combination yields for
all l = l(ε) > m0(ε)

|
∫ T

0

∫
Ω

vl∂tuldxdt−
∫ T

0

∫
Ω

u∂tudxdt| 6

|
∫ T

0

∫
Ω

(vl − vm)∂tuldxdt|+ |
∫ T

0

∫
Ω

vm(∂tul − ∂tu)dxdt|+

|
∫ T

0

∫
Ω

(vm − u)∂tudxdt| 6 3ε.

This establishes (4.18). On the other hand, since {uk}k is bounded in L∞(0, T ;L2(Ω)),
we have (after extraction of a further subsequence if necessary) that uk(·, T ) ⇀
u(·, T ) in L2(Ω) (see Appendix III for a proof). Hence,

lim inf
k→∞

‖uk(·, T )‖L2(Ω) > ‖u(·, T )‖L2(Ω). (4.19)

By construction of uk we also have

lim
k→∞
‖uk(·, 0)‖L2(Ω) = ‖u0‖L2(Ω). (4.20)

Using (4.19), (4.20) and (4.18) in (4.17), we conclude

lim inf
k→∞

−
∫ T

0

∫
Ω

(uk − vk)∂tukdxdt 6 0

This establishes X 6 0, and we infer from (4.15), that the following “div-curl
inequality” holds:
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Lemma 4.4 The Young measure ν(x,t) generated by the gradients Duk of the Galerkin
approximations uk has the property, that∫ T

0

∫
Ω

∫
IIMm×n

(
σ(x, t, u, λ)− σ(x, t, u,Du)

)
:
(
λ−Du

)
dν(x,t)(λ)dxdt 6 0. (4.21)

4.7 Passage to the limit

We start with the easiest case:

Case (d): Suppose that ν(x,t) is not a Dirac mass on a set (x, t) ∈M ⊂ Ω× (0, T )
of positive Lebesgue measure |M | > 0. Then, by the strict p-quasimonotonicity of
σ(x, t, u, ·), and the fact that ν(x,t) is a homogeneous W 1,p gradient Young measure
(see Section 4.5) for almost all (x, t) ∈ Ω× (0, T ), we have for a.e. (x, t) ∈M∫

IIMm×n
σ(x, t, u, λ) : λdν(x,t)(λ) >

>

∫
IIMm×n

σ(x, t, u, λ)dν(x,t)(λ) :

∫
IIMm×n

λdν(x,t)(λ)︸ ︷︷ ︸
= Du(x, t)

.

Hence, by integrating over Ω× (0, T ), we get together with Lemma 4.4∫ T

0

∫
Ω

∫
IIMm×n

σ(x, t, u, λ)dν(x,t)(λ) : Du(x, t)dxdt >

>
∫ T

0

∫
Ω

∫
IIMm×n

σ(x, t, u, λ) : λdν(x,t)(λ)dxdt >

>

∫ T

0

∫
Ω

∫
IIMm×n

σ(x, t, u, λ)dν(x,t)(λ) : Du(x, t)dxdt

which is a contradiction. Hence, we have ν(x,t) = δDu(x,t) for almost every (x, t) ∈
Ω× (0, T ). From this, it follows by Proposition 1.3 that Duk → Du on Ω× (0, T ) in
measure for k → ∞, and thus, σ(x, t, uk, Duk) → σ(x, t, u,Du) almost everywhere
on Ω × (0, T ) (up to extraction of a further subsequence). Since, by the growth
condition in (P1), σ(x, t, uk, Duk) is equiintegrable, it follows that σ(x, t, uk, Duk)→
σ(x, t, u,Du) in L1(Ω× (0, T )) by the Vitali convergence theorem. Now, we take a
test function w ∈ ∪i∈IIN span(w1, . . . , wi) and ϕ ∈ C∞0 ([0, T ]) in (4.6) and integrate
over the interval (0, T ) and pass to the limit k →∞. The resulting equation is∫ T

0

∫
Ω

∂tu(x)ϕ(t)w(x)dxdt+

∫ T

0

∫
Ω

σ(x, t, u,Du) : Dw(x)ϕ(t)dxdt = 〈f, ϕw〉,
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for arbitrary w ∈ ∪i∈IIN span(w1, . . . , wi) and ϕ ∈ C∞([0, T ]). By density of the
linear span of these functions in Lp(0, T ;W 1,p(Ω)), this proves, that u is in fact a
weak solution. Hence the Theorem follows in case (d).

Now, we prepare the proof of Theorem 4.1 in the remaining cases as follows: Observe
that the integrand in (4.21) is nonnegative by monotonicity. Thus, it follows from
Lemma 4.4 that the integrand must vanish almost everywhere with respect to the
product measure dν(x,t)⊗dx⊗dt. Hence, we have that for almost all (x, t) ∈ Ω×(0, T )

(σ(x, t, u, λ)− σ(x, t, u,Du)) : (λ−Du) = 0 on spt ν(x,t) (4.22)

and thus

spt ν(x,t) ⊂ {λ | (σ(x, t, u, λ)− σ(x, t, u,Du)) : (λ−Du) = 0}. (4.23)

Now, we proceed with the proof in the single cases (a), (b) and (c) of (P2). We start
with the simplest case (c):

Case (c): By strict monotonicity, it follows from (4.22) or (4.23) that ν(x,t) = δDu(x,t)

for almost all (x, t) ∈ Ω × (0, T ), and hence Duk → Du in measure on Ω × (0, T ).
The rest of the proof is identical to the proof for case (d).

Case (b): We start by showing that for almost all (x, t) ∈ Ω× (0, T ), the support
of ν(x,t) is contained in the set where W agrees with the supporting hyper-plane
L := {(λ,W (x, t, u,Du) +σ(x, t, u,Du)(λ−Du))} in Du(x, t), i.e. we want to show
that

spt ν(x,t) ⊂ K(x,t) =

= {λ ∈ IIMm×n : W (x, t.u, λ) = W (x, t, u,Du) + σ(x, t, u,Du) : (λ−Du)}.

If λ ∈ spt ν(x,t) then by (4.23)

(1− τ)(σ(x, t, u,Du)− σ(x, t, u, λ)) : (Du− λ) = 0 for all τ ∈ [0, 1]. (4.24)

On the other hand, by monotonicity, we have for τ ∈ [0, 1] that

0 6 (1− τ)(σ(x, t, u,Du+ τ(λ−Du))− σ(x, t, u, λ)) : (Du− λ). (4.25)

Subtracting (4.24) from (4.25), we get

0 6 (1− τ)(σ(x, t, u,Du+ τ(λ−Du))− σ(x, t, u,Du)) : (Du− λ) (4.26)

for all τ ∈ [0, 1]. But by monotonicity, in (4.26) also the reverse inequality holds
and we may conclude, that

(σ(x, t, u,Du+ τ(λ−Du))− σ(x, t, u,Du)) : (λ−Du) = 0 (4.27)
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for all τ ∈ [0, 1], whenever λ ∈ spt ν(x,t). Now, it follows from (4.27) that

W (x, t, u, λ) = W (x, t, u,Du) +

∫ 1

0

σ(x, t, u,Du+ τ(λ−Du)) : (λ−Du)dτ

= W (x, t, u,Du) + σ(x, t, u,Du) : (λ−Du)

as claimed.

By the convexity of W we have W (x, t, u, λ) > W (x, t, u,Du) + σ(x, t, u,Du) :
(λ−Du) for all λ ∈ IIMm×n and thus L is a supporting hyper-plane for all λ ∈ K(x,t).
Since the mapping λ 7→ W (x, t, u, λ) is by assumption continuously differentiable
we obtain

σ(x, t, u, λ) = σ(x, t, u,Du) for all λ ∈ K(x,t) ⊃ spt ν(x,t) (4.28)

and thus

σ̄ :=

∫
IIMm×n

σ(x, t, u, λ) dν(x,t)(λ) = σ(x, t, u,Du) . (4.29)

Now consider the Carathéodory function

g(x, t, u, p) = |σ(x, t, u, p)− σ̄(x, t)| .

The sequence gk(x, t) = g(x, t, uk(x, t), Duk(x, t)) is equiintegrable and thus

gk ⇀ ḡ weakly in L1(Ω× (0, T ))

and the weak limit ḡ is given by

ḡ(x, t) =

∫
IRm×IIMm×n

|σ(x, t, η, λ)− σ̄(x, t)| dδu(x,t)(η)⊗ dν(x,t)(λ)

=

∫
spt ν(x,t)

|σ(x, t, u(x, t), λ)− σ̄(x, t)| dν(x,t)(λ) = 0

by (4.28) and (4.29). Since gk > 0 it follows that

gk → 0 strongly in L1(Ω× (0, T )).

This again suffices to pass to the limit in the equation and the proof of the case (b)
is finished.

Case (a): We claim that in this case for almost all (x, t) ∈ Ω× (0, T ) the following
identity holds for all µ ∈ IIMm×n on the support of ν(x,t):

σ(x, t, u, λ) : µ = σ(x, t, u,Du) : µ+ (∇σ(x, t, u,Du)µ) : (Du− λ), (4.30)
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where ∇ is the derivative with respect to the third variable of σ. Indeed, by the
monotonicity of σ we have for all τ ∈ IR

(σ(x, t, u, λ)− σ(x, t, u,Du+ τµ)) : (λ−Du− τµ) > 0,

whence, by (4.22),

−σ(x, t, u, λ) : (τµ) >

> −σ(x, t, u,Du) : (λ−Du) + σ(x, t, u,Du+ τµ) : (λ−Du− τµ)

= τ
(
(∇σ(x, t, u,Du)µ)(λ−Du)− σ(x, t, u,Du) : µ

)
+ o(τ).

The claim follows from this inequality since the sign of τ is arbitrary. Since the
sequence σ(x, t, uk, Duk) is equiintegrable, its weak L1-limit σ̄ is given by

σ̄ =

∫
spt ν(x,t)

σ(x, t, u, λ)dν(x,t)(λ)

=

∫
spt ν(x,t)

σ(x, t, u,Du)dν(x,t)(λ) +

+(∇σ(x, t, u,Du))t
∫

spt ν(x,t)

(Du− λ)dν(x,t)(λ)

= σ(x, t, u,Du),

where we used (4.30) in this calculation. This finishes the proof of the case (a) and
hence of the theorem.

Remark: Notice, that in case (a) we have σ(x, t, uk, Duk) ⇀ σ(x, t, u,Du), in case
(b) we have σ(x, t, uk, Duk) → σ(x, t, u,Du) in L1(Ω × (0, T )), and in case (c), we
even have Duk → Du in measure on Ω× (0, T ) as k →∞.

Appendix I

Here we give the proof of the modified Lemma of Aubin 4.2.

Let B̃0 := j(i(B0)) ⊂ B1 be the Banach space equipped with the norm

‖x̃‖B̃0
:= inf

x∈B0
j◦i(x)=x̃

‖x‖B0

and B̃ := j(B) ⊂ B1 be the Banach space equipped with the norm

‖x‖B̃ := ‖j−1(x)‖B
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(we recall that j is supposed to be injective). Now, we consider a bounded sequence
{vn}n in W . Let ṽn := j ◦ i ◦ vn. Then, {ṽn}n is bounded in

W̃ := {ṽ | ṽ ∈ Lp0(0, T ; B̃0),
dṽ

dt
∈ Lp1(0, T ; B̃1)}

and by the usual Aubin Lemma (see [Li-69, Chap. 1, Sect. 5.2]) it follows that there
exists a subsequence ṽν which converges strongly in Lp0(0, T ; B̃). By isometry of B
and B̃, the claim follows. 2

Appendix II

Let u be an arbitrary function in Lp(0, T ;W 1,p
0 (Ω)). We want to construct a sequence

vk ∈ Lp(0, T ;W 1,p
0 (Ω)) which has the following properties:

(i) vk → u in Lp(0, T ;W 1,p
0 (Ω)).

(ii) vk(t) ∈ span(w1, w2, . . . , wk) for 0 6 t 6 T .

To construct the sequence {vk}k, we take ε > 0 (with the intention to let ε → 0)
and a standard mollifier δη in space-time. The function u is extend by zero outside
Ω× [0, T ] ⊂ IRn+1. Choosing η > 0 small enough, we may achieve that

‖u ∗ δη − u‖Lp(0,T ;W 1,p(Ω)) < ε.

Now, for a smooth function ϕ ∈ C∞(Ω̄× [0, T ]) and j ∈ IIN let

Qj(ϕ)(x, t) := ϕ(x, iT
j
) if t ∈ [i

T

j
, (i+ 1)

T

j
)

denote the step function approximation of ϕ in time. We fix j ∈ IIN large enough
such that we have

‖u ∗ δη −Qj(u ∗ δη)‖Lp(0,T ;W 1,p(Ω)) < ε,

Finally, we choose k large enough, such that

‖Qj(u ∗ δη)− Pk ◦Qj(u ∗ δη)‖Lp(0,T ;W 1,p(Ω)) < ε,

where (as before) Pk denotes the W s,2(Ω)-projection onto span(w1, w2, . . . , wk) (no-
tice that this is possible, since t 7→ Qj(u ∗ δη) takes only finitely many values on
[0, T ]).

Combination yields

‖u− Pk ◦Qj(u ∗ δη)‖Lp(0,T ;W 1,p(Ω)) < 3ε

and hence the sequence vk = Pk(ε) ◦Qj(ε)(u ∗ δη(ε)) for ε→ 0 is a sequence with the
properties (i)–(ii).
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Appendix III

Here, we want to prove, that

uk(·, T ) ⇀ u(·, T ) weakly in L2(Ω).

and that
u(·, 0) = u0.

Since {uk}k is bounded in L∞(0, T ;L2(Ω)), it is clear, that for a (not relabeled)
subsequence

uk(·, T ) ⇀ z weakly in L2(Ω),

and we have to show z = u(·, T ). To shorten the notation, we write from now on
u(T ) instead of u(·, T ) et cetera.

In order to prove the claim, note that (again, after possible choice of a further
subsequence)

− div σ(x, t, uk, Duk) ⇀ χ weakly in Lp
′
(0, T ;W−1,p′(Ω)).

Now, we claim that for arbitrary ψ ∈ C∞([0, T ]) and v ∈ W 1,p
0 (Ω)∫

Ω

zψ(T )vdx−
∫

Ω

u0ψ(0)vdx = 〈f − χ, ψv〉+

∫ T

0

∫
Ω

ψ′vudx. (4.31)

Since ∪n∈IIN span(w1, . . . , wn) is dense in W 1,p
0 (Ω), it suffices to verify (4.31) for v ∈

span(w1, . . . , wn). Then, by testing (4.6) by vψ, we have for m > n∫ T

0

∫
Ω

∂tumvψdxdt︸ ︷︷ ︸
=
∫

Ω
um(T )ψ(T )vdx−

∫
Ω
um(0)ψ(0)vdx−

∫ T
0

∫
Ω
umvψ

′dxdt

+

∫ T

0

∫
Ω

σ(x, t, um, Dum) : Dvψdxdt = 〈f, vψ〉.

Then, (4.31) follows by letting m tend to infinity. By choosing ψ(0) = ψ(T ) = 0
in (4.31), we have in particular

〈f − χ, ψv〉 = −
∫ T

0

∫
Ω

ψ′vudx =

∫ T

0

∫
Ω

ψvu′dx,

and hence
u′ + χ = f.

Using this and (4.31) we have on the other hand∫
Ω

zψ(T )vdx−
∫

Ω

u0ψ(0)vdx = 〈u′, ψv〉+

∫ T

0

∫
Ω

ψ′vudx

=

∫
Ω

uψvdx
∣∣∣T
0

=

∫
Ω

u(T )ψ(T )vdx−
∫

Ω

u(0)ψ(0)vdx. (4.32)
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Choosing ψ(T ) = 1, ψ(0) = 0 in (4.32), we obtain that u(0) = u0 and for ψ(T ) = 0,
ψ(0) = 1, we get u(T ) = z, as claimed.

Appendix IV

In this section, we want to assume that σ does not depend on x and u, and to replace
condition (P2) by the following more classical quasimonotonicity condition:

(P2’) For all fixed t ∈ [0, T ) the map σ(t, F ) is strictly quasimonotone in the variable
F .

Here, by strictly quasimonotone we mean the following:

Definition 4.5 A function η : IIMm×n → IIMm×n is said to be strictly quasimonotone,
if there exist constants c > 0 and r > 0 such that∫

Ω

(η(Du)− η(Dv)) : (Du−Dv)dx > c

∫
Ω

|Du−Dv|rdx

for all u, v ∈ W 1,p
0 (Ω).

We want to prove:

Theorem 4.6 If σ(t,Du) satisfies the conditions (P0), (P1) and (P2’) for some
p ∈ ( 2n

n+2
,∞), then the parabolic system (4.1)–(4.3) has a weak solution u ∈ Lp(0, T ;

W 1,p
0 (Ω)) for every f ∈ Lp′(0, T ; W−1,p(Ω)) and every u0 ∈ L2(Ω).

Since in this case, we do not have to deal with x and u dependence of σ, the following
simple proof is possible.

Proof
Let uk and vk be constructed as in the proof of Theorem 4.1. Then, by using uk−vk
as a test function in (4.6), we obtain

〈f, uk − vk〉 −
∫ T

0

∫
Ω

(uk − vk)∂tukdxdt =

=

∫ T

0

∫
Ω

σ(t,Duk) : (Duk −Dvk)dxdt =

=

∫ T

0

∫
Ω

(σ(t,Duk)− σ(t,Dvk)) : (Duk −Dvk)dxdt+

+

∫ T

0

∫
Ω

σ(t,Dvk) : (Duk −Dvk)dxdt. (4.33)
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The first term on the left of (4.33) 〈f, uk − vk〉 converges to zero as k → ∞, since
uk − vk ⇀ 0 in Lp(0, T ;W 1,p

0 (Ω)). For the second term on the left of (4.33) we have
seen in Section 4.6 that

lim inf
k→∞

−
∫ T

0

∫
Ω

(uk − vk)∂tukdxdt 6 0

for k → ∞. The last term on the right of (4.33) converges to zero for k → ∞
since σ(t,Dvk) → σ(t,Du) in Lp

′
(0, T ;Lp

′
(Ω)) (at least for a subsequence) and

Duk −Dvk ⇀ 0 in Lp(0, T ;Lp(Ω)). We conclude:

o(1) =

∫ T

0

∫
Ω

(σ(t,Duk)− σ(t,Dvk)) : (Duk −Dvk)dxdt >

> c

∫ T

0

∫
Ω

|Duk −Dvk|rdxdt.

This implies Duk → Du in measure for a suitable subsequence. The rest of the
proof is as in case (d) in Section 4.7. 2
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[FuFu-80] S. Fučik, A. Kufner: Nonlinear differential equations. Elsevier, New
York, 1980.
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[Vi-61] I. M. Vĭsik: Boundary value problems for quasilinear strongly elliptic
equatuions (Russian). Dokl. Akad. Nauk SSSR 138 (1961), 518–521.
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