Unterschiede Mathematik - Physik

Status: Diskussionsgrundlage für ein Treffen der M/Ph-Arbeitsgruppen Stand: 5. Juli 2017, Martin Lieberherr und Arno Gropengiesser

Damit der Übergang Gymnasium-Hochschule für die Schülerinnen und Schüler reibungsarm vonstatten geht, sollten sich Mathematik und Physik verbünden. Vorschläge, wie die beiden gymnasialen Fächer gemeinsame Unterrichtsinhalte finden, wurden bereits in vielen Weiterbildungskursen gemacht. Genauso wichtig ist aber, dass sie sich gegenseitig nicht stören. Es sollte nicht sein, dass der Unterricht im einen Fach zentrale Inhalte des anderen Faches zerstört oder behindert. Nachfolgend eine gemeinsam ausgearbeitete Liste mit Unterschieden und Problemfeldern.

Mathematik	Physik
Mathematik ist eine Geisteswissenschaft.	Physik ist eine exakte Naturwissenschaft.
Gegenstand	Gegenstand
Untersucht werden formal	Untersucht werden jene Zusammenhänge
widerspruchsfreie, logische Strukturen.	in der Natur, die quantitativ beschrieben
Das Mittel dazu ist der Beweis. Eine	werden können. Das Mittel dazu ist das
Anwendung ist "nice to have", aber nicht	Experiment. Logische Konsistenz ist leider
erforderlich.	nicht immer zu haben.
Beweis	Beweis
Ein bewiesener Satz ist sicher wahr. Die	Ein Beweis stärkt die Theorie, aber erst
Voraussetzungen (Axiome), unter denen	das Experiment schafft Fakten. Axiome
der Satz gilt, können (fast) frei gesetzt	gibt es nicht, allenfalls Postulate. Sichere
werden. Reale oder numerische	Aussagen über die Welt sind
Experimente dienen allenfalls der	philosophisch unmöglich. Simulationen
Hypothesensuche.	generieren gute Hypothesen.
Experiment	Experiment
Die Goldbachsche Vermutung ist bestätigt	Das mathematische Modell ist elegant und
für alle Zahlen bis 4·10 ¹⁸ . Ein	logisch konsistent, aber leider im
Gegenbeispiel, die sie widerlegt, wurde	Widerspruch zu den Experimenten.
nicht gefunden, genauso wenig wie einen	"Gezählt, gewogen und für zu leicht
Beweis, dass sie für <i>jede</i> beliebig grosse	befunden." (Daniel 5,25, Altes Testament)
gerade Zahl gilt.	D. M. letter 1 to 1 to 1 CE:
Es gibt mehrere hundert Beweise für den	Die Welt ist nicht euklidisch (Einstein,
Satz von Pythagoras, er ist sicher wahr.	1916, et al.), aber euklidische Geometrie
	ist eine exzellente Näherung.
Genauigkeit	Genauigkeit
Eine Rechnung stimmt exakt oder ist	Eine Rechnung ist erst dann gut, wenn
falsch. "Die ganzen Zahlen hat der liebe	man weiss, WIE gut sie ist. "To err is
Gott gemacht, alles andere ist Menschenwerk." (L. Kronecker)	human; to describe the error properly is sublime" (C. Swartz)
Nachfolgende Nullen werden nicht	Nachfolgende Nullen müssen geschrieben
geschrieben. Nachfolgende Leerstellen	werden, falls sie signifikant sind.
werden gedanklich mit Nullen gefüllt.	Nachfolgende Leerstellen sind unbekannt.
Notation	Notation
y = f'(x)	v = ds/dt
y - 1 (A)	v – us/ut

Die Schreibweise nach Newton ist kurz.	Die Schreibweise nach Leibniz ist klar und
Die Variable, nach der abgeleitet wird,	lässt eine Interpretation sowie
wird nicht explizit genannt. Die Notation	Einheitenkontrolle zu. Die Schreibweise
legt kaum eine Interpretation nahe. Der	muss gelernt und geübt werden.
Transfer in die Anwendung ist schwierig.	0
Einheiten	Einheiten
Ohne Einheiten oder "ohne Beschränkung	Dimensionsanalysen und Einheiten sind
der Allgemeinheit wird der Kreisradius	ein wesentliches Element der Hypothesen-
Eins gesetzt".	bildung und Konsistenzprüfung.
	1 2
Formalisierung	Formalisierung
s = 3t+7	$S = v \cdot t + S_0$
Parameter werden selten verwendet. Die	Gleichungen sind vollständig parametri-
Bedeutung der Variablen ist offen.	siert. Variable sind inhaltlich aufgeladen.
Aufgabenstellung	Aufgaben sind offene Projekte mit
Aufgaben sind klar gestellt und haben eine	besseren und schlechteren Lösungen. Die
eindeutige Lösung. Externes Wissen ist	Voraussetzungen sind oft implizit.
kaum nötig.	Externes Wissen ist notwendig, z.B. was
	vernachlässigbar oder tabelliert ist.
Mathematik ist eine strukturierende	Physik stellt das Basiswissen für alle
Wissenschaft: Sie liefert Werkzeuge für	anderen Natur- und technischen
alle quantitativ und logisch	Wissenschaften. Sie hilft, Mathematik zu
argumentierenden Wissenschaften. "In	standardisieren, legitimieren und weiter
jeder reinen Naturlehre ist nur so viel an	zu entwickeln. Pascal, Huygens, Newton,
eigentlicher Wissenschaft enthalten, als	Bernoulli, Euler, Lagrange, etc. waren
Mathematik in ihr angewandt werden	Mathematiker und Physiker in
kann." (I. Kant)	Personalunion.
	Physik muss die Mathematik selber
Mathematik kommt grundsätzlich ohne	
Physik oder andere Anwendungen aus.	entwickeln, weil der Unterricht in Mathe
Mathematik ist eine Kunst!	zu spät dran ist. Mathematik ist eine
0. 1 11	Sprache.
Stundenzahl	Stundenzahl
Mathematik ist eine Basis für alle exakten	Mathematik ist wie Sprachunterricht. Man
Wissenschaften. Mathematik benötigt	darf nicht bei der Grammatik (Mathe)
deshalb viel Unterrichtszeit.	stehen bleiben, sondern muss auch etwas
	zu sagen haben (Literatur, Physik).
Ärgernisse	Ärgernisse
Warum kann die Physikerin nicht einfach	Nie hält sich der Mathematiker an die
meine Notation übernehmen?	vereinbarten Fixpunkte!
Warum rechnet er Handgelenk mal Pi,	Warum hat sie der Klasse nicht beige-
wenn es doch exakt geht?	bracht, wie man Doppelbrüche auflöst?
Immer diese Vorgriffe im Stoff ohne	Zeigt der Mathematiker denn nie eine
didaktischen Aufbau!	Anwendung?
Kanon	Empfehlungen
Der Kanon Mathematik wurde	Ein Kanon Physik ist wegen der
überarbeitet. Wie stellt sich die Physik	Heterogenität der Lektionenzahl und
dazu? Wie unterstützt sie die dessen Ziele?	-verteilung ein Wunschtraum. Physik hat
	_
Was gewinnt der Physikunterricht?	2-3 mal weniger Lektionen als Mathe.
Basale Kompetenzen	Basale Kompetenzen
Wie stellt sich die Physik zu den	Ein verlässlicher Lehrplan mit Fixpunkten
geforderten basalen Kompetenzen in	ist wichtiger für den Unterricht. Was
Mathematik?	passiert mit faulen oder dummen

	Schülern?
Hilfestellung	Hilfestellung
Mathematik hilft der Physik, indem sie	Physik hilft der Mathematik, weil sie
Sprachelemente zur Verfügung stellt.	Mathematik anwendet.
persönliche Animositäten	persönliche Animositäten
"Ich sehe die Anwendung der Mathematik	"Mir fallen in fünf Minuten mehr
nicht in der Physik."	angewandte Projektthemen ein, als
	diesem Mathematiker in zwei Wochen."

Weitere Gedanken

Mittelschulmathematik benötigt Anwendungen in Naturwissenschaft und Technik, um die hohe Stundenzahl zu rechtfertigen. Ohne Anwendungen gerät Mathematik in den Ruf eines Orchideenfaches: Die Lektionen würden gekürzt, wie es gerade dem Latein widerfährt. Im Gymnasium verwendet nur Physik in grossem Umfang Mathematik.

Darf die Physik Ansprüche an den Mathematikunterricht stellen, weil sie Mathematik häufig anwendet? (Fixpunkte, Reihenfolge, Tiefe der Behandlung, ..) Es ist lästig, wenn nach einem Jahr Mathematikunterricht die Geradengleichung fehlt.

Mittelschulphysik soll rechnen, denn Physik ist eine quantitative Naturwissenschaft. Das Rechnen stärkt die mathematische Flexibilität. Ein zweiter, anwendungsorientierter Blick auf mathematische Strukturen hilft vielen Schülerinnen und Schülern. Qualitativer, d.h. text- und bildlastiger Physikunterricht ist in dieser Beziehung nicht hilfreich. So dient er auch nicht der Hochschulvorbereitung.

Kann übermässiger Mathematikunterricht auch negative Auswirkungen haben? Beschäftigt man sich zu lange mit einem Gegenstand, der einem lieb ist, verliert man die kritische Distanz. "Ohne Zahlen kann man nicht zählen." (Falsch, man kann Abzählverse benützen. Ein abstrakter Zahlbegriff ist nicht nötig zum Zählen.) "Kräfte sind Vektoren." (Falsch, es ist umgekehrt: Vektoren sind idealisierte Kräfte. Kräfte sind zweitausend Jahre älter als Vektoren. Vektoren reichen nicht aus, die Wirkung von Kräften vollständig zu charakterisieren.) Weil Physiker so früh und lange mathematisch trainiert werden, ist die Verbindung zur Natur manchmal schwächer ausgebildet als jene zum mathematischen Ideenhimmel. Der moderne logisch-axiomatische Stil, den Studenten aus dem Studium mitbringen, ist unpraktisch für den gymnasialen Physikunterricht, denn er unterschlägt oft die Ideengeschichte und Varianten.

Darf die Physik umgekehrt auf eine Vertiefung der Eigenschaften mathematischer Objekte immer verzichten? Beschäftigt man sich zu kurz mit einem Gegenstand, gewinnt man keinen Überblick und verpasst logische Konsequenzen. Schwebungen ohne Summenregel der trigonometrischen Funktionen? Zusammenhang von Position und Geschwindigkeit ohne Hauptsatz der Infinitesimalrechnung? Elektrisches oder magnetische Feld ohne Vektoren? Da fehlte ein Element der Hochschulvorbereitung.

Sind die Unterschiede zwischen gymnasialer Mathematik und Physik dieselben wie zwischen universitärer Physik und Mathematik? Profitiert die universitäre Mathematik vom gymnasialen Physikunterricht respektive die universitäre Physik vom gymnasialen Mathematikunterricht?