Double counting

Snapshots from the ETH Math Youth Academy

Kaloyan Slavov

Department of Mathematics ETH Zürich

https://www.math.ethz.ch/eth-math-youth-academy

September 13, 2017

1/7

Can you put the numbers

 $1,2,\ldots,12$

on the edges of a cube, so that the sum of the three numbers on the edges out of each vertex is the same?

Solution. Suppose that you can. Let

 $S_A = {\rm the \ sum \ of \ the \ numbers \ on \ the \ 3 \ edges \ out \ of \ A}$ and similarly $S_B,...,S_H.$ Then

$$S_A + \dots + S_H = (1 + 2 + \dots + 12).2 = 12.13 = 156$$

not divisble by 8

 $\implies S_A, ..., S_H$ cannot be all equal!

Prove that the number of rooks on *white* squares is *even*.

Proof. The square (x, y) is white $\iff x + y$ is odd.

Let $(x_1, y_1), ..., (x_8, y_8)$ be the positions of the rooks. Then

 $\underbrace{(x_1+y_1)+\dots+(x_8+y_8)}_{\text{must be even}} = (x_1+\dots+x_8) + (y_1+\dots+y_8)$ $= (1+\dots+8) + (1+\dots+8)$ $= 72 \quad \text{even!}$

Ï

邕

 $\overline{7}$

Ï

(5,4)

5

Ï

6

6

5

4

3

 $\mathbf{2}$

1

1

I

(2,2)

3

4

2

(3, 5)

A 6×6 board is tiled by 2×1 domino pieces.

Prove that the board can be cut by a line that breaks none of the domino pieces.

Proof. Suppose that each of the 10 candidates for a line breaks at least one domino piece.

A line cannot break just a *single* domino piece. \implies each of these 10 lines breaks at least **two** domino pieces. \implies there are at least 10.2 = 20 domino pieces. But, there are 18.

Example with 5 points inside.

Peter marks 20 points inside a square, as well as its 4 vertices.

Then he connects some pairs of marked points, so that

- no two segments intersect
- the square gets divided into triangles.

How many triangles does Peter obtain? Does this number depend on the way he chooses the 20 points or the specific subdivision?

Solution. Double-count the sum of all angles of all triangles in the subdivision.

(number of triangles). $180^{\circ} = 20.360^{\circ} + 4.90^{\circ}$ 20 points inside \implies (number of triangles) = 42.

5/7

Consider a grid 5×8 .

What is the largest number of squares that a line can intersect (in their interiors)?

Claim: 12.

Proof. Consider a line and traverse it. Any time it intersects a gridline, it enters a new square. So, it can go through at most

$$1 + 4 + 7 = 12$$

squares.

7 / 7